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Abstract. Oil and gas industry uses different types of ceramic proppants in millions of 

kilograms per year. X-ray microtomography (microCT) imaging can be applied for 

investigation of quality of the material. For analysis, it is necessary to segment spherical 
contacting particles of proppant. We apply a marker-controlled watershed for segmentation. 

The method of markers detection has several parameters which have crucial influence on 

segmentation outcome. To optimize segmentation quality, we propose unsupervised (non-

reference) measure based on a compactness of 3D connected regions, where compactness is 

calculated via central geometric moments of second order. In addition, we demonstrate 

advantages of our technique for compactness estimation over the method based on ratio of 

surface area and volume of a region.  

1. Introduction

Oil and gas industry uses various types of proppants (from phrase “propping agent”) in hydraulic
fracturing technology. Annually in the world hundreds of thousands of tons of ceramic proppant are

produced, the particles of which are granules of spherical shape with a size of about 1 mm.

Mechanical strength and conductivity are the most important attributes of proppant pack for optimal
fracturing job design. Crush test is one of conventional procedures for measurement of proppant

characteristics. Proppant grains crush test should be performed at axial stress up to 100 MPa. Some

particles are crushed during the test. The fraction of the crushed particles depends on stress and quality

of the proppant. For some proppants the crush-rate is only a few percent. X-ray micro-tomography
(microCT) makes capable measurement of morphometric characteristics of each particle as well as

their fragments in initial state and after stress.

Figure 1 shows example of real reconstructed 3D microCT image of proppant pack before stress. 
The grayscale image has size 4000х4000х2000 voxels and 8 bit-depth. The image was obtained with 

SkyScan 1172 microCT system (Bruker MicroCT, Belgium). One can see proppant particles in the 

image. Also fragments of crushed particles can be found in images scanned after loading. The usual 
image of proppant pack contains several hundreds of particles. Intensities of particle regions are much 

lighter than dark background. However, there is many contacting regions of granules and their 

fragments. Separation of the contacting regions is a challenging task.  

Marker-controlled watershed for distance map is a traditional method for segmentation of touching 
regions. An algorithm for detection of markers has several parameters, which influence to 

segmentation quality considerably. Since the fraction of broken particles can be equal to several 

percent, even single segmentation errors leads to bias of an assessment of quality of the material. 
Selecting the segmentation parameters manually by the operator is a long and unobvious process. 
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Figure 1. Example of reconstructed 3D microCT image of proppant particles.  

 
In addition, it is quite difficult to detect segmentation errors in a 3D image visually. Our 

preliminary experiments have shown the optimal segmentation parameters vary from image to image; 

it is impossible to set parameters once based on a previously processed sample. Therefore, it is 
important to develop an unsupervised (non-reference) quality metrics that allow selection of the 

parameters automatically with aim to minimize the number of errors of segmentation of proppant 

particles.  

The main contribution of the paper is proposed unsupervised metrics of segmentation of 3D 
spherical particles by means of maximization of average compactness of segmented regions, where 

compactness is calculated via second order central geometrical moments.  

2. Segmentation of particles 
Figure 2 demonstrates flow-chart of segmentation algorithm. Reconstructed grayscale 3D image is 

downsampled to image G having size 1000x1000x500 voxels and 8-bits depth. It is necessary to 

reduce requirements to memory space and decrease processing time. Lighter voxels of ceramic 

particles differ from dark voxels of background and holder. Histogram of intensities of the image is bi-
modal. For images with such histograms thresholding by Otsu algorithm [1] is a good solution to 

distinguish voxels of particles from background. After thresholding we obtain binary image T, where 

voxels of solid are designated by 1 and voxels of voids are designated by 0. It is required to split 
regions formed by touching particles in T image. 

Conventional way for separation of overlapping or contacting convex regions without holes is an 

application of watershed algorithm to the inverted outcome of the geodesic distance transform [2]. The 
general idea of watershed algorithm is the following: image is considered as a geological relief; a 

water source is placed in each regional minimum in the relief, to flood the entire relief from sources, 

and build barriers in the place where different water sources meet; the resulting set of barriers 

constitutes a watershed by flooding [3]. For volumetric images watershed algorithm operates 
identically to 2D one. 

Before application of distance transform we need to fill holes, which are pores in particles. Several 

pores are open, they connect with background voids. That is why filling of holes in 3D keeps these 
pores unchanged. It is required to perform filling of holes for 2D slices. Theoretically, the filling of 

holes should be done for slices in all three mutually perpendicular directions. Such approach ensures 

that the open pores, which are penetrate a particle and are parallel to image axes, are filled. However, 
in practice open pores are tortuous, so, it is enough to fill the holes for 2D slices in only one direction. 

Binary image Tf is outcome of slice-by-slice filling of holes for T image. It is worth to note, filling of 

holes in 2D can lead to filling of space between touching particles. Fortunately, it happens seldom and 

it has no negative impact on the next processing steps. 
 On the next stage, geodesic distance transform builds the distance map D by calculation for each 

voxel of Tf image Euclidean distance to the nearest voxel equal to zero. Inverted D plays the role of 

relief for watershed algorithm. Local minima on (-D) are basins origins. Frequently there are several 
local minima inside a connected region because even survived particles have non-ideal convex shape, 
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a lot of fragments of crushed particles are concave. It leads to over-segmentation. To avoid over-
segmentation due to the huge number of local minima the marker-controlled watershed is used, where 

markers play role of water sources [4].  

 
Figure 2. Flow-chart of our segmentation technique.  

 

There is a plenty of approaches for markers generation. We tried several of them and found out the 

following steps providing the best segmentation outcome. The first step is grayscale morphological 
reconstruction by dilation [5]. Morphological reconstruction by dilation uses two images: “seed” 

image (D – delta_h), which specifies the values that spread, and “mask” image D, which gives the 

maximum allowed value at each voxel. The mask image limits the spread of high-intensity values. The 

resulting reconstructed image R looks exactly like seed image, but with the peaks cut off, where 
delta_h determines height of peaks. Difference (D – R) is referenced as ‘h-dome’ operator, ((D – R) > 

0) is referenced as ‘h-maxima’ operator. 

Figure 3 demonstrates example of markers generation for simple image (see figure 3a) containing 
two contacted regions. Figure 3b shows distance map. Figure 3c shows plot of profile for the distance 

map along axis K. One can see four local maxima in the plot, where three local maxima relate to the 

right region. We need to suppress redundant local maxima. Adjustment of delta_h mitigates issue of 

several local maxima for some particles, for example two local maxima of central peak are combined 
to single region. However, increasing of delta_h cannot solve the issue completely, e.g. the rightmost 

peak has local maximum that should be ignored. Application of maximal filter to image R and 

comparison of filtration outcome Rf with R employ to suppress the most of redundant local maxima. 
Binary image M containing markers is: M = (R == Rf) (see figure 3c). The maximal filter uses cubical 

structural element with max_filter_size size. These three parts of figure 3 illustrate meaning of 

parameters delta_h and max_filter_size. 
The next stage is marker-controlled watershed for inverted D and markers from M, where each 

connected region has unique label. Image Lw is outcome of segmentation by watershed. Finally, to 

obtain labelled particles in T image it is necessary to multiply Lw by T.  
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(a) 

 
(b) 

 
(c) 

Figure 3. Illustration of parameters for generation of markers.  

3. Unsupervised segmentation quality metrics 

Segmentation outcome depends on parameters delta_h and max_filter_size. Decrease of both leads to 

over-segmentation, because regions of granules split in fragments. Increase of both leads to under-
segmentation, because neighbouring particles and fragments merge. How to set the parameters 

properly? Subjective choice based on visual analysis of segmentation result is a troublesome due to 3D 

nature of data. It is hard to find optimal parameters visually. Paper [6] analyses supervised quality 
measures for segmentation such as Global Consistency Error and Rand Index. However, we have no 

ground truth to be able to apply supervised metrics. How to automatically choose the optimal 

parameter values, based only on the analysed image? Survey [7] describes a few dozen of 

unsupervised metrics for estimation of segmentation quality of 2D images. All of them are not 
universal, but depend on the task being solved. When segmenting regions have more or less the same 

shape, the shape factor can be used as metrics. 

We know a-priori that studied particles have a rounded shape. We use the fact for formulation of 
criterion of unsupervised segmentation. A sphere is the most compact body in three-dimensional 

space. In the next section, we describe a compactness for characterizing the closeness of a region 

shape to a sphere. Maximal average compactness of segmented regions corresponds to the best 
segmentation: 

𝑄 =
1
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, 

where N is the number of segmented regions having volume greater then Vt; Ci is compactness of i-th 
region. The threshold Vt is introduced to exclude from consideration too small fragments. In addition, 

it is hard issue: what is compactness for regions consisting of only a few voxels? 

Let’s consider how Q changes in the case of improper segmentation.  Over-segmentation is 

splitting of spherical regions. It leads to decreasing of average compactness Q. Under-segmentation is 
merging of spherical regions. As rule, it leads to decreasing of average compactness too. It is worth to 
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note, proposed segmentation criterion is correct in assumption of existing of at least several tens of 
survived spherical particles in image after loading. If almost all particles are crushed then the metrics 

is ineffective. 

4. Compactness 
Many 3D shape factors are a natural extension of corresponding measures for 2D images. 

Compactness in 2D is sometimes called the circularity or the roundness. Shape compactness in 2D is 

generally understood as the degree to which a given shape differs from a region bounded by a circle. 
There are plenty publications, which describe compactness as ratio of area of region to squared 

perimeter. Analogous definition of compactness for 3D regions is ratio of squared volume to area of 

surface of a region in cubic power [9]: 

𝐶𝑎 =
36𝜋𝑉2

𝑆3
, 

where V is volume of 3D region, S is area of surface.  

Paper [8] performs detailed analysis of drawbacks of approaches, which use perimeter and surface 
area for calculation of compactness for 2D and 3D images correspondingly. First, a perimeter and a 

surface area are difficult to calculate invariantly to rotation and quite precisely due to the digital nature 

of images. Second, the surface of the regions is not ideal, there are various types of noises that arise 
during the registration and segmentation of regions. Third, the evaluation of compactness is seriously 

affected by holes in regions. 

Bribiesca [11] describes compactness for 3D regions that differs from 𝐶𝑎, but it is based on volume 

and area of surface also. The paper [11] demonstrates Bribiesca’s is less sensitive to small distortions 

of surface in comparison with 𝐶𝑎. 

There are several approaches for calculation of surface area. For example, the paper [9] considers 

marching cubes algorithm [10] for estimation of outer surface area. A surface area can be estimated as 
the number of voxels of the outer shell, where the shell is the difference in the region and the result of 

its erosion with a 3x3x3 structural element in the form of a cube (26-connectivity), or a ball (18-

connectivity), or a cross (6-connectivity). Surely, all pores should be filled in advance. Which method 

is preferable?  
Zunic et al. [12] proves properties of 3D shapes compactness based on second order central 

geometric moments and demonstrates its advantages over other algorithms for compactness 

calculation: 

𝐶𝑚 =
35/3

5(4𝜋)2/3

𝜇000
5/3

𝜇200 + 𝜇020 + 𝜇002
, 

where central geometric moments are: 

𝜇𝑝𝑞𝑟 = ∑ ∑ ∑ 𝐼(𝑥, 𝑦, 𝑧)(𝑥 − 𝑚100)𝑝(𝑦 − 𝑚010)𝑞(𝑧 − 𝑚001)𝑟

𝑧𝑦𝑥

, 

where geometric moments are: 

𝑚𝑝𝑞𝑟 = ∑ ∑ ∑ 𝐼(𝑥, 𝑦, 𝑧)𝑥𝑝𝑦𝑞𝑧𝑟

𝑧𝑦𝑥

, 

where 𝐼(𝑥, 𝑦, 𝑧) is indicator function of particle region, I equals one for voxels belonging the region, 

and I equals zero otherwise. Zero order geometric moments equal to volume of particle: 𝑚000 =
𝜇000 = 𝑉. First order geometric moments are centroids. Compactness lies in the range from 0 to 1. 

Compactness of ideal sphere equals 1. 
Paper [12] is based on outcomes from Mamistvalov‘s theory. Mamistvalov published in English 

mathematical theory for recognition of n-dimensional solids via geometric moment invariants in 1998 

[13]. In Russian, it was done in 1974. Unfortunately, those papers are not widely known. Ratio 
𝜇200+𝜇020+𝜇002

𝜇000
5/3  is so-called first 3D moment invariant based on second order central geometric 

moments. The invariant is constant or slightly changes for origin translation, uniform scaling and 

rotation. 𝐶𝑚 is the inverted first 3D moment invariant multiplied by the constant, so, it is an invariant 

for translation, rotation and scaling as well. In general, geometric moments have been widely used in 
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statistics for description of the form of a probability density function and in classic rigid-body 
mechanics to measure the mass distribution of a body. Usage of moment invariants is a prospective 

direction in an image processing for creation of shape factors as well as for development of algorithms 

for shapes analysis and recognition. According to monography [14], last decade an interest to shape 
analysis and classification via moment invariants grows. Not only geometric invariants are applied, 

but orthogonal moments such as Gaussian-Hermite, Zernike, Chebyshev, Legendre and Fourier-

Mellin. 
Let’s consider which method of computing the compactness is better suited for our problem. We 

calculate the compactness coefficients for spheres of different radii with different random noises such 

as protuberances and cavities on a surface. Figure 4 shows a slice of the sphere with typical noise on 

the surface. In the next experiment, we determine which method for compactness calculation allows us 
to distinguish sphere from regions formed by cutting off segments of different sizes from the sphere 

better.  

 
Figure 4. Slice of sphere with cavities and outliers on a surface.  

 

Plots in figure 5 show various compactnesses depending on radius of sphere: 𝐶𝑚; 𝐶𝑎, where 

surface area is calculated by marching cubes algorithm; 𝐶𝑎, where surface area is calculated by means 

of erosion, Bribiesca’s compactness; theoretical ideal case, where compactness equals 1. 𝐶𝑎  for both 

considered approaches are very different from 1 and have significant fluctuations. 𝐶𝑚  is close to 1 

except for spheres having radius less than 10. Bribiesca’s compactness is almost 1 for all range of 
considered radiuses. 

 
Figure 5. Compactness of spheres of different radiuses with noisy surface.  

 

Plots in figure 6 show compactnesses for bodies from hemisphere (L=60) to sphere (L=0). Figure 7 

illustrates meaning of L parameter. 𝐶𝑚 and 𝐶𝑎 allow to distinguish sphere and sphere with clipped 

segment. Bribiesca’s compactness is too similar even for sphere and hemisphere.  

We conclude, application of compactness 𝐶𝑚 calculated via second order central geometrical 
moments has obvious advantages in comparison with well-known approaches based on surface area 
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and volume of 3D region. In addition, in contrast to 𝐶а, 𝐶𝑚 has robustness to presence of the modest 
number of open and close pores.  

 
Figure 6. Compactness when the shape of the body changes from the hemisphere to the sphere.  

 
Figure 7. Illustration of meaning of L parameter for figure 6.  

5. Results and discussion 

For estimation of benefits of proposed unsupervised segmentation technique, we processed five 3D 

images with fixed parameters delta_h and max_filter_size as well as with parameters obtained by 

maximization of 𝑄 metrics. It is worth to note, those fixed parameters were optimal according to 𝑄 

criterion for two images segmented previously. We apply gradient descent algorithm for looking for 

maximal 𝑄. Figure 8 shows 𝑄 metrics depending on parameters delta_h and max_filter_size.   

 
Figure 8. Segmentation quality metrics Q depending on parameters delta_h and max_filter_size.  
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Table 1. The number of erroneously segmented particles. 

Image Fixed parameters Parameters according to 

maximal Q 

1 37 0 

2 37 0 

3 54 0 

4 44 2 

5 38 1 

 

Table 1 contains for each tested image the number of erroneously segmented particles by 
segmentation with fixed parameters and by proposed unsupervised segmentation. Total number of 

particles in each image is 615. Segmentation with fixed parameters leads to 30-50 errors. Figure 9 

shows slice of segmented and labeled image by segmentation with fixed parameters. One can see, one 
ellipsoidal particle was segmented as two regions, ten pairs of neighboring particles were pairwise 

combined into one region. Unsupervised segmentation had no errors, or just one or two errors in the 

worst case. Figure 10 demonstrates the slice of 3D image, where unsupervised segmentation was 

applied. Segmentation outcome is fully correct.  
So, proposed unsupervised criterion for the segmentation of 3D images of ceramic proppant allows 

providing high quality segmentation in automatic mode. 

 

 

 

Figure 9. Slice of segmented 3D image with 

several separated and merged particles; fixed 
parameters were used for segmentation. 

 Figure 10. Slice of segmented 3D image with 

proper segmentation; parameters according to 
maximal Q were selected. 
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