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Abstract. Adaptive interpolation of multidimensional digital signals is considered. An 
adaptive algorithm for digital signals interpolation is proposed, intended for hierarchical 

compression. The prototype of the proposed interpolator is the NEDI (New Edge-Directed 

Interpolation) algorithm. In this paper, the NEDI interpolation algorithm is modified for use on 

special hierarchical grids, which are used for hierarchical signal compression. Experimental 

researches of the proposed interpolator are performed with the hierarchical compression of 

natural digital signals. Experiments confirm that the proposed adaptive interpolator allows 

improving the efficiency of hierarchical compression of digital signals. 

1. Introduction

Availability of digital information processing devices continues to increase. This entails an increase in
the data size of processed digital signals, and this problem can not be solved by increasing capacity of

storage devices. Moreover, multidimensional signals, including multi- and hyperspectral [1-3] remote

sensing data, as well as results of sensing by quadrocopters and other unmanned aerial vehicles, are
also becoming more accessible. This further exacerbates the problem of an excessively large size of

digital signal data. The only acceptable solution at the moment is compression of digital signals [4-5].

To date, there are many [4-8] methods of compression of digital signals. The most popular of these 

methods is the JPEG compression method [11], based on discrete cosine transform (DCT) [9] and 
subsequent entropy coding [10] of transformants (DCT results). The more efficient [12] compression 

method JPEG-2000 [13], which uses the discrete Wavelet transform [14], is much less widely used. 

These methods of the JPEG group are used very widely, due to wide variety of hardware devices in 
which they are embedded. However, there are a number of problems that raise requirements for the 

quality of compressed digital data. First of all, this is polygraphy and processing of remote sensing 

data. In these areas, one has to deal with digital signals, which are unique. When compressing such 
signals, strict quality control is necessary. In addition, such signals may also have a high bit capacity. 

Moreover, such signals can have substantially more than three spectral bands (hyperspectral signals 

often have hundreds of spectral bands). In other words, when compressing such signals, complexity 

can arise already at the stage of processing data of specific formats. 
Fractal [15] compression methods, according to the author, currently have the largest compression 

ratio. However, their propagation is difficult due to specific, in most cases unacceptable signal 

distortions, as well as excessively high computational complexity. 
Also, it should be noted an important drawback, corresponding to all the above methods of signal 

compression. This drawback follows from the need to transform the signal into a corresponding space 

of transformation coefficients. Accordingly, it is not always possible to control the error in the 

specified space of coefficients. For the mean-square error, such control is possible in a number of 
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cases due to Parseval's equality. But for more strong quality measures, for example for maximum 
error, the specified error control for the above compression methods is usually impossible. 

In the author's opinion, using specific compression methods that do not require the transformation 

to spectral (or any other) auxiliary spaces is promising in specific areas that raise high demands to the 
quality of digital signals. In this paper, the method of hierarchical compression is chosen as such 

method [16, 17]. This method is based on multiple non-redundant resampling of initial array of signal 

samples and interpolation of signal samples based on the specified resampled arrays. 
Hierarchical compression methods have a number of important advantages, such as fast multiscale 

access to fragments of compressed data, the ability to control the speed of formation of a compressed 

data stream, the possibility of increasing noise immunity and the possibility of error control (including 

the maximum error [18]). The task of research and further increasing the efficiency of hierarchical 
compression methods of digital signals is certainly topical. 

An important step in hierarchical compression methods is an interpolator in which samples of more 

resampled signal are used to interpolate samples of less resampled signal. The most common 
algorithm of hierarchical interpolation is simple averaging [19-20] from the nearest signal samples of 

more resampled hierarchical levels of the signal. However, the averaging interpolator is not effective 

enough, because it is not adaptive (it performs in the same way, regardless of local signal 

characteristics). 
One of the ways to take into account the local characteristics of a digital signal is context modeling 

[21-23], which has become widespread, in particular, in statistical coding [7]. In the simplest case, the 

context for a next encoded symbol is the previous symbol (or several previous symbols), and the 
context model is the estimation of conditional probability distribution of the encoded symbol. Taking 

into account the context, that is, using the conditional probability distribution instead of the 

unconditioned distribution makes it possible to increase the algorithm adaptability to variable 
statistical properties of the signal, which leads to an increase in the efficiency of the compression 

method as a whole. 

In this paper, context modeling is used for the development of adaptive interpolation algorithms 

that are part of a compression method based on hierarchical grid interpolation (HGI). The proposed 
adaptive interpolators allow increasing the efficiency of the hierarchical compression method. 

For the hierarchical method of signal compression, an interpolator based on the NEDI algorithm 

[24] using context modeling is proposed. When developing this interpolation algorithm, a set of
surrounding signal samples is considered as a context for each signal sample.

2. Hierarchical compression of multidimensional signals
Hierarchical grid interpolation (HGI) [16, 25-26] is based on special hierarchical representation of an

integer nonnegative multidimensional signal   x cX
r

 in the form of a set of hierarchical levels Xl: 
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where L is the number of hierarchical levels Xl,  { }lx c
r

is the signal resampled with step 2
l
, c

r
 is the 

vector of multidimensional signal arguments. 

With hierarchical compression, the hierarchical levels Xl are compressed sequentially, from the 

highest (most resampled) level XL–1 to the lower levels. The proportion of data size of the highest 

level XL–1 is sufficiently small already for 4L  , so the compression algorithm of this level does not 
matter. So, only compression algorithm of any "non highest" hierarchical level Xl, l<L–1 is described. 

Stage No. 1. Interpolation. 

Interpolation of samples of the current signal level Xl is based on the samples  { , , }kx m n k l  of

already processed hierarchical levels { , }
k

k lX : 
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where ( )lx c
r)

 is interpolating value, P(..) is a function that defines a certain interpolator. Further, 

interpolators are considered in detail. 

Stage No. 2. Calculation of difference signal. 

The differences between the initial  lx c
r

 and interpolating ( )lx c
r)

(1) values of the current level

samples are calculated: 

     l l lf c x c x c 
r r r)

. (2) 

Stage No. 3. Quantization. 

The difference signal (2) is quantized by the quantifier with a uniform scale ([..] is the integer part 
of a number): 

     max max( ) ( ) ( ) 2 1l l lq c sign f c f c     
  

r r r
, (3) 

allowing to control the maximum error [19] max: 

      maxlf c x c x c   
r r r

. (4) 

The quantized signal (3) is then compressed by an entropy encoder and stored in an archive. 

Stage No. 4. Recovering. 
The restored values of the signal samples are calculated (already during compression): 

     max1 2 ( )l l lx c x c q c   
r r r)

, (5) 

which are necessary for interpolation (1) of the following (more resampled) hierarchical 

levels { , }k k lX  of signal.

3. Averaging interpolation for hierarchical signal compression

For reasons of computational complexity of interpolation under hierarchical compression, we
usually [19-20] use trivial averaging over the nearest already restored signal samples of more

resampled hierarchical levels. To simplify the algorithm description, the averaging interpolator is

considered for a two-dimensional signal      ,x c x m n X
r

. 

Let’s consider two types of interpolated samples: "type I" with indices of the form  2 1,2 1m n 

and "type II" with indices of the form  nmxl 2,12   and  2 ,2 1lx m n . Let’s consider the simplest way 

of processing samples of both samples types when using the averaging interpolator. Interpolation is 

performed based on the restored samples of previous (more resampled) hierarchical level: 

      1 12 1,2 , 1, 2l llx m n x m n x m n     
 

)
, (6) 

          1 1 1 12 1,2 1 1 , 1, , 1 1, 1 4l l l llx m n x m n x m n x m n x m n              
 

)
 (7) 

This averaging interpolation algorithm has low computational complexity. But this algorithm has 

insufficiently high efficiency, since it does not take into account any local signal characteristics. 

4. Context modeling for data compression

Application of context modeling approaches [21-23] for data compression is based on the «modeling

and coding» idea proposed by Rissanen and Langdon [21]. In accordance with this idea, the

compression procedure consists of two steps: modeling and coding.
By modeling, we mean the construction of model of information source that generates compressed 

data. By coding, we mean the process of reducing data size based on the results of modeling. So, 

the "coder" creates a compressed stream, which is a compact form of the processed data, based on the 
information supplied by the "modeler". 
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Let the probability of the symbol si be ( )ip s . From Shannon's theorem [7] on coding the source of 

messages, it is known that the symbol si is best represented by 
2log ( )ip s  bits. Often the source 

structure is unknown or complex, so it is necessary to build a source model that allows you to find an 

estimate of the probability ( )ip s  of each symbol si.

Estimation of the symbol probability during the simulation is performed on the basis of known 
(or estimated) symbols statistics and, possibly, a priori assumptions. Therefore they speak about 

statistical modeling. In other words, the "modeler" predicts the probability of each symbol. 

At the stage of statistical coding, the symbol  si is replaced by a code with a length of 
2log ( )ip s

bits. The more accurate the estimation of the signals probability, the more effective the codes are, and 

the more effective the compression as a whole. 

5. Signal interpolation based on NEDI

In the initial setting, context modeling is used for entropy coding, but we use context modeling for

interpolating signals. In particular, in terms of context modeling, the New Edge-Directed Interpolation

(NEDI) [24] can be described.

Let’s describe the interpolation algorithm NEDI. Let  { , }x m nX  be the original signal of

size WxH. We need to calculate a signal  { , }Z x m n  of size 2Wx2H with twice the best resolution.

If we use the NEDI, this signal is calculated as follows. Signal samples with even indices are equal 
to samples of the original signal: 

(2 ,2 ) ( , )z m n x m n . (8) 

The signal samples with indices (2 1,2 1)m n  are calculated (see Figure 1) as follows: 

1 1

2

0 0

(2 1,2 1) ( , )i j

i j

z m n x m i n j

 

     , (9) 

where , 0..3i i   are local interpolation coefficients. 

So the missing signal samples are calculated as a weighted sum of the four nearest reference signal 

samples. In this case, it is necessary to calculate the optimal local weighting coefficients , 0..3i i  . 

These coefficients are calculated by the optimization of the quadratic error: 

0 1 2 3

2 2

, , ,
,

( ( , ) ( , )) min
i j D

x i j z i j


  
   

 , (10) 

where D is area of interpolation coefficients estimation. This area includes N signal samples. 

Figure 1. Location of reference signal samples for NEDI interpolation 

We place the samples ( , )x i j  from the estimation area D into the array 0 1 1[ , ,..., ]T

NY y y y 
r

. The 

elements of the array Y
r

 are assigned to signal samples from the estimation area D, starting from the 

upper left corner and then according to the progressive scan of area (see Figure 2). Also consider the 

matrix 
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Each row of this matrix consists of reference signal samples, which are used to interpolation of the 
samples of the estimation area (see Figure 2). 

Figure 2. Estimation area D of the interpolation coefficients of the NEDI algorithm. 

So criterion (10) is represented as: 
2 2( ) mink k

k D

y C


   r

r


  , (12) 

where Ck is the row number k of the matrix C,  0 1 2 3, , ,
T


r
     is the vector of unknown

interpolation coefficients. 
To solve the optimization problem (12), we equate to zero the following partial derivatives: 
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The solution of this system of equations: 
1( ) ( )T TC C C Y 

rr
 , (13) 

This expression allows us to calculate the optimal interpolation coefficients , 0..3i i  . The 

advantage of considered context NEDI algorithm is the adaptability to local signal characteristics, the 

disadvantage is high computational complexity. By context, in this case, we mean the set of 

surrounding reference samples that constitute the area of parameters estimation. By context modeling, 
in this case, we mean the local estimation of interpolation coefficients. 

6. NEDI-based interpolation algorithm for hierarchical signal compression
In this paper, we propose a modification of the NEDI interpolation algorithm for non-redundant

hierarchical sample grids, which are used for hierarchical signal compression. At each "non-highest"

hierarchical level , 0 2l l L  X , an estimation area D is chosen for interpolation of each sample of

hierarchical level. This area D consists of already restored samples of previous (more resampled)

hierarchical levels , 1 1k l k L   X , which are stored into array lY
r

. The "own" matrix Cl (see the 

previous section) corresponds to each element of this array. 

In Figure 3, for two hierarchical levels, the array's lY
r

 samples are shown in light color, the matrix 

elements belonging to the hierarchical level X1 are shown in dark color (the interpolated sample 
belongs to the hierarchical level X0). 
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Figure 3. Estimation area D of the NEDI interpolation coefficients for hierarchical 

compression. 

Estimation of local interpolation coefficients is performed in the same way as expression (13), 

taking into account the described specificity of estimation areas: 
1( ) ( )T T

l l l l lC C C Y 
rr

 . (14) 

First, the algorithm described above is applied to interpolation of samples with indices of the form 

(2i+1, 2j+1), then the interpolation coefficients for the remaining samples are computed (similarly, the 

entire situation is rotated by 45 degrees). 
 The advantage of the proposed interpolation algorithm is its adaptability to a context (local 

characteristics of the signal in a small neighborhood of current sample). This increases the accuracy of 

interpolation of the signal sample. The disadvantage of the algorithm is high computational 

complexity of calculating the interpolation coefficients. 

It should be noted that it is not always possible to compute an inverse matrix to the matrix T

l lC C , 

since matrix T

l lC C can be ill-conditioned. A feature of ill-conditioning is the situation when the 

number of conditionality of the matrix T

l lC C  exceeds a certain “conditioning threshold” T (parameter 

of proposed interpolation algorithm). In this situation, instead of NEDI interpolation, averaging 
interpolation (6-7) is used. The “conditionality threshold” T affects the efficiency of compression, 

because this threshold affects the interpolation algorithm. However, the proportion of signal samples 

for which the situation of ill-conditionality arises is quite small. 

7. Experimental research of adaptive interpolation algorithm

We developed a software implementation of the proposed adaptive context interpolator based on

NEDI. We built this interpolation algorithm into the hierarchical compression method. To research the
effectiveness of the proposed interpolator, computational experiments were performed in natural test

signals. Some of these test signals are shown in Figure 4.

As a measure of interpolator efficiency, the relative gain in the archive file size was used, that is 
achieved through the use of the proposed interpolator (9-14) instead of the averaging (6-7) interpolator 

within the framework of the hierarchical compression: 
standart new

standart
100%

S S

S


   ,

where standartS , newS  are archive files sizes when signal compressing by the hierarchical method using 

the averaging and proposed interpolators, respectively.  

In each computational experiment, we selected the best (by the compression ratio) threshold values 

T of the condition number of the matrix TC C  for a fixed number L of hierarchical levels and fixed 

size N of the estimation area. Some typical results are shown in Figure 5. 

From the received experimental results it is clear, that the proposed algorithm provides the gain (up 

to 2%) on the archive size. 

I ednterpolat
pixel

Area D
of estimation
of interpolation 
coefficients
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 (a)       (b) 
Figure 4. Examples of natural test signals. 

From the results of the computational experiments it can be seen that the proposed adaptive 
interpolator provides a noticeable (up to 8%) gain on the archive size. This gain increases when the 

maximum compression error and the size of the interpolation coefficient estimation area are increased. 

8. Conclusion
An approach based on context modelling was used to develop an adaptive interpolator for hierarchical

signal compression. Based on this approach, a context interpolator based on the NEDI algorithm is

proposed. The proposed interpolator is implemented as software and is built into the hierarchical
method of signal compression. Computational experiments were conducted to research the

effectiveness of the proposed contextual interpolator in natural test signals. It is shown that use of the

proposed context interpolator instead of the average interpolator is noticeable (up to 8%) increases the
efficiency of hierarchical signal compression.

Figure 5. Gain  of the proposed context interpolator over the averaging interpolator 

as a function of the maximum error max . 
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