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Abstract. The article describes probabilistic properties of autoregressive models with multiple 

roots of characteristic equations as well as the results of such properties investigation. 

Particular attention is paid to the study of covariance functions. However, we investigate only 

such models of different orders that provides equal intervals of correlation in row and column. 

So the multiplicity of such models by row and column is the same. Asymptotic graphs of 

covariance functions cross-sections are constructed. It is shown that the cross-sections tend to 

ellipses when model orders are improving. We also describe in detail the problem of filtering 

images generated by autoregressions with multiple roots. Dependences of variances of filtering 
errors on the correlation parameter are obtained. The efficiency of filtering at various signal 

noise ratios and various orders of models is investigated. The effectiveness and expediency of 

applying autoregressions with multiple roots are shown in comparison with other 

autoregressions of high orders. 

1. Introduction
A lot of real images is characterized by a smooth change in brightness. It means that real images have

rather strong correlation links in some neighborhood. The known autoregressive (AR) image models

[1-3] either do not adequately describe the nature of such images even at high values of the correlation

coefficient in case of first order model.
However, the use of higher order models requires complex operations to calculate the set of 

correlation parameters. Meanwhile, there are models of AR random field (RF), that generated by the 

characteristic equations in image processing and representation literature [4-6,12]. Such models are 
called AR with multiple roots. In this case, the application of algorithms based on such models, when 

processing real signals and in various applied problems, can contribute to improving the efficiency of 

solving such problems. In recent years, particular interest is caused by the processing of satellite 
images [13-15]. 

A lot of tasks connecting with preliminary processing are known, but the important task is to 

suppress noise or filter images [7,8]. The advantage of models with multiple roots is the possibility of 

applying recurrent filtration procedures [9]. The article deals with the problem of image modeling on 
the basis of such models as well as problems of analysis of probability properties and optimal filtering 

of random fields generated by such models. 

2. Autoregressions with multiple roots of characteristic equations
The widely known class of image models is the AR model of RF [1-3]. One of the main reasons for

the spread of AR models is the efficient mathematical apparatus developed for modeling random
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sequences. The AR class of RF models can be obtained on the basis of linear stochastic difference 
equations of the following form: 
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  is a random variable with Gaussian distribution; D  is a causal region of local states. 

The choice of a normally distributed RF with independent components is convenient and simple 

enough to describe some brightness properties of the image by the model. In this case, the RF X  will 
also obey the Gaussian distribution. As an example, let us consider the formation of a two-dimensional 

RF using of the first order AR model known also as Habibie model: 
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the size of the image that we imitate. 

Due to the specifics of this way to generate the image, the process of estimating the parameters of 
the AR model can be performed without special difficulties. Nevertheless, such models are not good 

enough for describing real images, since they provide only small regions of local states. And this is an 

important factor in modeling multi-zone images. Therefore, if it is necessary to use the AR equation, 
we must increase the order of the model for the expansion of local states. So this fact entails an 

inevitable growth of computational costs. Sometimes the image can be so difficult that it is required to 

perform imitation in a class other than AR. Otherwise, to achieve adequate replacement of the image is 

unlikely to succeed. 
In addition, the weakness of such models is that they are not suitable for an adequate description of 

isotropic RFs, for example, with a covariation function (CF) of the form 
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1 NkkkkRkR  . To overcome this drawback, one can use the characteristic equations 

[10]. In work [6] models based on the generalization of one-dimensional ARs to the multidimensional 

case were proposed. For example, if we take an AR with multiple roots of characteristic equations of 
the second order 
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then it is possible to obtain on its basis a model of a two-dimensional second-order RF 
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where b  is normalizing coefficient, which makes it possible to obtain a stationary RF with a given 

variance. 
It can be noted that the model (4) is an eight-point model, i.e in it to form the next element of the 

RF }{x we use 8 preceding elements from the neighborhood. Similarly, for the multiplicity model 

(3.3), we can obtain a 15-point model, for the multiplicity model (4.4), we obtain a 24-point model. 

Figure 1(a) shows an image formed from the values of RF (4) with model parameters 9.0x  and 

7.0y . Figure 1(b) shows the implementation of an RF based on AR with multiple roots of 

characteristic equations having model parameters 95.0x  and 95.0y  with multiplicity (3,3). 

The size of images is 640×480 pixels.  
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      (а) multiplicity (2;2)       (b) multiplicity (3;3)  

Figure 1. Implementation of models having different multiplicities. 
 

Thus, using a model with multiple roots of characteristic equations when imitating images, it is 

possible to simply obtain such implementations of RF that will be close to real images. In this case, an 
important property of the generated RF will be their quasi-isotropy property. A general formula for 

models of different multiplicities can be written in the form: 


 


1

1

2

1

1111

0 0

,,,,

N

i

N

j

jjiijijiji xx 

,                  (5) 

where 
1N  and 

2N  characterize the multiplicity of the model; coefficients )0( 0,0, 11
 ji  are products of 

the corresponding coefficients of one-dimensional AR along the axes x  and y :  
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The coefficients of one-dimensional AP (6) can be obtained from the expression 
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Finally, the two-dimensional model coefficient   is the normalized product of the corresponding 

coefficients of one-dimensional ARs along the axes x  and y : 
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These coefficients can be found from the following formulas 
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So we can use expressions (5) - (9) to show, for example, that the AR model of the first order (2) 
can be represented by a model with multiple roots of multiplicity (1,1), and the eight-point model (4) 

can be represented by a model with multiple roots with multiplicities (2,2). 

Thus, it is possible to construct models of arbitrary multiplicity, obtaining images with slow 
varying brightness properties. It should be noted that speed of properties change will depend on 

parameters and orders of models. 

3.  Covariance functions of autoregressive random fields with multiple roots 

In order to construct AR models of images with multiple roots of characteristic equations having given 
statistical characteristics, we perform an analysis of the data of the characteristics of the considered 

models. An important task arising in the course of statistical analysis of the mathematical model of an 

RF is to determine the type of its CF. 
An important property of models with multiple roots is the factorizability of CF. For example, the 

RF generated by the model (1) is anisotropic, and its covariance CF, by virtue of anisotropy, is a 
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generalization of the CF of a one-dimensional first order AR to a two-dimensional case. It can be 
shown [4] that it is described by the following expression: 
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where 2

x is the variance of the RF X ; 
x and 

y  are parameters of the model; 
1k  and 

2k  
are the 

distances between the elements of the RF X  along the axes x and y. 

The use of the model (4) provides an increase in the links in the AR model due to the expansion of 
the range of significant preceding states and the type of CF changes. For model (4), the CF 

significantly differs from the CF of the first order AR model and it takes the following form [4]: 
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where 2

x  is variance of the RF X ; 
yx  ,  are correlation parameters of the model; 

1k  and 
2k   are 

the distances between the elements of the RF X  along the axes x and y.  
In order to obtain the CF of models with arbitrary orders, one can use expressions for one-

dimensional CF of AR with multiple roots of the characteristic equations 
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Correspondingly, if the AR multiplicity is (m1,m2) then the expression for the CF can be written as 

the product of the RF variance and expressions of the form (12) for one-dimensional CF 
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The obtained relations completely determine the CF and the parameters of the RFs generated by the 
AR with multiple roots of the characteristic equations of multiplicity (m1,m2). 

For analysis, an interesting case is when the correlation coefficients of the model provide the same 

correlation intervals on row and column for models of different orders, i.e. 

e
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For simplicity, we will assume that the multiplicity of the AR for each of the axes is the same, and 

the parameter 
 
is also the same for both axes. Then we can reduce condition (15) to the following 

form 
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This simplification makes it possible to obtain a set of parameters that ensure the same correlation 

intervals, analogous to the one-dimensional case [5]. Table 1 presents the dependences between the 

correlation parameter  and correlation interval 0k . 

Analysis of the data presented in Table 1 shows that in order to ensure equal correlation interval, it 

is necessary to decrease the value of the parameter  . Furthermore, it is possible to single out the 

dependence of expression 0)1(2 kmm   . The parameter m  
tends to 1 if 1m . Figure 2 shows 

dependence of parameter m  on correlation interval 0k . 
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Тable 1. Results of numerical calculations of parameters for different correlation intervals. 

0
k  1 10 20 50 100 500 1000 10000 

1m
  0,606 0,9048 0,9512 0,9672 0,9802 0,99004 0,99502 0,9994998 

2m
  0,338 0,7657 0,8737 0,9137 0,9472 0,9732 0,98653 0,998644 

3m
  0,2345 0,685 0,8257 0,8797 0,926 0,96225 0,98093 0,998077 

4m
  0,1795 0,6275 0,7895 0,854 0,9095 0,9536 0,97653 0,99763 

 
Figure 2. Dependence of the correlation characteristics for models of different orders. 

Analysis of the curves in Figure 2 shows that the parameter m  tends to a constant value for large 

0k . At the same time, the greater the multiplicity of the model, then the greater the parameter m . 

Figure 3 shows CF of different order models providing a correlation interval 10
0
k . Figure 3(a) 

shows the model of multiplicity (1,1), figure 3(b) shows the model of multiplicity (2,2), Figure 3(c) 

shows the model of multiplicity (3,3), figure 3(d) shows the model of multiplicity (4,4). 

    
              (a)                                  (b)                                 (c)                                  (d) 

Figure 3. CF of the AR RF with multiple roots of the characteristic equations. 

 

Figure 4 shows the CF cross-sections for the models of the 1st order (solid line) and the 2nd order 

(dashed line) with the correlation interval 15
0
k . Figure 5 shows CF cross-sections for models of 

different orders with the same value of the parameter 86150. . 

As can be seen from Figure 4, the second order CF model has a "bell-shaped" vertex, and the 

correlation links between the RF elements generated by such models are stronger within the 

correlation interval. 
Fig. 5 shows that the CF cross-sections tend to ellipsoids with increasing multiplicities AR. 

However, with a significant increase in the orders, the CF decreases much more slowly than when 

using the first and second order ARs. 
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Figure 4. CF cross-sections with the same correlation interval. 

 
Figure 5. CF cross-sections with the same correlation parameter. 

 

Thus, the correlation properties of AR with multiple roots of the characteristic equations ensuring 
equal correlation intervals are investigated. Dependences of the correlation parameter of such ARs on 

the correlation interval are obtained. 

4.  Covariance functions of autoregressive random fields with multiple roots 

Let us consider the case when against a background of white noise, it is necessary to perform a 
filtration of an RF simulated by the AR with multiple roots of the characteristic equations 

ijijij
nxz  ,     (17) 

where white noise has zero mathematical expectation and variance 2

n
 . 

We will use the following simple algorithm for image filtering. At the first stage, we perform line 

by line filtering of all the elements in each row. Then the same procedure applies to each column. 

Finally, we get the total estimation of each element as the average between the estimates for the row 
and the column. So, to filter a string, you can use the following algorithm [5]. We introduce the 

extended state vector: 

                                             
1 1( ... ) .T

i i i i mx x x x                                                                     (18) 
Then the observation model will be written as: 

                                            , 1,2,...,i i iz Cx n i                                                                   (19) 

where (1 0...0)C  .  

The equation of state of a string is also can be written in the vector-matrix form: 

1 , 1,2,...,i i ix x i                                                                    (20)
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After the transformations, we use the standard Kalman linear filter equations to find the optimal 

estimates of the information RF [11]: 
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. The remaining components of the vector 

i
x̂  are calculated on the 

basis of interpolation of previous estimates taking into account the next observation 
i

z
 
and the mutual 

covariance of estimation errors. 

Figure 6 shows the variances of filtering errors obtained for models of different multiplicity and for 

different ratios of signal to noise 22

nxq  . It is worth noting that the variance estimate of the filter 

error was averaged over five processed images of size 150×150. 

 
Figure 6. The filtration efficiency of two-dimensional ARs with multiple roots of characteristic 

equations. 

 

Figure 7 shows the results of the proposed algorithm for the models with multiplicities (1;1) and  

(2;2). The filtering parameters are following: 1q , 15
0
k , image size is 300×300. From the top 

down we show the original images, noisy images, images obtained after filtering. 

An analysis of the results shows that the use of AR of higher orders, firstly, makes it possible to 

obtain smoother fields, and secondly, it provides a greater filtration efficiency (on average 32% for 1-
st and 2-nd order models with q=1). 

5.  Conclusion 

Thus, RF models based on AR with multiple roots of characteristic equations are presented.  The 
equality of correlation interval is the interesting property of investigated models. For such models, 
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dependencies between correlation properties and multiplicities are found. An effective quasi-optimal 
filtering algorithm for such RFs is proposed. It is shown that the use of high-order models makes it 

possible to obtain gains in the case of filtering in the case of identical correlation intervals. 

 
Figure 7. The results of filtering simulated images. 
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