
Querying expressive DL Ontologies under the
ICAR semantics

Despoina Trivela1, Giorgos Stoilos2, and Vasilis Vassalos1.

1 : Athens University of Economics and Business, Athens, Greece.
2 : Babylon Health London, SW3 3DD, UK.

Abstract. Inconsistency-tolerant semantics, like the ICAR semantics,
have been proposed to perform query answering over inconsistent DL
knowledge bases. In the current paper we propose a general framework
for ICAR-answering over arbitary Horn-DLs that is based on rewriting.
We describe conditions for termination of our rewriting algorithm and
show that existing techniques and results on UCQ-rewritability can be
used to check if they are satisfied for a given input ontology and query.

1 Introduction

Query answering over ontologies expressed in Description Logics (DL) has re-
cieved significant attention from both a practical and a theoretical perspective. In
the vast majority of works, the problem has been studied over datasets that are
consistent w.r.t. the ontology [9, 17, 12, 20]. However, in real-world applications
this is not always the case, e.g. in data integration applications the data deriving
from disparse sources may contradict the ontological axioms. A straightforward
approach to perform consistent query answering would be to first remove the
conflicting elements from the datasets. However, this is not always possible as
the data may be reside in distributed or access restricted data sources, or be
subject to frequent and diverse modifications.

To address this issue, inconsistency-tolerant semantics have been proposed
that describe which answers are meaningful to be returned in the presence of
inconsistent data. Examples of such semantics are the IAR, ICAR, AR seman-
tics [15, 14] that are based on the notion of the repair, that is a maximal (w.r.t.
inclusion) consistent subset of the original dataset. The IAR and ICAR semantics
have shown to have better computational properties since the query evaluation
problem over DL-Lite ontologies is in AC0 w.r.t. data complexity [16], while it is
in coNP for the AR semantics. However, computing answers using inconsistency-
tolerant semantics has been proved quite difficult for DLs more expressive than
DL-Lite. More precisely, Rosati [18] showed that the problem of IAR and ICAR-
answering is at least coNP-hard w.r.t. data complexity for almost all well-known
DLs from EL⊥ to SHIQ. Moreover, in the EL⊥nr fragment of EL⊥ where query
answering is tractable for the IAR semantics, the problem remains in coNP
for the ICAR semantics. Consequently, important research results on consistent
query answering [18, 7, 16, 3, 22] focus on fragments of DL-Lite. However, in [22]

a practical system was proposed for the ICAR and IAR semantics that com-
putes upper approximations for DLs more expressive than DL-Lite. Moreover,
an algorithm for IAR-answering was proposed in [21] that can handle arbitary
DLs but need not terminate. Despite the work presented in [22] the problem of
designing practical ICAR-answering algorithms for expressive DLs is open.

In the current paper we extend our previous work of [21] and study ICAR-
answering over expressive DL ontologies. More precisely, we present a general
framework for ICAR-answering that is based on query rewriting. Our rewriting
algorithm has as a starting point the one presented in [15]. Given an input query
and ontology expressed in a Horn-DL if our algorithm terminates, it computes
a datalog program, extended with negation, that can be evaluated over the
initial dataset to compute the ICAR-answers. Based on our analysis and previous
results [21] we describe the conditions that ensure termination of our algorithm.
The termination conditions are related to the notion of UCQ-rewritability that
has been studied quite extensively in DLs [1, 4, 11]. Consequently, we are able
to provide positive results for instance queries and ontologies expressed in semi-
acyclic-EL⊥ [5], as well as UCQ-rewritable queries over ontologies expressed
in EL⊥nr. For DLs and queries for which the termination conditions are not
generally satisfied, we exploit previous works [6, 8, 11] and provide an approach
to check termination over a fixed input ontology and query. This allows us to
design a framework for ICAR-answering over expressive Horn-DLs. Finally, we
have conducted a preliminary evaluation of our approach. We obtained positive
results showing that it is possible to perform ICAR-answering even in the case
of DLs for which the problem is in general intractable.

2 Preliminaries

Description Logics A DL knowledge base (KB) K consists of a TBox T ,
and an ABox A, K = T ∪ A. T and A are constructed from the countable
and pairwise disjoint sets C, R, and I of atomic concepts (unary predicates),
atomic roles (binary predicates), and individuals (constants). An ABox A is a
finite set of assertions of the form A(a) or R(a, b) where a, b ∈ I. A TBox T
is a set of DL axioms. An EL⊥ concept is inductively defined by the syntax:
C := > | ⊥ | A | C1 u C2 | ∃R.C, where A ∈ C and R ∈ R and C(i) are EL⊥
concepts. An EL⊥ TBox T is a finite set of inclusions of the form C1 v C2

with C1, C2 EL⊥ concepts. Inclusions of the form C1 u C2 v ⊥ (also written
as C1 v ¬C2) are called negative and the rest positive. DL-LiteR (or simply
DL-Lite) restricts EL⊥ by allowing concepts of the form A, and ∃R.>; R in DL-
Lite can also be the inverse of a role of the form S− and we can also have role
inclusions of the form S v R or S v ¬R for S,R roles. An ABox A is consistent
w.r.t. some TBox T if there exists a model for the KB K = T ∪ A; otherwise it
is inconsistent. The semantics of DLs can be given by a well-known translation
to First-Order Logic (FOL) [2]. Table 1 presents the translation of EL⊥ and
DL-Lite axioms to first order clauses (inverse roles have been omitted). In the
following we assume that the TBox axioms are translated into FOL.

Table 1: Translation of DL axioms into FOL
DL Axiom Clause

B v A A(x)← B(x)
A uB v ⊥ ⊥ ← A(x) ∧B(x)
B1 uB2 v A A(x)← B1(x) ∧B2(x)
A v ∃R.B R(x, f(x))← A(x), B(f(x))← A(x)
∃R v A A(x)← R(x, y)
∃R.B v A A(x)← R(x, y) ∧B(x)
P v R R(x, y)← P (x, y)
P v ¬R ⊥ ← R(x, y) ∧ P (x, y)

Datalog and Conjunctive Queries A disjunctive datalog clause r (also called
rule) is a function-free clause of the form ∀~x, ~y(ψ(~x)← φ(~x, ~y)) where φ(~x, ~y) is a
conjunction of positive or negative atoms called the body of the clause and ψ(~x) is
a disjunction of positive atoms called its head. For simplicity we will omit variable
quantifiers and write ψ(~x) ← φ(~x, ~y). A datalog clause is a disjunctive datalog
clause where the head contains a single atom. A Horn-clause is a datalog clause
where the body contains only positive atoms. A (disjunctive) datalog program
P is a finite set of (disjunctive) datalog clauses. We consider Herbrand models
over all constants from P. We say that a model M of P is minimal if there is
no model M′ of P such that M′ is a subset of M. A positive ground atom D(~a)
is entailed by P iff all minimal models of P contain D(~a); a negative ground
atom ¬D(~a) is entailed by P iff D(~a) is not icluded in the minimal models of P.
The evaluation of P over an ABox A is the set of ground atoms entailed by the
program P ∪ A.

A conjunctive query (CQ) Q is a datalog clause with head predicate Q. The
variables occuring in Q are called answer variables. A boolean query Q is a CQ
with no answer variables. An instance query is a CQ of the form Q(x) ← A(x)
(we often simply write A(x)). A UCQ is a finite set of CQs. A tuple of constants
~a is a certain answer of Q over a KB K = T ∪A if the arity of ~a agrees with the
arity of Q and T ∪ A |= Q(~a), where Q(~a) denotes the boolean query obtained
by replacing the answer variables with ~a. We use cert(Q, T ∪ A) to denote all
certain answers of Q w.r.t. K = T ∪ A.

Definition 1. Let T be a TBox and Q a CQ. A datalog-rewriting (or simply
rewriting) of Q w.r.t. T is a datalog program R such that for any ABox A
consistent w.r.t. T we have T ∪ A |= Q(~a) iff R ∪ A |= Q(~a), or in case Q is
boolean T ∪A |= Q iff R∪A |= Q. We say that a query Q is datalog-rewritable
w.r.t. T if there exists a datalog-rewriting R of Q w.r.t. T ; if R is a UCQ, then
Q is called UCQ-rewritable w.r.t. T .

Note that we will refer to a clause of the form H(~s)←
∧

i αi∧
∧

j ¬Bj , where
αi are positive atoms and Bj are conjunctions of positive atoms, as a datalog
clause. Indeed such a clause is equisatisfiable to a datalog program that inlcudes
H(~s)←

∧
i αi ∧

∧
j ¬βj and βj ← Bj , for all j, where βj are positive atoms.

Inconsistency-tolerant Semantics Definitions 2 and 3 recapitulate some of
the notions used in the IAR and ICAR semantics [15]. Defintion 4 formalises the
notion of the rewriting under the IAR and ICAR semantics.

Definition 2. Consider a TBox T and ABox A we define the consistent logical
consequences of T , A as the set clc(T ,A) = {a | some S ⊆ A exists s.t. T ∪S |=
a and S is consistent w.r.t. T }, where we use a to denote an assertion.

Definition 3. A repair of a set of assertions S w.r.t. a TBox T is any maximal
(w.r.t. set inclusion) subset of S that is consistent w.r.t. T .

– We use Air to denote the intersection of all repairs of A w.r.t. T . Let Q be
a CQ and let K = T ∪ A be a KB. A tuple of constants ~a is called an IAR-
answer of Q over K if ~a ∈ cert(Q, T ∪Air). We use certir(Q, T ∪A) to denote
the set of all IAR-answers of Q over K and we also write T ∪ A |=ir Q(~a).

– We use Aicar to denote the intersection of all repairs of clc(T ,A). Let Q be
a CQ and let K = T ∪A be a KB. A tuple of constants ~a is called a ICAR-
answer of Q over K if ~a ∈ cert(Q, T ∪ Aicar). We use certicar(Q, T ∪ A) to
denote the set of all ICAR-answers of Q over K and we also write T ∪A |=icar

Q(~a).

Definition 4. Given a TBox and a CQ Q, an IAR-rewriting Rir of Q w.r.t. T
is a datalog program such that for every ABox A we have T ∪ A |=ir Q(~a) iff
Rir ∪A |= Q(~a). Similarly, for an ICAR-rewriting Ricr we have T ∪A |=icr Q(~a)
iff Ricr ∪ A |= Q(~a).

3 Towards an ICAR-answering algorithm

The problem of answering queries under the ICAR semantics was first investi-
gated in [15] where a rewriting approach was presented for DL-Lite. Given an
input TBox and query, the proposed algorithm computes a rewriting of the query
that can be evaluated over any ABox to obtain the ICAR-answers. Example 1
illustrates the approach of [15].

Example 1. Let T be the DL-Lite TBox T = {C(x)← A(x),⊥ ← A(x)∧B(x)},
Q the query Q = Q(x) ← C(x) and A the ABox A = {A(a), B(a)}. A has
two repairs, that is {A(a)} and {B(a)}, and hence Air = ∅. It is not hard to
verify that clc(T ,A) = {C(a), A(a), B(a)}. Moreover, clc(T ,A) has two repairs,
that is {A(a), C(a)} and {B(a), C(a)} and hence Aicar = {C(a)}. Therefore,
cert(Q, T ∪ Aicar) = {a} and by definition of the ICAR-answers it holds that
certicar(Q, T ∪ A) = {a}.

In the first step, the algorithm in [15] computes the rewriting R of Q, T
under the standard semantics, R = {Q(x) ← C(x), Q(x) ← A(x)}. Then, it
extends the queries in R with the appropriate negative atoms, R′ = {Q(x) ←
C(x), Q(x) ← A(x) ∧ ¬B(x)}. The negative atoms in R′ guarantee that the
evaluation of R′ over A will only return answers from Air. Indeed, atom ¬B(x)
prevents Q(x) ← A(x) ∧ ¬B(x) from binding with A(a) which is not included

in Air. At next step, the algorithm applies the rewriting procedure (under the
standard semantics) once more on the elements ofR′ (only on the positive atoms)
to obtain R′′ = R′ ∪ {Q(x) ← A(x)} that captures the assertions in clc(T ,A).
When Q(x)← A(x) of R′′ is evaluated over A we obtain the ICAR-answer {a},
cert(R′′,A) = certicar(Q, T ∪ A). ♦

A hybrid approach for ICAR-answering was presented in [22] that employs
a rewriting, as well as an ABox saturation procedure. More precisely, given
an input query Q, a TBox T , and an ABox A, the algorithm in [22] exploits
existing approaches [13, 19] to compute the saturated ABox, that is the set of
the assertions entailed from A and the axioms of T that can be translated into
datalog. Then, it evaluates the IAR-rewriting of Q, T over the saturated A. The
algorithm supports DL-Lite and it can be used to compute upper approximations
of the ICAR-answers for more expressive DLs.

Example 2. Consider the following EL⊥ TBox T , the query Q = Q(x) ← C(x)
and the ABox A = {A(a), B(a)}.

T = { C(x)← A(x) ∧K(x)

K(x)← B(x)

⊥ ← A(x) ∧B(x)}

It is not hard to verify that clc(T ,A) = {A(a), B(a),K(a)} and that Aicar =
{K(a)}. Hence, certicar(Q, T ∪ A) = ∅.

By applying the technique of [22] we first compute the saturation of A,
As = {C(a), A(a), B(a),K(a)} and the IAR-rewriting, Rir = {Q(x) ← C(x),
Q(x)← A(x)∧K(x)∧¬B(x), Q(x)← A(x)∧B(x)∧¬B(x)}. When we evaluate
Q(x)← C(x) of Rir over As we yield {a} which is not an ICAR-answer. Notice
that the saturated ABox As is an upper approximation of clc(T ,A). ♦

ICAR-answering over DL-Lite is FO-rewritable, and therefore in AC0 in data
complexity. However, it was shown that for more expressive DLs, consistent
query answering under the ICAR is no longer tractable; actually, it is already
coNP-hard in data complexity in EL⊥nr [18]. Identifying DLs for which ICAR-
answering is tractable is quite challenging. It was shown by Rosati [18] that
tractability of IAR-answering does not imply tractability of ICAR-answering
and the reason is the need to compute clc. Despite the theoretical studies over
the ICAR semantics [15, 18], there are no algorithms for ICAR-answering over
expressive DLs. In the following example we attempt to employ the rewriting
approach presented in [15] for an input TBox expressed in EL⊥.

Example 3. Consider the TBox T and query Q of Example 2. In the first step,
we compute the IAR-rewriting of Q, T . For this purpose, we apply the IAR-
rewriting algorithm presented in [21] that takes as input an arbitary DL TBox.

Rir = { Q(x)← C(x) (1)

Q(x)← A(x) ∧K(x) ∧ ¬(A(x) ∧B(x)) (2)

Q(x)← A(x) ∧B(x) ∧ ¬(A(x) ∧B(x))} (3)

Next, by following the same approach as in [15], we apply a rewriting procedure
on the elements of Rir ingoring their negative part (we omit clause (3)):

(1) Q(x)← A(x) ∧K(x) (4)

Q(x)← A(x) ∧B(x) (5)

(2) Q(x)← A(x) ∧B(x) ∧ ¬(A(x) ∧B(x)) (6)

Finally, we construct the set R′ = Rir ∪ {(4), (5)}.
Notice that when Q(x) ← A(x) ∧ B(x) of R′ is evaluated over A we obtain

Q(a), but {a} is not in certicar(Q, T ,A); hence R′ is not an ICAR-rewriting.
In order to fix this issue, one could check if the clause ⊥ ← A(x) ∧ B(x)

is entailed from T to decide whether Q(x) ← A(x) ∧ B(x) is included in the
ICAR-rewriting. In particular, since T |= ⊥ ← A(x)∧B(x), any set of the form
{A(a), B(a)} is inconsistent w.r.t. T , and hence it cannot be used to infer an
assertion included in clc(T ,A). Consequently, the clause Q(x) ← A(x) ∧ B(x)
that bounds to assertions of the form {A(a), B(a)} cannot be used to yield
an ICAR-answer. In the same spirit, the clause Q(x)← A(x) ∧K(x) should be
included in the output ICAR-rewriting since it holds that T 6|= ⊥ ← A(x)∧K(x).
By eliminating (5) from R′ we obtain the ICAR-rewriting Ricr = Rir ∪ {(4)}. ♦

Example 4. Consider the following TBox T , query Q(x) ← A(x) and ABox
A = {R(a, b),K(b), R(b, a)}.

T = { A(x)← R(x, y) ∧K(y) (7)

A(x)← R(x, y) ∧A(y) (8)

⊥ ← K(x) ∧R(x, y)} (9)

We first compute the IAR-rewriting of Q w.r.t. T by applying the calculus of
[21]:

Rir = { Q(x)← A(x) (10)

A(x)← R(x, y) ∧K(y) ∧ ¬(R(x, y) ∧K(x)) ∧ ¬(R(y, z) ∧K(y))(11)

A(x)← R(x, y) ∧A(y) ∧ ¬(R(x, y) ∧K(x))} (12)

Next, we apply a rewriting procedure on the elements of Rir:

(10), (12) A(x)← R(x, y) ∧K(y) (7)

A(x)← R(x, y) ∧A(y) (8)

In line with the Example 4 notice that for the clauses (7),(8) in R′ it holds
that T 6|= ⊥ ← R(x, y) ∧ K(y), T 6|= ⊥ ← R(x, y) ∧ A(y). However, R′ =
Rir ∪ {(7), (8)} is not an ICAR-rewriting. Indeed, when we evaluate (7) over A
we obtain A(a) and because of (8) we derive A(b). However, b is not an ICAR-
answer since A(b) /∈ clc(T ,A). This is because to derive A(b) we have used
{R(a, b),K(b), R(b, a)} which is inconsistent w.r.t. T . ♦

As illustrated in Example 4 in order to introduce a recursive clause of the
form A(x)← R(x, y)∧A(y) in the ICAR-rewriting it is not sufficient to examine
if T 6|= ⊥ ← R(x, y)∧A(y); since the concept A participates in a recursion, there
is an infinite number of negative clauses for which we should examine if they are
entailed from T . Intuitively, this is the reason for the co-NP data complexity [18]
of the ICAR-answering problem: if the input query contains concepts involved
in some recursion (such as concept A in our example), then the number of ABox
assertions that can be used to infer an assertion in clc(T ,A) is unbounded.

4 ICAR-rewriting over expressive DLs

Based on the ideas presented in Section 3 we propose an algorithm for ICAR-
rewriting over a TBox expressed in an arbitary DL. Definition 5 describes the
notion of the negative closure that was used in [21] to obtain the IAR-rewriting.
Intuitively, the negative closure Tcn of a TBox T is a finite set of negative clauses
that can capture the negative clauses entailed from T . We use Tcn to examine
if the condition described in Example 3 holds.

Definition 5. A negative closure of a TBox T , denoted by Tcn, is a finite set
of negative clauses such that T |= ⊥ ←

∧
βi iff some ⊥ ←

∧
αi in Tcn exists

with ⊥ ←
∧
αi |= ⊥ ←

∧
βi.

Algorithm 1 ICAR-Rewriting

Input: a CQ Q and a L-TBox T
1: Compute a negative closure Tcn of T
2: Compute the IAR-rewriting Rir of Q w.r.t. T .
3: Ricr := Rir

4: for H(~s)←
∧
i αi ∧

∧
j ¬βj ∈ R

ir do
5: Compute a UCQ-rewriting Rα of Q(~s)←

∧
i αi w.r.t. T

6: for each Q(~s)←
∧
i α

′
i ∈ Rα do

7: if for every clause C ∈ Tcn it holds C 6|= ⊥ ←
∧
i α

′
i then

8: Ricr = Ricr ∪ {H(~s)←
∧
i α

′
i ∧

∧
j ¬βj}

9: end if
10: end for
11: end for
12: return Ricr

Algorithm 1 computes the IAR-rewritingRir (line (2)) by applying the proce-
dure presented in [21]. Then, in order to build the set Ricr, it applies a rewriting
procedure on the elements of Rir by neglecting their negative part. More pre-
cisely, for the positive body atoms αi of every element in Rir, it constructs the
UCQ-rewriting of the query Q(~s)←

∧
i αi (lines (4)-(5)). Condition in line (7) is

necessary, as explained in Section 3, in order to only retrieve facts from clc(T ,A)
when evaluating Ricr over A.

Example 5. Consider the following EL⊥ TBox T and query Q(x)← A(x).

T = {A(x)← R(x, y) ∧B(y) (13)

B(x)← C(x) (14)

⊥ ← B(x) ∧K(x)} (15)

In the first step, Algorithm 1 computes the IAR-rewriting of Q:

Rir = { Q(x)← A(x) (16)

A(x)← R(x, y) ∧B(y) ∧ ¬(B(y) ∧K(y)) (17)

A(x)← R(x, y) ∧ C(y) ∧ ¬(C(y) ∧K(y))} (18)

Next, by considering the clauses (16), (17), (18) in Rir it computes the UCQ-
rewriting of Q(x)← A(x), Q(x)← R(x, y) ∧B(y), Q(x)← R(x, y) ∧ C(y):

(16) Q(x)← R(x, y) ∧B(y) (19)

Q(x)← R(x, y) ∧ C(y) (20)

(17) A(x)← R(x, y) ∧ C(y) ∧ ¬(B(y) ∧K(y)) (21)

The negative closure of T is Tcn = {⊥ ← B(x) ∧ K(x),⊥ ← C(x) ∧ K(x)}.
Therefore, the clauses ⊥ ← R(x, y) ∧ B(y), and ⊥ ← R(x, y) ∧ C(y) are not
entailed by Tcn and condition in line (7) is satisfied. Finally, Algorithm 1 outputs
Ricr = Rir ∪ {(19), (20), (21)} that is an ICAR-rewriting of Q w.r.t. T . ♦

Theorem 1. Let T be a L TBox where L is a Horn-DL, and let Q be a CQ. If
Q is UCQ-rewritable w.r.t. T and there exists a negative closure Tcn of T , then
Algorithm 1 terminates and computes the ICAR-rewriting of Q w.r.t. T .

Proof. (sketch) In [21] it was shown that if there exists a negative closure of T ,
and Q is datalog rewritable, then there always exists an IAR-rewriting Rir of
Q w.r.t. T (Theorem 6). Therefore, if there exists a negative closure of T and
a UCQ-rewriting R of Q w.r.t. T , then there also exists an IAR-rewriting of Q
w.r.t. T , and Algorithm 1 terminates. To prove correctness of Algorithm 1 we
first show that Ricr ∪ A |= Q(~a) iff Rir ∪ clc(A) |= Q(~a). By definition of Rir it
holds that Rir ∪ clc(A) |= Q(~a) iff R∪ clc(A) |=ir Q(~a). Finally, by definition of
Aicar we conclude that Ricr ∪ A |= Q(~a) iff R∪A |=icr Q(~a).

ut

5 Positive Results for ICAR-answering

In this section we exploit results on UCQ-rewritability of queries over a range
of DLs and the ICAR-rewriting approach presented in Section 4, to provide
positive results for ICAR-answering over Horn-DLs that do not fall into the
DL-Lite fragment.

The authors in [5] showed that instance queries over semi-acyclic-EL⊥ TBoxes
are always UCQ-rewritable. Moreover, in [21] it was shown that there always ex-
ists a negative closure for a semi-acyclic-EL⊥ TBox. Theorem 2 follows.

Theorem 2. Let T be a semi-acyclic-EL⊥ TBox and let Q be an instance query.
Then, on input T and Q, Algorithm 1 terminates and computes an ICAR-
rewriting of Q w.r.t. T .

In [18] the EL⊥nr fragment of EL⊥ was studied and in [21] it was shown that
there always exists a negative closure of an EL⊥nr TBox. Therefore, although the
problem of ICAR-answering of CQs over EL⊥nr TBoxes is in general intractable,
for a given UCQ-rewritable CQ we obtain the following result.

Theorem 3. Let T be a EL⊥nr TBox and let Q be a CQ that is UCQ-rewritable.
Then, on input T and Q Algorithm 1 terminates and computes an ICAR-
rewriting of Q w.r.t. T .

To check if a given query is UCQ-rewritable we can exploit results in UCQ-
rewritability of queries over DLs that are not always UCQ-rewritable [6, 4, 11].
The authors in [6] study UCQ-rewritability of a given instance query over Horn-
DLs, like EL⊥, ELI⊥ and Horn-SHIF . These results were used to design a
practical algorithm for checking UCQ-rewritability of instance queries [11]. Sub-
sequently, the system of [11] was extended to support rooted CQs [10].

Moreover, one can also check if a negative closure Tcn exists for a given
TBox, T , by using the condition presented in [21]. This condition is described
in Lemma 1. Intuitively, the non-existence of Tcn is related to concepts in the
negative clauses of T that participate in some recursion.

Lemma 1. Let T be a L TBox where L is a Horn-DL. Let the set of concepts
S = {Ai(x) | ⊥ ← A1(x) ∧ . . . ∧ Am(x) ∈ T }. If every instance query Q(x) ←
Ai(x) in S is UCQ-rewritable w.r.t. T and consistent ABoxes, then there exists
a negative closure Tcn of T .

Therefore, given an TBox T expressed in a Horn-DL one can decide on
the existence of a negative closure by using the system of [11] to check UCQ-
rewritability of all relevant instance queries described in Lemma 1. Moreover,
the system of [11] can be used to check UCQ-rewritability of the input query Q.
If the conditions of Theorem 1 are satisfied, Algorithm 1 can be used to obtain
an ICAR-rewriting of Q, T .

6 Evaluation

We have created a prototype system to perform a preliminary experimental eval-
uation of the proposed framework. Our system is based on the implementation
of Algorithm 1. At first step, the UCQ-rewritability of the input query Q is ex-
amined by using the system Grind [10]. Next, our system uses the IAR-rewriting
framework implemented in [21] to decide if there exists a negative closure of the
input TBox T and if so, to compute an IAR-rewriting of Q and T . If Q is not
UCQ-rewritable, or if a negative closure cannot be computed for T , then the
system reports that it cannot output an ICAR-rewriting. Otherwise, it proceeds

tR |Ricr| q¬ max avg

envo

1 889 44 623 96% 7 6.5
1 025 21 171 96% 7 6.4
1 140 21 170 96% 7 6.5
1 091 21 927 96% 14 6.7
1314 22 694 96% 7 6.5
129 75 86% 4 4.0

1 441 21 932 97% 7 6.5
1 126 21 170 96% 7 6.5
2 538 21 170 96% 7 6.5
2 385 21 934 96% 7 6.5

FBbi

194 285 7% 7 4.2
148 406 5% 7 3.2
85 13 100% 13 4.1
88 29 100% 4 2.8
51 307 7% 7 4.2
72 9 100% 10 2.8
90 555 54% 7 3.5
76 295 51% 1 1.0
56 280 8% 7 4.2
90 547 53% 7 3.9

tR |Rir| q¬ max avg

MOHSE

17 037 98 119 96% 50 1
32 213 101 646 96% 50 1
15 651 101 620 96% 2 1.1
1 049 3 511 92% 2 1.1
1 701 31 80% 50 50
1 923 3 66% 2 2.0
1 269 43 72% 50 50.0
1 314 43 51% 50 50

2 9375 98115 96% 50 21.5
34 318 98115 96% 50 21

Not-Galen

178 351 82 885 80% 6 1.0
175 581 82 885 80% 6 1.6
172 970 82 886 80% 6 1.57

36 33 36% 6 1.7
176 622 83 884 80% 6 1.0
176 102 82 886 80% 6 1.0
171 392 82 885 80% 5 1.0

32 41 51% 1 1.0
132 558 82 885 80% 6 1.0
170 489 82 885 80% 6 1.0

Table 2: Results for computation of IAR-rewritings.

in computing the ICAR-rewriting Ricr as described in lines 3-10. The whole sys-
tem currently supports ontologies expressed in EL⊥ which is the DL supported
by the current implementation of Grind.

To generate our experimental setting we examined the ontologies ENVO,
FBbi, MOHSE, NBO, Not-Galen that were used in [10] to evaluate Grind. We
did not consider SO as it was reported in [21] that a negative closure cannot be
constructed for this ontology. The ontologies ENVO and FBbi include negative
axioms. For the rest ontologies, that is MOHSE and Not-Galen, we manually
added negative axioms. For this purpose we tried to use concepts that appear
in different levels in the concepts hierarchy, so that these affect large or small
parts of the ontology. Each ontology used in [10] came with 10 handcrafted
queries. Among them we used only those queries that include concepts involved
in some negative axiom and for which the Grind system reported they are UCQ-
rewritable. We have also manually constructed test queries that each one of
them contains at least one body atom that uses a concept or role involved in
a negative axiom. More precisely, for an axiom of the form B v ¬C we have
constructed queries Q(x)← A(x) and Q(x)← D(x) such that T |= A v B and
T |= B v D. Overall, for each ontology we used 10 test queries that satisfy the
UCQ-rewritability condition.

Our results are depicted in Table 2. Columns tR, |Rir| and q¬ present the
time to obtain the ICAR-rewriting in ms, the number of clauses in the output

rewriting, and the percentage of the clauses in the output that contain a negative
part. Finally columns max and avg present the maximum and average number
of negative atoms in the elements of the rewriting. In most cases the ICAR-
rewriting was obtained within a few seconds. In contrast, in the case of Not-
Galen the time to compute the rewriting was up to 3 minutes. This is because,
the rewriting procedure (described in line 5, Algorithm 1) was applied on every
element of the IAR-rewriting which was quite large for almost all test queries.
One could avoid the several calls of the rewriting procedure and exploit the
rewritings that have already been constructed during the IAR-rewriting process.
For example, for an input TBox T = {A(x) ← A1(x),⊥ ← A(x) ∧ B(x)}
and query Q = Q(x) ← A(x) ∧ C(x) the IAR-rewriting is of the form Rir =
{Q(x) ← A(x) ∧ C(x) ∧ ¬(A(x) ∧ B(x)) ∧ ¬(A1(x) ∧ B(x)), Q(x) ← A1(x) ∧
C(x)∧¬(A1(x)∧B(x))} and to obtain Rir the standard rewriting R = {Q(x)←
A(x)∧C(x), Q(x)← A1(x)∧C(x)} must be computed. Therefore, to construct
the ICAR-rewriting one could make use of R instead of applying anew rewriting
procedure on every element of Rir. Our implementation does not involve such
optimisations however we feel that they could reduce the rewriting times.

Regarding the size of the output rewriting, one could design optimisations to
eliminate the redudant elements from the output, Ricr. For example, the clause
Q(x) ← A1(x) ∧ C(x) ∧ ¬(A(x) ∧ B(x)) ∧ ¬(A1(x) ∧ B(x)) is subsumed by
Q(x)← A1(x)∧C(x)∧¬(A1(x)∧B(x)) and hence the former can be discarded
from Ricr. Further work is required in that respect to reduce the size of Ricr.

Finally, the number of negative conjuncts in the elements of the rewriting
was quite small (up to 50). Note that the evaluation in [22] showed that triple-
store systems can handle a large number of negative atoms (even more than
one hundred). In conclusion, in most cases we have been able to obtain within
reasonable time an ICAR-rewriting for our test ontologies and queries.

Summarizing, our evaluation results show that we were able, in most cases,
to compute an ICAR-rewriting for the given TBoxes for which the problem is
in general intractable. Moreover, computing the ICAR-rewriting can be done
relatively efficiently and the number of negative atoms added in the clauses was
usually quite small.

7 Conclusions

In this work we have provided a general framework for ICAR-answering for
arbitary Horn-DLs. We have presented an algorithm that takes as an input a
TBox and a query; if it terminates, it outputs a datalog program, that can be
used to compute the ICAR-answers. We described the termination condition
of our algorithm and showed that the tractability results hold for the semi-
acyclic-EL⊥. Furthermore, in cases of inputs that do not satisfy the termination
condition in general, we can exploit recent results to check termination. Our
experiments provided encouraging results as in almost all cases we were able to
compute an ICAR-rewriting in reasonable time. Further experimental evaluation
to examine whether the conditions apply in practice is left for future work.

References

1. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-Lite Family and Relations. Journal of Artificial Intelligence
Research, 36:1–69, 2009.

2. Franz Baader, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The Description Logic Handbook: Theory, implementation and applica-
tions. Cambridge University Press, 2002.

3. Meghyn Bienvenu, Camille Bourgaux, and François Goasdoué. Querying Incon-
sistent Description Logic Knowledge Bases under Preferred Repair Semantics. In
AAAI, pages 996–1002, 2014.

4. Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. First Order-
Rewritability and Containment of Conjunctive Queries in Horn Description Logics.
In IJCAI: International Joint Conference on Artificial Intelligence, 2016.

5. Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. Deciding FO-Rewritability
in EL. In Proceedings of the Twenty-Fifth International Workshop on Description
Logics, 2012.

6. Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First-Order Rewritability of
Atomic Queries in Horn Description Logics. In Proceeding of the Twenty-Third
International Joint Conference on Artificial Intelligence, 2013.

7. Meghyn Bienvenu and Riccardo Rosati. New Inconsistency-Tolerant Semantics for
Robust Ontology-Based Data Access. In Proceedings of the Twenty-Sixth Interna-
tional Workshop on Description Logics, 2013.

8. Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-
Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP.
ACM Transactions on Database Systems, 39(4):33:1–33:44, 2014.

9. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable Reasoning and Efficient Query Answering in De-
scription Logics: The DL-Lite Family. Journal of Automated Reasoning, 39(3):385–
429, 2007.

10. Peter Hansen and Carsten Lutz. Computing FO-Rewritings in EL in Practice:
From Atomic to Conjunctive Queries. In The Semantic Web - ISWC 2017 - 16th
International Semantic Web Conference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part I, pages 347–363, 2017.

11. Peter Hansen, Carsten Lutz, Inanç Seylan, and Frank Wolter. Efficient Query
Rewriting in the Description Logic EL and Beyond. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, pages 3034–3040,
2015.

12. Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev. Conjunctive
Query Answering with OWL 2 QL. In Proceedings of the Thirteenth International
Conference on Principles of Knowledge Representation and Reasoning, 2012.

13. Atanas Kiryakov, Barry Bishoa, Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev,
and Ruslan Velkov. The features of bigowlim that enabled the bbcs world cup
website. In Workshop on Semantic Data Management (SemData), pages 13–17,
2010.

14. Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. Inconsistency-tolerant Semantics for Description Logics.
In Proceedings of Fourth International Conference on Web Reasoning and Rule
Systems, pages 103–117. Springer, 2010.

15. Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. Query rewriting for inconsistent DL-Lite ontologies. In
Proceedings of the Fifth International Conference on Web Reasoning and Rule
Systems, pages 155–169. Springer, 2011.

16. Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. Inconsistency-tolerant Query Answering in Ontology-Based
Data Access. Journal of Web Semantics, 33:3–29, 2015.

17. Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable Query Answering
and Rewriting under Description Logic Constraints. Journal of Applied Logic,
8(2):186–209, 2010.

18. Riccardo Rosati. On the Complexity of Dealing with Inconsistency in Descrip-
tion Logic Ontologies. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, pages 1057–1062, 2011.

19. Giorgos Stoilos, Bernardo Cuenca Grau, Boris Motik, and Ian Horrocks. Repairing
Ontologies for Incomplete Reasoners. In Proceedings of the 10th International
Semantic Web Conference, Bonn, Germany, pages 681–696, 2011.

20. Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and Giorgos Stamou.
Optimising Resolution-Based Rewriting Algorithms for OWL Ontologies. Journal
of Web Semantics, 33:30–49, 2015.

21. Despoina Trivela, Giorgos Stoilos, and Vasilis Vassalos. A Framework and Positive
Results for IAR-answering. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, 2018.

22. Eleni Tsalapati, Giorgos Stoilos, Giorgos B. Stamou, and George Koletsos. Efficient
Query Answering over Expressive Inconsistent Description Logics. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pages
1279–1285, 2016.

