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Abstract. A robust approach to the design of machine learning algorithms, based on 

minimising finite sums of the parametrised functions is considered. This method implies using 

robust finite-sum differentiable aggregating functions that are resistant to outliers. 

1. Introduction
The majority of machine learning problems can be reduced to problem of minimising finite sums of

parametrised functions:

𝒬(w) = ∑𝑣𝑘

𝑁

𝑘=1

ℓ𝑘(w), 

where ℓ1(𝐰),… , ℓ𝑁(𝐰) – are non-negative basis functions, 𝐰 – is the vector of unknown parameters, 

𝐰 ∈ 𝐖 ⊆ ℝ𝑚, 𝑣1, … , 𝑣𝑁 ≥ 0 – is nonnegative weights. Most often 𝑣𝑘 = const, for example, 1
(arithmetic sum) or 1/𝑁 (arithmetic mean). 𝒬 target function is minimised by the optimal set of 

parameters 𝐰∗:

𝒬(𝐰∗) = min
𝐰∈𝐖

𝒬(𝐰). 

Most of algorithms for neural networks (NN) learning are based on this principle. In particular back 
propagation (BP) algorithm is based on minimisation of arithmetic mean squared errors. 

However, if the distribution of the basic functions values contains outliers, the minimization of 

𝒬(𝐰), as a rule, leads to a distortion of 𝐰∗. This is due to the fact that the arithmetic sum and the

arithmetic mean are not resistant to the outliers. 

Of course, the problem of outliers could be solved by choosing the values of the weights 𝑣1, … , 𝑣𝑁, 

which, on the one hand, would suppress the values of outliers, and on the other hand, leave the rest left 

unchanged. However, the selection of such weights is difficult task and is essentially equivalent by the 

complexity to identifying the outliers in the empirical distribution {ℓ1(𝐰
∗),… , ℓ𝑁(𝐰

∗)}.
One of the effective way of dealing with this problem is to use robust aggregation functions to 

calculate the sum or average. Thus, we get definitions for the function 𝑄: 

𝒬(𝐰) = med𝑘=1,…𝑁ℓ𝑘(𝐰) 
for robust estimation of a mean 

𝒬(𝐰) = ∑ ℓ(𝑘)

𝑁−𝑝

𝑘=1

(𝐰) 
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and for robust estimation of a sum. Here 𝑧(1), … , 𝑧(𝑁) is the sequence of numbers obtained by 

arranging the initial sequence 𝑧1, … , 𝑧𝑁 in ascending order. For example, to build a robust regression 

with ℓ𝑘(𝐰) = (𝑓(𝐱𝑘 , 𝐰) − 𝑦𝑘)
2 there have been proposed LMedS and LTS (Least Trimmed

Squares) [1,2]. 

Last sum could be rewritten as trimmed arithmetical mean: 

𝒬(𝐰) =
1

𝑁 − 𝑝
∑ ℓ(𝑘)

𝑁−𝑝

𝑘=1

(𝐰) 

Minimizing the above estimates on data with outliers (up to 50%) allows finding adequate estimates 

for 𝐰∗. However, minimization algorithms for LTS and LMS include a combinatorial component form

of 𝐰∗ search through subsets, since their gradients are singular. It makes application of gradient based

algorithms almost impossible. This also reduces the scalability of such algorithms and their application 
in training neural networks and in problems with big data. 

Another way of robust estimation of 𝐰∗ is using a winsorized sum

𝒬(𝐰) = ∑max

𝑁

𝑘=1

{ℓ𝑘(𝐰), ℓ(𝐰)} 

or an average 

𝒬(𝐰) =
1

𝑁
∑max

𝑁

𝑘=1

{ℓ𝑘(𝐰), ℓ(𝐰)}, 

where ℓ(𝐰) is threshold value for the empirical distribution {ℓ1(𝐰),… , ℓ𝑁(𝐰)}. 
In this paper, we consider general approach where for estimation of average empirical losses it will 

be used 𝖬-averaging aggregation functions (𝖬-averages). This approach generalises 𝖬-regression 

method [5] and provides universal technique for solving the problem of the empirical risk 

minimisation in presence of outliers. It allows to use differentiable 𝖬-averages that could be treated as 

a sort of approximations of median and quantiles. In such cases a general gradient based procedure 

could be constructed for NN robust training. 

2. Minimisation of M-averages from parametrised functions

For the median case, the problem can be solved using 𝖬-averages [5,7-10], which are differentiable

and, in a sense, are approximate median:

𝖬𝜌{𝑧1, … , 𝑧𝑁} = argmin
𝑢

∑𝜌

𝑁

𝑘=1

(𝑧𝑘 − 𝑢), 

where 𝜌 – is the nonnegative strictly convex function, 𝜌(0) = 0. 

Here are some examples of 𝖬-averages: 

 Collection of symmetrical averages:

𝖬𝛾{𝑧1, … , 𝑧𝑁} = argmin
𝑢

∑|

𝑁

𝑘=1

𝑧𝑘 − 𝑢|1+𝛾 ,

 where 0 ≤ 𝛾 ≤ 1 (𝖬0 is median, 𝖬1 is arithmetical mean).

 Collection of non-symmetrical averages:

𝖬𝛼
𝛾 {𝑧1, … , 𝑧𝑁} = argmin

𝑢
∑|

𝑁

𝑘=1

𝑧𝑘 − 𝑢|𝛼
1+𝛾 , 

 where |𝑢|𝛼
1+𝛾 = (𝛼 − [𝑢 > 0])𝑢|𝑢|𝛾, 0 ≤ 𝛾 ≤ 1 (𝖬𝛼

0  is 𝛼-quantile, 𝖬𝛼
1  is 𝛼-expectile).

Here is the sufficient condition: if 𝜌 – is twice differentiable, then 𝖬𝜌{𝑧1, … , 𝑧𝑁} has all partial 

derivatives: 
𝜕𝖬𝜌

𝜕𝑧𝑘
=

𝜌′′(𝑧𝑘 − 𝑧)

𝜌′′(𝑧1 − 𝑧) +⋯+ 𝜌′′(𝑧𝑁 − 𝑧)
. 
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Besides, 
𝜕𝖬𝜌

𝜕𝑧𝑘
≥ 0 and 

∑
𝜕𝖬𝜌

𝜕𝑧𝑘

𝑁

𝑘=1

= 1. 

In order to find out in which cases the function 𝖬-average 𝖬𝜌 can be stable with respect to outliers 

we consider the following inequality: 

|𝖬𝜌{𝑧1, . . . , 𝑧𝑁 + 𝛥} −𝖬𝜌{𝑧1, . . . , 𝑧𝑁}| =
𝜌′′(�̃� − 𝑢�̃�)𝛥

∑ 𝜌′′𝑁−1
𝑘=1 (𝑧𝑘 − 𝑢�̃�) + 𝜌′′(�̃� − 𝑢�̃�)

< 𝜌′′(�̃� − 𝑢�̃�)𝛥,

where 𝜌(𝑟) is convex, 𝜌′′(𝑟) is continouous function, 𝛥 > 0 is value of distortion, �̃� ∈ [𝑧𝑁 , 𝑧𝑁 +

𝛥], 𝑢�̃� = 𝖬𝜌{𝑧1, … , 𝑧𝑁−1, �̃�}. Let 𝖬𝜌 be some 𝖬-averaging function. We define empirical risk 

based on 𝖬-averaging function 𝖬𝜌, as follows: 

𝒬𝜌(𝐰) = 𝖬𝜌{ℓ1(𝐰),… , ℓ𝑁(𝐰)}.

The classical empirical risk is a special case when 𝖬𝜌 is arithmetical mean. The best set of the 

parameters for 𝐰∗ have to minimize the function with respect to the minimization principle:

𝒬𝜌(𝐰
∗) = min

𝐰
𝖬𝜌{ℓ1(𝐰),… , ℓ𝑁(𝐰)}.

Since the median and quantile are not continuously differentiable, the gradient procedures for 
minimisation of the risk functional are not practical. However, instead of median we can use 

continuously differentiable parametric family of 𝖬-average functions based on the dissimilarity 

function 𝜌𝜀(𝑧 − 𝑢) that satisfy the following requirements: 

1. lim
𝜀→0

𝜌𝜀(𝑧 − 𝑢) = |𝑧 − 𝑢|; 

2. lim
𝜀→0

𝜌𝜀
′(𝑧 − 𝑢) = sign(𝑧 − 𝑢); 

3. lim
𝜀→0

𝜌𝜀
′′(𝑧 − 𝑢) = 𝛿(𝑧 − 𝑢) (Dirac’s 𝛿-function).

We demonstrate, for example, that for the role of "approximate" median the following functions 
can be used: 

 𝜌𝜀(𝑟) = √𝜀2 + 𝑟2 − 𝜀;

 𝜌𝜀(𝑟) = |𝑟| − 𝜀ln(𝜀 + |𝑟|) − 𝜀ln𝜀.

Such 𝖬-averages 𝖬𝜌𝛼  are continuously differentiable and robust with sufficiently small 𝜀. This

implies that they are resistant to outliers (in some cases up to 50%). 

To approximate the 𝛼-quantile, one can use the function 

𝜌𝜀,𝛼(𝑟) = {

(1 − 𝛼)𝜌𝜀(𝑟), if 𝑟 < 0
𝛼𝜌𝜀(+0) + (1 − 𝛼)𝜌𝜀(−0), if 𝑟 = 0
𝛼𝜌𝜀(𝑟), if 𝑟 > 0.

   (1)

The 𝐰∗ search algorithm is an IR-ERM (Iteratively Re-weighted Empirical Risk Minimization) [3]:

procedure IR-ERM(𝐰0) 

𝑡 ← 0 
repeat 

𝑧1 = ℓ1(𝐰𝑡),… , 𝑧𝑁 = ℓ𝑁(𝐰𝑡) 
𝑧𝑡 ← 𝖬{𝑧1, … , 𝑧𝑁} 
for 𝑘 = 1,… ,𝑁 do 

𝑣𝑘 =
𝜌′′(𝑧𝑘 − 𝑧𝑡)

𝜌′′(𝑧1 − 𝑧𝑡) + ⋯+ 𝜌′′(𝑧𝑁 − 𝑧𝑡)
end 

𝐰𝑡+1 ← argmin𝐰∑𝑣𝑘

𝑁

𝑘=1

ℓ𝑘(𝐰) 

𝑡 ← 𝑡 + 1 

until {𝑧𝑡} and {𝐰𝑡} stabilize 

end 
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At the heart of IR-ERM is the process of iterative re-weighting, as well as in the IRLS [4]. The IR-
ERM algorithm differs from the IRLS in the way of recalculation of the weights. 

To demonstrate the possibility of empirical risk minimisation [6] based on a robust estimate and 

IR-ERM algorithm, here is an example of linear regression problem with a large number of outlies.  
We have a straight line through data points with an evenly distributed small error. For the linear 

regression recovering we use the least squares method, the absolute-error-minimising method, and the 

robust differentiable estimate minimising technique by means of the M-average through the function 

𝜌𝛼(𝑟) = |𝑢 − 𝑧| − 𝛼ln(𝛼 + |𝑢 − 𝑧|) + 𝛼ln𝛼, 
where 𝛼 = 0.001. Fig. 1 explain advantage of robust linear regression recovery. In both cases, robust 

differentiable average estimate minimising technique made it possible to avoid the influence of 

outliers. 

 
Figure 1. Recovery examples for linear regression with 50% and 80% of outliers from the amount of 

data without outliers. 

3. Minimizing robust sums of functions 

Consider a number of summation methods resistant to outliers. All 𝖬-averages including the 

arithmetic mean feature: 
𝜕𝖬

𝜕𝑧1
+⋯+

𝜕𝖬

𝜕𝑧𝑁
= 1. 

But the arithmetic summation features the following important property: 
𝜕𝖲

𝜕𝑧1
+⋯+

𝜕𝖲

𝜕𝑧𝑁
= 𝑁. 

It is therefore natural that the proposed summation methods can also maintain this property. 
Consider the following summation method. 

3.1. Least Winsorized Sum and Mean 

In the Least Winsorized Sum (LWS) method before summing, all values that are greater than the 

specified threshold value 𝑢 are replaced by 𝑢, i.e. 

𝖶𝖲𝑢{𝑧1, … , 𝑧𝑁} = ∑
1

2

𝑁

𝑘=1

(𝑧𝑘 + 𝑢 − |𝑧𝑘 − 𝑢|). 

Let’s call it WS (Winsorized Sum). It has the following property: if 𝑢 is the arithmetic mean of 

𝑧1, … , 𝑧𝑁, then 𝖶𝖲𝑢{𝑧1,… , 𝑧𝑁} = 𝑧1 +⋯+ 𝑧𝑁. 
The WM (Winsorized Mean) averaging method is defined as 

𝖶𝖬𝑢{𝑧1, … , 𝑧𝑁} =
1

𝑁
𝖶𝖲𝑢{𝑧1,… , 𝑧𝑁}. 

We generalize the WS summing method as follows. Let 𝖬𝜌 be 𝖬-average on the basis of a twice 

differentiable strictly convex function 𝜌. Denote 𝑧 = 𝖬𝜌{𝑧1, … , 𝑧𝑁}. Define 

𝖶𝖲𝜌{𝑧1,… , 𝑧𝑁} = ∑
1

2

𝑁

𝑘=1

(𝑧𝑘 + 𝑧 − 𝜌(𝑧𝑘 − 𝑧)). 

Calculate the partial derivatives: 
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𝜕𝖶𝖲𝜌

𝜕𝑧𝑘
=
1

2
(1 − 𝜌′(𝑧𝑘 − 𝑧)) +

1

2

𝜕𝖬𝜌

𝜕𝑧𝑘
(𝑁 +∑𝜌′

𝑁

𝑙=1

(𝑧𝑙 − 𝑧)). 

Since, by definition, 

∑𝜌′
𝑁

𝑘=1

(𝑧𝑘 − 𝑧) = 0, 

then 
𝜕𝖶𝖲𝜌

𝜕𝑧𝑘
=
1

2
(1 − 𝜌′(𝑧𝑘 − 𝑧)) +

𝑁

2

𝜕𝖬𝜌

𝜕𝑧𝑘
. 

Therefore 

∑
𝜕𝖶𝖲𝜌

𝜕𝑧𝑘

𝑁

𝑘=1

= 𝑁. 

If 

lim
|𝑟|→∞

𝜌(𝑟)/|𝑟| = 1, 

then the summation method defined here can be considered as a smooth version of WS. 

Now we consider the following problem of the objective function minimizing winsorized mean: 

𝒬(𝐰) =
1

𝑁
𝖶𝖲𝜌{ℓ1(𝐰),… , ℓ𝑁(𝐰)} 

to find the optimal set of parameters 𝐰∗ . Now write down the gradient: 

grad𝒬(𝐰) = ∑𝑣𝑘

𝑁

𝑘=1

(𝐰)gradℓ𝑘(𝐰), 

where 

𝑣𝑘(𝐰) =
1

2𝑁
(1 − 𝜌′(ℓ𝑘(𝐰) − 𝑧(𝐰))) +

1

2

𝜕𝖬𝜌

𝜕𝑧𝑘
, 

𝑧(𝐰) = 𝖬𝜌{ℓ1(𝐰),… , ℓ𝑁(𝐰)}. At that, we note 

𝑣1(𝐰) +⋯+ 𝑣𝑁(𝐰) = 1. 

For numerical calculation, we can apply the algorithm IR-SWSM (Iteratively Re-weighted 

Smoothly Winsorized Sum Minimization) the next version of the IR-SWSM algorithm: 

procedure IR-SWSM(𝐰0) 

𝑡 ← 0 
repeat 

𝑧1 = ℓ1(𝐰𝑡), … , 𝑧𝑁 = ℓ𝑁(𝐰𝑡) 
𝑧𝑡 ← 𝖬{𝑧1, … , 𝑧𝑁} 
for 𝑘 = 1,… ,𝑁 do 

𝑣𝑘 =
1

2𝑁
(1 − 𝜌′(𝑧𝑘 − 𝑧)) +

1

2

𝜕𝖬𝜌

𝜕𝑧𝑘
 

end 

𝐰𝑡+1 ← argmin𝐰∑𝑣𝑘

𝑁

𝑘=1

ℓ𝑘(𝐰) 

𝑡 ← 𝑡 + 1 

until {𝑧𝑡} and {𝐰𝑡} stabilize 

end 

To illustrate the IR-SWSM algorithm capacity, we consider a neural network with single hidden 
layer: 

𝑦 = 𝑤0 + 𝑤1𝑢1 +⋯+𝑤𝑚𝑢𝑚
𝑢𝑗 = softplus(𝑤𝑗0 +𝑤𝑗1𝑥1 +⋯+𝑤𝑗𝑛𝑥𝑛),

 

where softplus(𝑠) = ln(1 + 𝑒𝑠). NN was trained with the Boston data set. 
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Figure 2. The errors distribution by trained NN with one hidden layer containing 40 and 80 neurons, 

with respect to the Boston dataset. 

 

For training, error back propagation has been applied, where the mean square error (ER) and mean 

value of the Huber function with the small parameter (0.001) are minimised, for it to be a 

continuously differentiable approximation of the module error. IR-SWSM learning algorithm has also 

been used, where the robust estimate of the error sum WS of squares (WS) are minimised using the 

function 𝜌𝜀,𝛼 type (1), where 𝜌𝜀(𝑟) = √𝜀2 + 𝑟2 − 𝜀, 𝛼 = 0.90. 

The Fig. 2 shows the of mean absolute error distribution across the entire dataset. This clearly 

demonstrate that training neural networks (40 and 80 neurons in the hidden layer) with IR- SWSM 
algorithm reduce error values to more than 80% of the data. 

There is also another experiment with only 7 neurons in the hidden layer. The Fig. 3 shows the of 

mean absolute error distribution across the entire dataset. 

 
Figure 3. Errors distributions for NN training by boston dataset using three approaches: Least Squares 

(ER), Least Absolute Errors (ER) and Least Winsorized Squares (WS). 

4. Conclusion 

In this paper, we propose a method and algorithms for minimizing robust differentiable estimate of 

means and sums that are potentially resistant to outliers and errors that can lead to a shift in the 
parameters of the trainees. It is based on minimization of differentiable robust analogs of median, 

quantiles and winsorized sums of loss functions. 

The above approaches are preferable in the cases when application of gradient based minimisation 
procedures are preferable. For example, these approaches made possible application of weighted 

variants of back propagation algorithms for NN robust learning. Construction of robust learning 

algorithms of NN are important in a sense of many applications [12-15]. In particular an iteratively re-

weighted procedures are proposed.  
In these procedures at each step a weighted variant of back propagation algorithm is used. 

Examples presented above clearly show that proposed approaches and algorithms can be resistant to a 

large amount of outliers. 
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