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Abstract. Linear temporal logic interpreted over finite traces (LTLf )
has been used as a formalism for temporal specification in automated
planning, process modelling and (runtime) verification. In this paper, we
lift some results from the propositional case to a decidable fragment of
first-order temporal logic obtained by combining the description logicALC
with LTLf , denoted as Tf

UALC. We show that the satisfiability problem
in Tf

UALC is ExpSpace-complete, as already known for the infinite trace
case, while it decreases to NExpTime when we consider finite traces
with a fixed number of instants, and even to ExpTime when additionally
restricting to globally interpreted TBoxes. Moreover, we investigate two
model-theoretical notions for Tf

UALC: we show that, differently from the
infinite trace case, it enjoys the bounded model property ; we also discuss
the notion of insensitivity to infiniteness, providing characterisations and
sufficient conditions to preserve it.

1 Introduction

Since the introduction of linear temporal logic (LTL) by Pnueli [33], several
(propositional and first-order) LTL-based formalisms have been developed for
applications such as automated planning [11, 12, 15–17], process modelling [1,
31] and (runtime) verification of programs [14, 24, 32–35]. Related research in
knowledge representation has focussed on decidable fragments of first-order
LTL [28], many of them obtained by combining LTL with description logics
(DLs), and for this reason called temporal description logics (TDLs) [3, 4, 30, 36].
In this latter setting, the complexity of satisfiability problems can range from
ExpSpace-complete, for the full-fledged combination of the description logic
ALC with LTL [23, 27], down to ExpTime- or PSpace-complete, by restricting
the application of temporal operators [10, 23], or even in NP or NLogSpace, by
weakening both the temporal and the description logic components, for some
TDLs used in temporal conceptual data modelling [5, 6].

Besides the usual LTL semantics defined over the natural numbers, rececently
attention has been devoted to study LTL semantics based on finite traces, which
are temporal structures having only a finite number of time points, with the result-
ing logic sometimes known as linear temporal logic over finite traces (LTLf ) [13,
18–22]. Indeed, for several of the already mentioned applications, the finiteness
of the time dimension is a fairly natural restriction, since the processes involved
are usually required to terminate within a finite amount of time. Motivated by



similar applications, some recent work has considered TDLs in the context of
runtime verification [8] and business process modelling [2]. Nonetheless, these
attempts are still based on the infinite trace semantics for temporal operators
(sometimes allowed only over axioms [8]).

On the way to overcome such limitations, in this work we combine DLs
with LTLf . In particular, we consider the logic TfUALC defined as the DL ALC
extended with temporal operators on both concepts and formulas (but without
temporalised or rigid roles), and interpreted over models with a finite time
dimension. We show that the complexity of the satisfiability problem in TfUALC
is ExpSpace-complete, as for the infinite case, and lowers down to NExpTime
if we restrict to traces with a bound k on the number of instants, and even to
ExpTime for a fragment with only globally interpreted TBoxes. We then consider
two model-theoretical notions. Firstly, we show that TfUALC has the bounded
model property, with the bound being double exponential in the size of the formula.
We then study the notion of a formula being insensitive to infiniteness, considered
in [19, 8, 13, 14] for dealing with the possibility to preserve the satisfiability of
formulas from the finite to the infinite case and thus to reuse TDL algorithms
developed for the infinite case.

This paper is organised as follows. In Section 2, we introduce TUALC and
we provide the semantics both over infinite and over finite traces. In Section 3
we study the complexity of the satisfiability problem for TfUALC formulas, while
Section 4 refines these results for traces with fixed k instants. Section 5 investigates
model-theoretical notions of TfUALC formulas. Finally, in Section 6, we conclude
with some open problems and possible directions for future work.

2 Temporal Description Logics

In the following, we first define the temporal language TUALC as a temporal
extension of the description logic ALC. The language TUALC is obtained by
extending ALC with the binary temporal operator until (U). We then define
the semantics based on traces, which are temporal structures having either a
finite or an infinite number of time points. We denote by TfUALC the language
TUALC interpreted over finite traces. We further add the upperscript k and write
TkUALC to indicate that the formulas are interpreted over finite traces with at
most k ∈ N, k > 0, time points.

Syntax. Let NC, NR and NI be countably infinite and pairwise disjoint sets of
concept names, role names, and individual names, respectively. A TUALC concept
is an expression of the form:

C,D ::= A | ¬C | C uD | ∃R.C | C U D,

where A ∈ NC and R ∈ NR. For instance, the expression A U (B u ∃R.¬A) is a
TUALC concept. A TUALC axiom is either a concept inclusion (CI) of the form
C v D, or an assertion of the form A(a) or R(a, b), where C,D are TUALC
concepts, A ∈ NC, R ∈ NR, and a, b ∈ NI. TUALC formulas are of the form:

ϕ,ψ ::= α | ¬ϕ | ϕ ∧ ψ | ϕ U ψ,



where α is a TUALC axiom.

Semantics. A (TDL) interpretation is a structure I = (∆I, (In)n∈I), where I is
an interval of the form [0,∞) or [0, l], with l ∈ N, and each In is a classical DL
interpretation with domain ∆I: we have AIn ⊆ ∆I, RIn ⊆ ∆I×∆I, and aIi =
aIj ∈ ∆I for all a ∈ NI and i, j ∈ N, i.e., the interpretation of individual names
is fixed (in the following denoted as aI). We refer to a temporal interpretation
I = (∆I, (In)n∈I) as a finite trace if I = [0, l], and as an infinite trace if
I = [0,∞). The stipulation that all time points share the same domain ∆I is
called the constant domain assumption (meaning that objects are not created or
destroyed over time), and it is the most general choice in the sense that increasing,
decreasing, and varying domains can all be reduced to it [23]. We now define
the semantics of TUALC considering I = [0,∞). The semantics of TfUALC is
defined in the same way except that I is of the form [0, l], for some l ∈ N. For
a fixed k ∈ N, k > 0, we define the semantics of TkUALC considering I = [0, l]
with l ≤ k − 1. The interpretation of concepts at instant n of interpretation
I = (∆I, (In)n∈I) is defined as follows:

(¬C)In = ∆I \ CIn , (C uD)In = CIn ∩DIn ,
(∃R.C)In = {d ∈ ∆I | ∃d′ ∈ CIn : (d, d′) ∈ RIn},

(C U D)In = {d ∈ ∆I | ∃m ∈ I,m > n : d ∈ DIm ∧ ∀i ∈ (n,m) : d ∈ CIi}.

We say that a concept C is satisfied in I if CI0 6= ∅. Satisfaction of a formula ϕ
in I at time point n ∈ I (written I, n |= ϕ) is inductively defined as follows:

I, n |= C v D iff CIn ⊆ DIn , I, n |= ¬φ iff not I, n |= φ,
I, n |= A(a) iff aI ∈ AIn , I, n |= φ ∧ ψ iff I, n |= φ and I, n |= ψ,
I, n |= R(a, b) iff (aI , bI) ∈ RIn , I, n |= φ U ψ iff ∃m ∈ I,m > n : I,m |= ψ,

and ∀i ∈ (n,m) : I, i |= φ

We say that ϕ is satisfied in I, writing I |= ϕ, if I, 0 |= ϕ. A formula ϕ logically
implies a formula ψ if every I that satisfies ϕ satisfies also ψ, and we write ϕ |= ψ.
Moreover, ϕ is said to be TfUALC satisfiable (or satisfiable over finite traces) if it
is satisfied in some finite trace. Given a concept C and a formula ϕ, we say that
C is satisfiable over finite traces with respect to ϕ if there is a finite trace I such
that ϕ is satisfied in I and C is satisfied in I, in symbols ϕ 6|= C v ⊥. Concept
satisfiability w.r.t. ϕ can be reduced to formula satisfiability by checking whether
the following formula is satisfiable: ϕ ∧ C(a), for a fresh a ∈ NI.

We will use the following standard equivalences for concepts: ⊥ ≡ A u ¬A,
> ≡ ¬⊥; ∀R.C ≡ ¬∃R.¬C; (C t D) ≡ ¬(¬C u ¬D); #C ≡ #1C ≡ ⊥ U C;
#nC ≡ ##n−1C, with n > 1; 3C ≡ >U C; 2C ≡ ¬3¬C. Similar abbreviations
also hold for formulas. We often write F = (∆F, (Fn)n∈[0,l]) to indicate that a
trace is finite and I = (∆I, (In)n∈I) when it is infinite.



3 Satisfiability over Finite Traces

In the following we show how to reduce the formula satisfiability problem over
finite traces to the same problem over infinite traces. Similar to the encoding
proposed in [20] for propositional LTL, we introduce a fresh concept name E to
capture the finiteness of the temporal dimension. The fundamental properties
regarding the end of time can be described as follows. (i) There is a least one
instant before the end of time (E is initially false). (ii) The end of time comes
for all objects (E is unavoidable). (iii) The end of time comes at the same time
for every object (E is synchronous). (iv) The end of time never goes away (E is
persistent). We axiomatise the above end of time properties:

ψf1 = > v ¬E, ψf2 = (> v ¬E) U (> v E), ψf3 = 2(E v #E).

Intuitively, ψf1 captures Point (i), ψf2 captures Points (ii), (iii), and ψf3 captures
Point (iv). In the following, we use ψf = ψf1 ∧ ψf2 ∧ ψf3 .

We now show that satisfiability in TfUALC is ExpSpace-complete. We start
by characterising, in Lemma 1, models satisfying the end of time formula, ψf .
Our characterisation uses the following notion of an extension of a finite trace.
Let F = (∆F, (Fn)n∈[0,l]) and I = (∆I, (In)n∈[0,∞)) be, respectively, a finite and
an infinite trace s.t. ∆F = ∆I (with a small abuse, we will write just ∆) and
aF = aI , for all a ∈ NI. We denote by F ·I = (∆F·I, (F ·In)n∈[0,∞)) the extension
of F with I defined as the infinite trace with ∆F·I = ∆, aF·I = aF , for all a ∈ NI,
and for n ∈ N:

XF·In =

{
XFn , if n ∈ [0, l]

XIn−(l+1) , if n ∈ [l + 1,∞)
, EF·In =

{
∅, if n ∈ [0, l]

∆, if n ∈ [l + 1,∞)
,

where X ∈ (NC \ {E})∪NR and E is the concept name encoding the end of time.
Clearly, the interpretation of E characterises the satisfiability of ψf .

Lemma 1. For every infinite trace I, I |= ψf iff I = F · I′, for some finite trace
F and some infinite trace I′.

We now introduce a translation ·† of TfUALC concepts and formulas into
TUALC concepts and formulas, respectively, such that, together with the end
of time formula, ψf , captures those concepts and formulas satisfiable over finite
traces. More formally, a concept C (formula ϕ) of TfUALC is satisfiable if and
only if its translation C† (ϕ†) is satisfiable in a TUALC model that also satisfies
the formula ψf . Our translation ·† is defined as:

(α)† 7→ α (¬β)† 7→ ¬β†
(C uD)† 7→ C† uD† (φ ∧ ψ)† 7→ φ† ∧ ψ†
(∃R.C)† 7→ ∃R.C† (C v D)† 7→ C† v D†
(C U D)† 7→ C† U (D† u ¬E) (φ U ψ)† 7→ φ† U (ψ† ∧ ¬(> v E))

where α can be an assertion or a concept name A ∈ NC, β can be a concept C or
a formula ϕ, and R ∈ NR. Lemma 2 states the correctness of ·†.



Lemma 2. Let F be a finite trace, and let F · I be an extension of F. Then, for
every TfUALC formula ϕ, we have: F |= ϕ iff F · I |= ϕ†.

From the previous lemmas, we obtain a reduction of the TfUALC satisfiability
problem to the corresponding problem for TUALC.

Theorem 3. Let ϕ be a TfUALC formula. Then ϕ is satisfiable iff ϕ† ∧ ψf is a
satisfiable TUALC formula.

Since it is known that the TUALC formula satisfiability problem is ExpSpace-
complete [23, Theorem 14.15], the above theorem gives us an ExpSpace upper
bound for checking satisfiability in TfUALC. The lower bound can be proved
using similar ideas as those used to prove hardness of TUALC. We are now ready
to state the main theorem of this section.

Theorem 4. Satisfiability in TfUALC is ExpSpace-complete.

4 Traces with at Most k Time Points

In this section we study the satisfiability in TkUALC, where we restrict the problem
to traces with at most k time points, with k given in binary, as part of the input.
We provide for this case a lower NExpTime complexity result which further
reduces to ExpTime when just global CIs are allowed. To prove our upper bound
for the satisfiability problem in this setting we use quasimodels, which have been
used to prove the satisfiability of various TDLs [5, 9, 23, 25, 26, 36]. In particular,
we show that there is a model with at most k time points iff there is a quasimodel
with a sequence of quasistates of length at most k. Then, our upper bound is
obtained by guessing an exponential size sequence of sets of types which serves
as a certificate for the existence of a quasimodel (and therefore a model) for the
input formula.

Let ϕ be a TkUALC formula. Assume w.l.o.g. that ϕ does not contain abbre-
viations (i.e., it only contains the logical connectives ¬, u, ∧, the existential
quantifier ∃, and the temporal operator U). Denote by clc(ϕ) and clf(ϕ) the
closures under single negation of the sets of all concepts and formulas occurring
in ϕ, respectively. Also, let ind(ϕ) be the set of individuals occurring in ϕ. A
concept type for ϕ is any subset t of clc(ϕ) ∪ ind(ϕ) such that:

T1 ¬C ∈ t iff C 6∈ t, for all ¬C ∈ clc(ϕ);
T2 C uD ∈ t iff C,D ∈ t, for all C uD ∈ clc(ϕ); and
T3 t contains at most one individual name in ind(ϕ).

Similarly, we define formula types t ⊆ clf(ϕ) for ϕ with the conditions:

T1′ ¬φ ∈ t iff φ 6∈ t, for all ¬φ ∈ clf(ϕ); and
T2′ φ ∧ ψ ∈ t iff φ, ψ ∈ t, for all φ ∧ ψ ∈ clf(ϕ).

We may omit ‘for ϕ’ if there is no risk of confusion. A concept type describes one
domain element at a single time point, while a formula type expresses constraints



on all domain elements. If a ∈ t∩ ind(ϕ), then t describes an named element. We
may write ta to indicate this and call it a named type.

The next notion captures how sets of types need to be constrained so that
the DL dimension is respected. We say that a pair of concept types (t, t′) is
R-compatible if {¬F | ¬∃R.F ∈ t} ⊆ t′. A quasistate for ϕ is a set S of concept
or formula types for ϕ such that:

Q1 S contains exactly one formula type tS ;
Q2 S contains exactly one named type ta for each a ∈ ind(ϕ);
Q3 for all C v D ∈ clf(ϕ), we have C v D ∈ tS iff C ∈ t implies D ∈ t for all

concept types t ∈ S;
Q4 for all A(a) ∈ clf(ϕ), we have A(a) ∈ tS iff A ∈ ta
Q5 t ∈ S and ∃R.D ∈ t implies there is t′ ∈ S such that D ∈ t′ and (t, t′) is

R-compatible;
Q6 for all R(a, b) ∈ clf(ϕ), we have R(a, b) ∈ tS iff (ta, tb) is R-compatible.

A (concept/formula) run segment for ϕ is a finite sequence σ = σ(0) . . . σ(n)
composed exclusively of concept or formula types, respectively, such that:

R1 for all a ∈ ind(ϕ) and all i ∈ (0, n], we have a ∈ σ(0) iff a ∈ σ(i);
R2 for all α U β ∈ cl∗(ϕ) and all i ∈ [0, n], we have α U β ∈ σ(i) iff there is

j ∈ (i, n] such that β ∈ σ(j) and α ∈ σ(m) for all m ∈ (i, j),

where cl∗ is either clc or clf (as appropriate), and R1 does not apply to formula
run segments. Intuitively, a concept run segment describes the temporal dimension
of a single domain element, whereas a formula run segment describes constraints
on the whole DL interpretation.

Finally, a quasimodel for ϕ is a pair (S,R), with S a finite sequence of
quasistates S(0)S(1) . . . S(n) and R a non-empty set of run segments such that:

M1 ϕ ∈ tS where tS is the formula type in S(0);
M2 for every σ ∈ R and every i ∈ [0, n], σ(i) ∈ S(i); and, conversely, for every

t ∈ S(i), there is σ ∈ R with σ(i) = t.

By M2 and the definition of a quasistate for ϕ, R always contains exactly one
formula run segment and one named run segment for each a ∈ ind(ϕ).

Every quasimodel for ϕ describes an interpretation satisfying ϕ and, conversely,
every such interpretation can be abstracted into a quasimodel for ϕ. We formalise
this notion for finite traces with the following lemma.

Lemma 5. There is a finite trace satisfying ϕ with at most k time points iff
there is a quasimodel for ϕ with a sequence of quasistates of length at most k.

We devise a non-deterministic algorithm to check satisfiability of a TkUALC
formula ϕ in NExpTime. First we compute in exponential time w.r.t. |ϕ| the
sets of all concept and formula types for ϕ, i.e., satisfying conditions T1-T3
and conditions T1′-T2′, respectively. We then guess a sequence S(0), . . . , S(n)
of sets of (concept/formula) types for ϕ of length n ≤ k; and for each type
at position i in this sequence we also guess a sequence of types of length n.



Denote by R the set of such sequences of types. We now check (1) whether
each S(i) satisfies conditions Q1-Q6; (2) whether each sequence in R satisfies
conditions R1-R2 (where R1 only applies for concept run segments); and (3)
whether ϕ is in the formula type in S(0) (condition M1) and each sequence in
R satisfies condition M2. All these conditions can be checked in exponential
time w.r.t. |ϕ| and |k|. The algorithm returns ‘satisfiable’ iff all conditions are
satisfied. Since the conditions exactly match the definition of a quasimodel for
ϕ, their satisfaction implies that (S,R) is a quasimodel for ϕ. Hardness can be
proved by adapting Lemma 6.2 by Baader et al. [10], for ALC-LTL with rigid
concepts. We are now ready to state our main result in this section.

Theorem 6. Satisfiability in TkUALC is NExpTime-complete.

We end this section considering the satisfiability problem in TkUALC restricted
to global CIs, defined as the fragment of TkUALC in which formulas can only be of
the form T ∧2(T ) ∧ φ, where T is a conjunction of CIs and φ does not contain
CIs. We write TkU (g)ALC to denote this fragment interpreted over finite traces
with at most k time points. We establish that satisfiability in TkU (g)ALC is in
ExpTime, which is tight since satisfiability in ALC is already ExpTime-hard [7].
Our upper bound is based on type elimination [23, 26, 30].

Theorem 7. Satisfiability in TkU (g)ALC is ExpTime-complete.

We leave satisfiability in TfUALC restricted to global CIs, analogously defined
as the fragment TfU (g)ALC of TfUALC with only formulas of the form T ∧2(T )∧φ,
as an open problem. It is known that the complexity of the satisfiability problem
in this fragment over infinite traces is ExpTime-complete [9, 30]1. Though, the
end of time formula ψf is not in TfU (g)ALC. We cannot use the same strategy
of defining a translation for the semantics based on infinite traces, as we did
in Section 3. The upper bound in [30] is based on type elimination. The main
difficulty of devising a type elimination procedure for TfU (g)ALC is that the
number of time points is not fixed and the argument in [30] showing that there
is a quasimodel iff there is a quasimodel (S,R) such that S(i + i) ⊆ S(i), for
all i ≥ 0, is not applicable to finite traces. A type with a concept equivalent to
¬ # > can only be in the last quasistate of the quasimodel. So it is not clear
whether one can show that if there is a quasimodel then there is a quasimodel
with an exponential sequence of quasistates, as in TkU (g)ALC (Theorem 7).

5 Model-Theoretical Properties

In this section we discuss some model-theoretical properties of TfUALC. In
particular, we show that formulas of TfUALC enjoy the bounded model property:
if there is a finite trace (which can be arbitrarily large) satisfying a formula ϕ
1 In [30, Theorem 3] the authors show that satisfiability in LTLALC w.r.t. TBoxes with
constant domains is ExpTime-complete. An argument in [9, Theorem 1] extends this
result to TUALC formulas, which include assertions.



then there is a finite trace with at most double exponentially many time points
w.r.t. the size of ϕ. Moreover, the bound on the number of time points implies a
bound on the size of the domain, in the DL dimension of the model. Finally, we
discuss insensitivity to infiniteness, a model-theoretical property introduced by
De Giacomo et al. [19]. We lift to TfUALC a characterisation for propositional
LTL [19]. We then discuss a limitation of this notion and propose a new related
notion of insensitivity to infiniteness.

5.1 Bounded Model Property

We first show that if there is a finite trace which satisfies a TfUALC formula ϕ
then there is a finite trace with at most k time points, with k double exponentially
large w.r.t. the size of ϕ. This bound is obtained by (1) showing that if there is a
quasimodel for ϕ then there is a quasimodel for ϕ where there is no repetition
of quasistates, except for the last quasistate; and (2) applying Lemma 5 from
Section 4, which correlates the length of a sequence of quasistates with the
number of time points in a finite trace. Since the number of formula types is
bounded by tpf(ϕ) = 2|cl

f(ϕ)| and the number of concept types is bounded by
tpc(ϕ) = |ind(ϕ)| · 2|clcϕ|, there are at most tpf(ϕ) · 2tpc(ϕ) quasistates for ϕ: each
quasistate contains one formula type and a subset of the set of concept types.
The next lemma formalises Point (1) above and can be proved with an argument
similar as that of Lemma 11.27 by Gabbay et al. [23].

Lemma 8. There is a quasimodel for ϕ iff there is a quasimodel for ϕ of the
form (S,R) where S is a sequence of length at most tpf(ϕ) · 2tpc(ϕ) + 1.

Lemmas 5 and 8 directly imply that TfUALC enjoys the bounded model
property. We formalise this result with the following theorem.

Theorem 9. Satisfiability of a formula ϕ in TfUALC implies satisfiability of ϕ
in TkUALC with k bounded by tpf(ϕ) · 2tpc(ϕ).

We now show that if a formula is satisfiable in TkUALC then there is a model
where the size of the domain is exponential in k. Since satisfiability in TfUALC
implies satisfiability in TkUALC for some k > 0, the formula:

#A(a) ∧2(A v 2(¬A u ∃R.A))

which only admits models with an infinite domain [30] (recall that in this paper
we use the irreflexive until) is unsatisfiable over finite traces. We formalise the
bounded domain property with the following theorem.

Theorem 10. Satisfiability of a formula ϕ in TkUALC implies the existence of
a model with domain size bounded by |tpc(ϕ)|k.

5.2 Insensitivity to Infiniteness

In this subsection, we investigate the notion of insensitivity to infiniteness,
introduced by De Giacomo et al. [19] for propositional LTL formulas. This



property is meant to capture those LTLf formulas that can be equivalently
interpreted over infinite traces, provided that, from a certain instant, these traces
satisfy an end event forever, falsifying all other atomic propositions. Firstly, we
lift this notion of insensitivity to our TDL setting, providing a characterisation
analogous to the propositional one [19]. Secondly, we propose a different definition
for insensitivity, closer to other notions from the the literature on runtime
verification [8, 13, 14] and motivated by the following idea: a TfUALC formula
should be considered as insensitive whenever being satisfiable on a finite trace
implies that it is satisfiable on every infinite trace extending the finite one,
provided that it satisfies the end of time formulas.

We introduce the following definitions. Let Σ be a finite subset of NC ∪ NR.
Assume w.l.o.g. that TfUALC concepts and formulas we mention in this subsection
have concept and role names in Σ and that Σ contains the end concept E.
Given an infinite trace I, the Σ-reduct of I is the infinite trace I|Σ coinciding
with I on Σ and such that XI|Σn = ∅, for X 6∈ Σ and n ∈ [0,∞) [29]. Let
F = (∆F, (Fn)n∈[0,l]) be a finite trace, and let E = (∆E, (En)n∈[0,∞)) be the
infinite trace such that ∆E = ∆F (for simplicity, we may write just ∆), aE = aF

for all a ∈ NI, and for all A ∈ NC \ {E}, R ∈ NR, AEn = ∅ and REn = ∅ while
EEn = ∆, where n ∈ [0,∞). The extension of F with E (see its definition in
Section “Satisfiability over Finite Traces”), F · E, will be denoted as the end
extension of F. Recalling the definition of ψf , we define, χf = ψf ∧ χf1 ∧ χf2 ,
where

χf1 = 2(E v
l

A∈Σ\{E}

¬A), χf2 = 2(E v
l

R∈Σ
¬∃R.>).

The following two lemmas correspond to Theorems 2 and 3 in [19], respectively.
In particular, Lemma 11 characterises infinite traces of the form F ·E, for a finite
trace F.

Lemma 11. For every infinite trace I, I |= χf iff I|Σ = F · E, for some finite
trace F.

Lemma 12, which specialises Lemma 2, shows the equivalence between TfUALC
satisfiability of a formula ϕ, and satisfiability of its TUALC translation ϕ† (see
Section ‘Satisfiability over Finite Traces’) on end extensions of finite traces.

Lemma 12. Let F be a finite trace and let ϕ be a TfUALC formula. We have
that: F |= ϕ iff F · E |= ϕ†.

We are now ready to state the first definition of insensitivity to infiniteness.
Given a TfUALC formula ϕ, we say that ϕ is insensitive to infiniteness if:

I1 for every finite trace F, F |= ϕ iff F · E |= ϕ.

The next characterisation result, obtained from Lemmas 11 and 12, corresponds
to Theorem 4 in [19].

Theorem 13. A TfUALC formula ϕ is insensitive to infiniteness I1 iff the
following TUALC logical implication holds: χf |= ϕ↔ ϕ†.



Thus, insensitive I1 formulas allow us to blur the distinction between finite and
infinite traces, provided that the infinite ones are as described in Lemma 11.

We now analyse some features of this property. Firstly, notice that TfUALC for-
mulas without any occurrence of temporal operators, are insensitive I1. Moreover,
given a TfUALC formula ϕ, this property is preserved under boolean operators
[19, Theorem 5]: if ϕ is insensitive I1, ¬ϕ is insensitive as well, and similarly for
conjunction. It is also possible to capture several standard temporal patterns
derived from the declarative process modelling language declare [1, 19]. For
instance, given a TfUALC assertion α, we have that 3α is insensitive I1. On
the other hand, a formula of the form 2α (which is not included among the
standard declare patterns) is not I1. However, we have also that 3¬α is not
insensitive I1, while 2¬α is, due to the condition on the interpretation of concept
and role names after the end of time. Therefore, in general, if a TfUALC formula
ϕ is I1, neither 3ϕ nor 2ϕ are. The same holds for formulas of the form ϕ U ψ.

In order to overcome this temporal asymmetry, and so to obtain a notion
of insensitivity to infiniteness that is preserved by the application of the until
operator, we propose the following definition. Given a TfUALC formula ϕ, we say
that ϕ is insensitive to infiniteness if:

I2 for every finite trace F and every extension F · I, if F |= ϕ, then F · I |= ϕ.

We will use similar notational conventions as for I1. Notice that this definition
matches the first condition of the impartiality maxim introduced by Bauer et
al. [14]. It is possible to provide an analogous characterisation of insensitive I2
formulas, as we did above for the I1 case.

Theorem 14. A TfUALC formula ϕ is insensitive to infiniteness I2 iff the
following TUALC logical implication holds: ψf |= ϕ† → ϕ.

As a consequence of Theorems 13 and 14, checking I1 or I2 can be done
in ExpSpace using the same algorithms developed for TDLs on infinite traces [30].

As before, TfUALC formulas without any occurrence of temporal operators
are clearly insensitive I2. However, being insensitive I2 is not preserved under
negation. For instance, we have that 3α (with α a TfUALC assertion) is insensi-
tive I2, but its negation, ¬3α ≡ 2¬α, is not insensitive I2. The theorem below
states that the property of being insensitive I2 is preserved under conjunction
and the until operator. Thus, differently from Theorem 5 in [19], we are now
able to provide a recursive sufficient condition of insensitivity also in the case of
temporal operators.

Theorem 15. Let ϕ and ψ be insensitive I2 TfUALC formulas. Then ϕ∧ψ and
ϕ U ψ are insensitive I2.

In particular, as a consequence of the above statement, both 3ϕ and #ϕ are
insensitive I2, if ϕ is, thus overcoming the temporal asymmetry discussed for
insensitivity I1. On the other hand, formulas of the form 2ϕ should not be
considered, in general, as insensitive I2, since the infinite interpretation of such
formulas, when lifted from a finite trace, depends on how the finite trace is



Formula I1 I2
ϕ (ϕ no temporal operators) Y Y

¬ϕ (ϕ insensitive) Y N
ϕ ∧ ψ (ϕ,ψ insensitive) Y Y
ϕ U ψ (ϕ,ψ insensitive) N Y

2ϕ (ϕ insensitive) N N

Table 1. Comparison between I1 and I2

extended. Notice, however, that concepts and formulas equivalent to (respec-
tively) 2> and 2(> v >), where > and > v > are clearly insensitive I2, are
insensitive I2 as well. Table 1 summarizes differences and similarities between I1
and I2. Finally, notice that both I1 and I2 definitions can be easily adapted
to finite traces with fixed length k > 0. This allows us to compare the cases
of nested next operators. For example, we have that #n¬A(a) is I1 iff n < k.
On the other hand, #n¬A(a) turns out to be insensitive I2 for both n < k and
n ≥ k, since in the latter case the I2 condition is vacuously satisfied.

6 Conclusion

We presented TfUALC, a TDL obtained by combining ALC with LTLf . Firstly,
we have focussed on the complexity of the TfUALC formula satisfiability problem.
Despite a result of ExpSpace-completeness for the general case, coinciding with
the complexity of the same problem over infinite traces, we have shown how to
improve it to NExpTime, when considering finite traces with a fixed number
k of instants, and even to ExpTime, if additionally we consider the language
restricted with only global CIs, namely TkU (g)ALC. We leave the complexity of
satisfiability in TfU (g)ALC as an open problem. In order to further refine these
results, we plan to consider temporal DL-Lite logics interpreted over finite traces.

Concerning the section on model-theoretical properties, we have shown that
the logic TfUALC has the bounded model property. Moreover, we have studied
the notion of insensitivity to infiniteness, both as found in the literature (I1),
and as re-defined here (I2). We have shown their characterisations, and sufficient
conditions to preserve I2. As future work, we plan to refine our results, so to cover
the case of CIs with temporal operators applied on concepts, that are nonetheless
insensitive I2 (such as > v 3A). A characterisation of insensitive CIs could in
turn be based on a suitably defined notion of insensitivity for concepts. We leave
this task for future work, together with an in depth discussion of the interaction
between temporal operators (including additional ones, as weak next  , release
R, or weak until W) and insensitivity.
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