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Abstract. The purpose of this paper is to introduce new linear codes with generalized 
symmetry. We extend cyclic and group codes in the following way. We introduce codes, 
invariant with respect to a family of generalized shift operators (GSO). In particle case when 
this family is a group (cyclic or Abelian), these codes are ordinary cyclic and group 
codes. They are invariant with respect to this group. We deal with GSO-invariant codes 
with fast code and encode procedures based on fast generalized Fourier transforms. The 
hope is that thesemore general structures will lead to larger classes of useful codes “good” 
properties.

1. Introduction
Let F  be a finite field. A block code of length N  is a subset  Cof NF , i.e., a collection of N  length
vectors with components from F . Most of the literature on block codes pertains to block codes over
finite fields ( )q=F GF  or finite rings ( )q=F GR , where sq p=  and p  is a prime.  Although any
subset forms a code, there are codes with more structure that are very useful and compose the majority
of block codes in practice. A linear block code is a block code that is an F -subspace of the F -vector
space .NF In addition to linearity, there are many structural properties that make for good codes. One
of the most prevalent such structural properties is symmetry of code, that is described as invariance
with respect to a group. Invariance (code symmetry), in many circumstances, leads to some nice
encoding and decoding algorithms yet it is a very simple structure to describe. For these reasons, it is
one of the most studied structural properties in coding theory.
Definition 1 [1,2]. A cyclic block code N⊂ FC of length N  over a finite field F is a linear block code
with the property that if 0 1 2 1( , ,..., , )N Nc c c c− − ∈Cthen 1 0 3 2( , ,..., , )N N Nc c c c− − − ∈C. 

It means that group of code symmetry of a cyclic code N⊂ FC is . Cyclic codes are 
studied from many points of view. One way is to view them as ideals of an algebra. Define 

: [ ] / 1N Nx xρ → −F F  via 2 1
0 1 2 1 0 1 2 1: ( , ,..., , ) ... .N N

N N N Nc c c c c c x c x c x− −
− − − −ρ + + + +  It can be shown 

that ρ is an isomorphism. Let  N⊂ FC be cyclic block code. Then ( )ρ C  is a subspace of the F -vector 

space [ ] / 1Nx x −F . Now the added condition of being cyclic translates to the following: if 

( ) ( )cρ ∈ρ C then ( ) ( )2 1 2 1
0 1 2 1 1 0 1 2( ) ... ... ( ).N N N

N N N Nx c x c c x c x c x c c x c x c x− − −
− − − −⋅ρ = ⋅ + + + + = + + + + ∈ρ C

With this extra condition, ( ) [ ] / 1 .Nx xρ −FC  
There are many generalizations of cyclic codes, some of which may be viewed as ideals of 

particular rings [3]: 
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• negacyclic (skew-cyclic) codes[4-11]- ideal of the ring ( )[ ] / 1N Nlg x x +FA , 

• constacyclic codes [12]- ideal of the ring ( )[ ] /N Nlg x x − λFA ,where ( )lgλ∈ FA , 

• polycyclic codes [3]- ideal of the ring ( )[ ] / ( )Nlg x f xFA ,where ( ) ( )[ ]f x lg x∈ FA . 
The terminology of the cyclic codes theory may be extended to define a larger family ofcodes. We 

start by introducing vector-induced clockwise and counterclockwise shifts. Given a vector 
0 1 2 1( , ,..., , ) N

N Ns s s s− −= ∈s F , the s -clockwise and s -counterclockwise shifts of codeword

0 1 2 1( , ,..., , ) N
N Nc c c c− −= ⊂ FC=  are the following correspondences 

0 1 1 0 1 2 1 0 1 2 1

1 0 0 1 1 1 2 1 2 1 1

0 1 1 1 2 1 0 0 1 2 1

1 0 0 2 1 0

( , ,..., ) (0, , ,..., ) ( , , ,..., )
( ,  ,  ,..., ),

( , ,..., ) ( , ,..., ,0) ( , , ,..., )
( ,  ,.

N N N N

N N N N N N

N N N

R R c c c c c c c s s s s
c s c s c c s c c s c

c c c c c c c s s s s
c s c c s c

− − − −

− − − − − −

− − −

= = + =
= + + +

= = + =
= + +

s s

s s

c

L c L

1 2 0 1 0.., , ).N N Nc s c s c− − −+
Dyadic codes are defined only for length N , a power of 2, say 2 ,nN =  as follows. 

Definition 2. For any integer { }0,1,2,..., 1i N∈ − , let ( )1 2 1 0, ,..., ,n ni i i i i− −= . Denote its radix-2 

representation, where 
1

1 1 1 0
1 2 1 0

0
2 2 ... 2 2 2

n
n n l

n n l
l

i i i i i i
−

− −
− −

=

= + + + + =∑ and { }1 0,1i ∈ for 0,1,2,..., 1l n= − . 

Dyadic addition of two numbers i  and j denoted  by
2

i j⊕  is defined by

( ) ( )
( ) ( )

1 2 1 0 1 2 1 02 2

1 1 2 2 1 1 0 0 1 2 1 0

, ,..., , , ,..., ,

, ,..., , , ,..., ,

n n n n

n n n n n n

k i j i i i i j j j j

i j i j i j i j k k k k

− − − −

− − − − − −

= ⊕ = ⊕ =

= ⊕ ⊕ ⊕ ⊕ =

where ( )mod 2l l lk i j= ⊕ , for 0,1,2,..., 1l n= − . The dyadic shift, 0,1,2,..., 1m N= − , of a vector 

( )0 1 1, ,..., Nc c c −  is the vector ( )
2 2 2

0 1 ( 1), ,...,m m N mc c c⊕ ⊕ − ⊕
. 

Definition 3. Linear code of length 2nN = is called dyadic code if the m -dyadic shift of every 
codeword is also a codeword for all 0,1,2,..., 1m N= − . 

The class of dyadic codes is a special case of abelian group codes [13, 14-16] which is briefly 
discussed in the third. In this paper, we would like tointroduce new linear codes with generalized 
symmetry. We extend cyclic and group codes in the following way. We introduce codes, invariant 
with respect to a family of generalized shift operators (GSO). In particle case when this family is a 
group (cyclic or Abelian), these codes are ordinary cyclic and group codes. They are invariant with 
respect to this group.   We deal with GSO-invariant codes with fast code and encode procedures based 
on fast generalized Fouriertransforms.The hope is that these more general structures will lead to larger 
classes of useful codes “good” properties. The rest of the paper isorganized as follows: in Section 2 
and 3, the proposed method based on families of generalized shift operators (GSO) is explained. 

2. Methods

2.1. Generalized shift operator 
The purpose of this subsection is to introduce the mathematical representations of generalized shift 
operators associated with arbitrary orthogonal (or unitary) Fourier transforms ( F -transforms). For 
illustration, we also particularize our results for many transforms popular in coding and signal 
theories. The ordinary group shift operators ( )( ) ( )τ

tT f t f t τ= +  play the leading role in all the 
properties and tools of the Fourier transform mentioned above. In order to develop for each orthogonal 
transform a similar wide set of tools and properties as the Fourier transform has, we associate a family 
of commutative generalized shift operators (GSO) with each orthogonal (unitary) transform. Such 
families form hypergroups. In 1934 F. Marty [17,18] and H.S. Wall [19,20] independently introduced 
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the notion of hypergroup. Only in particular cases these families are Abelian groups and 
hyperharmonic analysis is the classical Fourier harmonic analysis on groups.  

Let ( ) :f t Ω→ F  be a F -valued signal, where F  be a finite field. Usually, [0, 1]dNΩ = −  in 
coding theory and digital signal processing, where d  is the dimension of :  dim( ).dΩ = Ω  Let 

( ) { }, : ( ) ( ) : ) ,L f t f t ΩΩ = Ω→ ≈F F F

be vector space of F -valued functions, where ( )card dNΩ = Ω = . The theory of generalized shift 
operators was initiated by Levitan [21]–[22]. According to Levitan the family of generalized shift 
operators (GSOs) [ ]( ) : ( )tT f t f tτ = τ( depending on τ∈Ω as a parameter is defined in signal space 
( ),L Ω F by the following axioms. 

Axiom 1. For all functions ( )1 2( ), ( ) ,f t f t L∈ Ω F and any constants ,a b∈F the following relation 
holds 

     [ ] [ ] [ ]1 2 1 2
ˆ ˆ ˆ( ) ( ) ( ) ( )t t tT a f t b f t a T f t b T f tτ τ τ⋅ + ⋅ = ⋅ + ⋅       (1) 

Axiom 2. For an arbitrary function ( )( ) , )f t L∈ Ω F and arbitrary , ,s t r∈Ω it holds 

[ ] [ ] ( )( ) ( )( ) .( ) ( ) ,  or  ,   . .,  r r r r
t t t t tT T f t T T f t f t r f t r i e T Tτ τ τ

=τ τ   = τ = τ   
(

(( ( r ( r ( (2) 
i. e., the GSOs are associative.
Axiom 3. There exists an element 0τ ∈Ω with [ ]0 ( ) ( )  xT f t f tτ ≡ for all t∈Ω and for all

( )( ) ,f t L∈ Ω F . This means that the family of GSOs contains identity operator.
If moreover the following axiom is fulfilled, then the GSOs are called commutative. 

Axiom 4. For any elements , tτ ∈Ω and arbitrary ( )( ) ,f t L∈ Ω F holds

[ ] [ ] ( )( ) ( )( )( ) ( ) ,  or  ,   . .,  r r r r
t r t t r tT T f t T T f t f t r f t r i e T T T Tτ τ τ τ

τ τ   = τ = τ =    ( ( r ( ( r              (3) 
We expand notion GSOs on the more complex signal space. Let ( ) : ( )f t lgΩ→ FA  be a ( )lg FA -

valued signal. The set Ω of the values of the variable t constitutes the domain of the signal. Usually, 
[0, 1]dNΩ = −  in coding theory and digital signal processing, where d  is the dimension of 

:  dim( ).dΩ = Ω The set ( )lg FA of values of the signal ( )f t is the range of the signal. About the range 
of the signal we assume, that ( )lg FA is a commutative algebra with aninvolution operation 

,   ( )a a a lg→ ∀ ∈ FA . In particular, if ( )lg FA is the complex field then the involution operation is 
complex conjugate. 

Let *Ω be the space dual to Ω . The first one will be called the spectral domain, the second one be 
called signal domain keeping the original notion of t∈Ω  as «time» and *ω∈Ω  as «frequency». Let 

( ) { }
( ) { } *

* *

, ( ) : ( ) ( ) : ( ) ( ),

, ( ) : ( ) ( ) : ( ) ( )

L lg f t f t lg lg

L lg F F lg lg

Ω

Ω

Ω = Ω→ ≈

Ω = Ω → ≈

F F F

F F Fω ω

A A A

A A A

be two vector spaces of ( )lg FA -valued functions. Here * dNΩ = Ω = . Let { } *( )x
∈Ωω ω

ϕ  be an 

orthonormal system of functions in ( ), ( )L lgΩ FA . Then for any function ( )( ) , ( )f t L lg∈ Ω FA  there 
exists such a function ( )*( ) , ( )F L lg∈ Ω Fω A , for which the following equations hold:

( ) ( )
*

-1( ) ( ) ( ) ( ),     ( ) ( ) ( ) ( ).
t

F f f t t f t F t F t
∈Ω ∈Ω

= = = =∑ ∑ω ω
ω

ω ω ϕ ω ϕF F
(4) 

The function ( )*( ) , ( )F L lg∈ Ω Fω A  is called the Fourier spectrum ( F -spectrum) of the ( )lg FA -

valued signal ( )( ) , ( )f t L lg∈ Ω FA  and expressions (1)-(2) are called the pair of generalized Fourier 
transforms (or F -transforms). In the following we will use the notation ( ) ( )f t F←→ ωF  in order to 
indicate F -transforms pair. 
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A fundamental and important tool of coding and signal theories are shift operators in the «time» 
and «frequency» domains. They are defined as 

( )
( )

( ) : ( ),

( ) : ( )

t

t

T f t f t

T f t f t

 = +


= −

τ

τ

τ

τ
and

( )( ) ( )
( )( ) ( )

: ,

: .

D F F

D F F

 = +


= −

ν
ω

ν
ω

ω ω ν

ω ω ν

For ( ) j tf t e= ω and ( ) j tF e−= ωω  we have 
( )

( )

( ) ,

( )

j tj t j j t j t
t

j tj t j j t j t
t

T e e e e e

T e e e e e

+

− −

 = = =


= = =

ω ττ ω ωτ ω ω
ω

ω ττ ω ωτ ω ω
ω

λ τ

λ τ
and

( )

( )

( ) ,

( ) ,

j tj t j t j t j t

j tj t j t j t j t

D e e e e t e

D e e e e t e

− + − − −

− − − −

 = = =


= = =

ω νν ω ν ω ω
ω ν

ω νν ω ν ω ω
ω ν

λ

λ
   (5) 

i.e., harmonic signals j te ω  and j te− ω  are eigenfunctions of «time»-shift and «frequency»-shift
operators ,t tT Tτ τ and ,D Dν ν

ω ω , corresponding to eigenvalues ( ) ,  ( )j je e−= =ωτ ωτ
ω ωλ τ λ τ and 

( ) ,  ( )j t j tt e t e−= =ν ν
ν νλ λ , respectively. 

Definition 4. The following operators (with respect to which all basis functions are invariant 
eigenfunctions 

( )
( )

( ) : ( ) ( ) ( ) ( ),   ,

( ) : ( ) ( ) ( ) ( ),   

t

t

T t t t

T t t t

τ
ω ω ω ω ω

τ
ω ω ω ω ω

ϕ = ϕ τ ⋅ϕ = λ τ ϕ ∀τ∈Ω

ϕ = ϕ τ ⋅ϕ = λ τ ϕ ∀τ∈Ω
     (6)

and 
( )
( )

*

*

( ) : ( ) ( ) ( ) ( ),   ,

( ) : ( ) ( ) ( ) ( ),   

D t t t t t

D t t t t t

ν
ω ω ν ω ν ω

ν
ω ω ν ω ν ω

ϕ = ϕ ⋅ϕ = λ ⋅ϕ ∀ν∈Ω

ϕ = ϕ ⋅ϕ = λ ⋅ϕ ∀ν∈Ω
       (7)

are called commutative F –generalized "time"–shift and "frequency"–shift operators (GSO’s), 
respectively, where ( ) ( ),  ( ) ( )ω ω ω ωλ τ = ϕ τ λ τ = ϕ τ and ( ) ( ),  ( ) ( )t t t tν ν ν νλ = ϕ λ = ϕ are eigenvalues of 
GSO’s ,t tT Tτ τ  and ,D Dν ν

ω ω , respectively. 
For these operators we introduce the following designations: 

( ) ( )
( ) ( ) *

( ) : ( ),   ( ) : ( ),   ,

( ) : ( ),     ( ) : ( ),     ,

t tT t t T t t

D t t D t t

τ τ
ω ω ω ω

ν ν
ω ω ω⊕ν ω ω ω ν

ϕ = ϕ τ ϕ = ϕ τ ∀τ∈Ω

ϕ = ϕ ϕ = ϕ ∀ν∈Ω$

( '

here, symbols “ ,⊕( ”,“ ,' $ ” denote quasi-sums and quasi-differences, respectively.  If  , ,,t tT Tτ τ
σ σ   

and , ,,D Dν ν
ω α ω α are matrix elements of operators , ,,  t t t tT T T T   = =   

τ τ τ τ
σ σ and , , ,D D =  

ν ν
ω α ω α

, ,D D =  
ν ν
ω α ω α , then 

( )

( )

,

,

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

t t

t t

T t t t T

T t t t T

τ τ
ω ω ω ω σ ω

σ∈Ω

τ τ
ω ω ω ω σ σ

σ∈Ω

ϕ = ϕ τ = ϕ τ ⋅ϕ = ϕ σ

ϕ = ϕ τ = ϕ τ ⋅ϕ = ϕ σ

∑

∑

(

'
       (8) 

and 

( )

( )
*

*

,

,

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( )

D t t t t D t

D t t t t D t

ν ν
ω ω ω⊕ν ν ω ω α α

α∈Ω

ν ν
ω ω ω ν ν ω ω α α

α∈Ω

ϕ = ϕ = ϕ ⋅ϕ = ϕ

ϕ = ϕ = ϕ ⋅ϕ = ϕ

∑

∑$

       (9) 

The expressions (8)–(9) are called multiplication formulae for basis functions 
{ } ( )*( ) , ( )t L lgω ω∈Ω
ϕ ∈ Ω FA and { } ( )*( ) , ( ) .

t
t L lgω ∈Ω

ϕ ∈ Ω FA They show that the set of basis functions 
form two hypergroups with respect to multiplication rules (8) and (9), respectively. Consequently, two 
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spaces ( ), ( )L lgΩ FA  and ( )*, ( )L lgΩ FA  form time and frequency algebras with structure constants

,tT τ
σ and ,Dν

ω α , respectively. 
From (8) and (9) we easily obtain the matrix elements of the GSOs in time and frequency domains 

* *
, ,( ) ( ) ( ),    ( ) ( ) ( ),t tT t T tτ τ
σ ω ω ω σ ω ω ω

ω∈Ω ω∈Ω

= ϕ τ ϕ ϕ σ = ϕ τ ϕ ϕ σ∑ ∑     (10) 

, ,( ) ( ) ( ),   ( ) ( ) ( ).
t t

D t t t D t t tν ν
ω α ν ω α ω α ν ω α

∈Ω ∈Ω

= ϕ ϕ ϕ = ϕ ϕ ϕ∑ ∑          (11) 

The expressions (10)–(11) can be compactly written on the operator language 
{ } { }
{ } { }

1 1

1 1

diag ( ) ,    diag ( ) ,

diag ( ) ,   diag ( ) ,
x tT T

D t D t

τ − τ −
ω ω

ν − ν −
ω ν ω ν

= ⋅ ϕ τ ⋅ = ⋅ ϕ τ ⋅

= ⋅ ϕ ⋅ = ⋅ ϕ ⋅

F F F F

F F F F
         (12) 

where { }diag ϕ denotes a diagonal matrix which entries consist of values of the function ϕ .

If there exist such element 0t  that the equation 0( ) 1tωϕ ≡  for all *ω∈Ω is fulfilled, then there exist 
the identity GSO in time domain. Indeed, the substitution of 0t  into the expressions (12) gives 

{ } { }
{ } { }

0

0

1 1 1
0

1 1 1
0

diag ( ) diag 1 ,

diag ( ) diag 1 .

t
t

t
t

T t I

T t I

− − −
ω

− − −
ω

= ⋅ ϕ ⋅ = ⋅ ⋅ = ⋅ =

= ⋅ ϕ ⋅ = ⋅ ⋅ = ⋅ =

F F= F F= F F=

F F= F F= F F=
 (13) 

If there exist such an element 0ω  that the equation 
0
( ) 1xωϕ ≡  for all x∈Ω is fulfilled too, then

there exist the identity GSO in frequency domain. Indeed, the substitution of 0ω  into the expressions 
(12) gives

{ } { }

{ } { }

0

0

0

0

1 1 1

1 1 1

ˆ diag ( ) diag 1 ,   

ˆ diag ( ) diag 1 .

D x I

D x I

ω − − −
ω ω

ω − − −
ω ω

= ⋅ ϕ ⋅ = ⋅ ⋅ = ⋅ =

= ⋅ ϕ ⋅ = ⋅ ⋅ = ⋅ =

F F F F F F

F F F F F F

We see also that two families of time and frequency GSOs form two hypergroups { }t t
T τ

∈Ω
=HG and

{ }* Dν
ω ν∈Ω

=HG . By definition, functions{ } *( )tω ω∈Ω
ϕ and{ }( )

t
tω ∈Ω

ϕ are eigenfunctions of GSOs. For 

this reason we can call them hypercharacters of hypergroups. For a signal ( )( ) , ( )f t L lg∈ Ω FA we
define its shifted copies by 

( ) ( )

( )

( ) ( )

( )

* *

* *

* *

* *

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

t t t

t t t

f t T f t T F t F T t

F t F t

f t T f t T F t F T t

F t F t

τ τ τ
ω ω

ω∈Ω ω∈Ω

ω ω ω ω
ω∈Ω ω∈Ω

τ τ τ
ω ω

ω∈Ω ω∈Ω

ω ω ω ω
ω∈Ω ω∈Ω

 
τ = = ω ϕ = ω ϕ = 

 

= ω ϕ τ ϕ = ω ϕ τ ϕ

 
τ = = ω ϕ = ω ϕ = 

 

= ω ϕ τ ϕ = ω ϕ τ ϕ

∑ ∑

∑ ∑

∑ ∑

∑ ∑

(

'

        (14) 

Analogously, for a spectrum ( )*( ) , ( )F L lgω ∈ Ω FA

( ) ( )
( )

( ) ( )
( )

* *

* *

* *

* *

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

F D F D f t t f t D t

f t t t f t t t

F D F D f t t f t D t

f t t t f t t t

ν ν ν
ω ω ω ω ω

ω∈Ω ω∈Ω

ν ω ν ω
ω∈Ω ω∈Ω

ν ν ν
ω ω ω ω ω

ω∈Ω ω∈Ω

ν ω ν ω
ω∈Ω ω∈Ω

 
ω⊕ν = ω = ϕ = ϕ = 

 
= ϕ ϕ = ϕ ϕ

 
ω ν = ω = ϕ = ϕ = 

 
= ϕ ϕ = ϕ ϕ

∑ ∑

∑ ∑

∑ ∑

∑ ∑

$

       (15) 
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We will need in the following modulation operators: 
( ) ( )
( ) ( )

( ) : ( ) ( ), ( ) : ( ) ( ),

( ) : ( ) ( ), ( ) : ( ) ( ).

t tM f t t f t M f t t f t

M F F M F F

ν ν
ν ν

τ τ
ω ω ω ω

= ϕ = ϕ

ω = ϕ τ ω ω = ϕ τ ω

From the GSOs definition it follows the following result (two theorems about shifts and 
modulations). Shifts and modulations are connected as follows: 

( ) ( ) ( ) ( )
  ( ) ( ) ( ),      ( ) ( ) ( ),

( ) ( ),    ( ) ( )t t

f t F f t F

T f t M F T f t M F
ω ω

τ τ τ τ
ω ω

τ ←→ ω ϕ τ τ ←→ ω ϕ τ

←→ ω ←→ ω
F F

F F

( '

and 

( ) ( ) ( ) ( )
( ) ( ) ( ),       ( ) ( ) ( )

( ) ( ),    ( ) ( ).t t

F f t t F f t t

D F M f t D F M f t
ν ν

ν ν ν ν
ω ω

ω⊕ν ←→ ϕ ω ν ←→ ϕ

ω ←→ ω ←→
F F

F F

$

2.2. Generalized convolutions and correlations 
Using the notion GSO, we can formally generalize the definitions of convolution and correlation. 
Definition 5. The following   functions 

( ) ( ) ( ) ( )( ) ( ) ( )
*

( ) : ( ) ( )  ,  :y t h x t h x t Y H F H F
τ∈Ω ν∈Ω

= ◊ = τ τ ω = ♥ ω = ν ω ν∑ ∑' $  

and 

( ) ( ) ( )( ) ( ) ( )
*

( ) ( ) : ( ) ,   ( ) ν : ν
t

c f g f t g t C F G F G
∈Ω ω∈Ω

τ = ♣ τ = τ ν = ♠ = ω ω∑ ∑' $  

are   called   the ◊ - and ♥ - convolutions and the cross ♣- and ♠ - correlation functions, 
respectively, associated with a classical Fourier transform F. If gf =  and GF = then cross 
correlation functions are called the ♣- and ♠ - autocorrelation functions. 

The spaces ( ), ( )L lgΩ FA  and ( )*, ( )L lgΩ FA  equipped multiplications ◊  and ♥  form

commutative signal and spectral convolution algebras ( ), ( ) ,L lgΩ ◊FA and ( )*, ( ) ,L lgΩ ♥FA , 

respectively.  
Theorem 1. Let us take two triplets ( )1 1 1( ), ( ), ( ) , ( )y t h t x t L lg∈ Ω FA and ( )2 2 2( ), ( ), ( ) , ( )y t h t x t L lg∈ Ω FA . 
Obviously, ( )*

1 1 1( ), ( ), ( ) , ( )Y H X L lg∈ Ω FAω ω ω and ( )*
2 2 2( ), ( ), ( ) , ( )Y H X L lg∈ Ω FAω ω ω . Let 

( ) ( )1 1 1 1 1( ) ( ) ( )   y t h x t h x t
τ∈Ω

= ◊ = τ τ∑ ' and ( ) ( ) ( )
*

2 2 2 2 2( ) ( )Y H X H F
ν∈Ω

ω = ♥ ω = ν ω ν∑ $  

then generalized Fourier transforms F and 1−F  map ◊ -and ♥ -convolutions into the products of 
spectra and signals, respectively, 

{ } { } { } { } { } { } { } { }1 1 1 1
1 1 1 1 1 2 2 2 2 2,    : ,y h x h x Y H X H X− − − −= ◊ = ⋅ = ♥ = ⋅F F F F F F F F  

i.e.,
( ) ( )1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ),    ( ) ( ) ( ) ( ) ( )y t h x t Y H X y t h t x t Y H X= ◊ ←→ ω = ω ⋅ ω = ←→ ω = ♥ ωF F . 

Theorem 2. Let us take four triplets ( )1 1 1( ), ( ), ( ) , ( )c t f t g t L lg∈ Ω FA , ( )2 2 2( ), ( ), ( ) , ( )c t f t g t L lg∈ Ω FA  and

( )*
1 1 1( ), ( ), ( ) , ( )C F G L lg∈ Ω Fω ω ω A , . Let 

( ) ( )1 1 1 1 1( ) ( ) ( ) , 
t

c f g f t g t
∈Ω

τ = ♣ τ = τ∑ ' and ( )( ) ( ) ( )
*

2 2 2 2 2( ) ν ν ,   C F G F G
ω∈Ω

ω = ♠ = ω ω∑ $

then generalized Fourier transforms F and 1−F  map ♣- and ♠ -correlations into the products of 
spectra and signals, respectively, 

{ } { } { } { } { } { } { } { }1 1 1 1
1 1 1 1 1 2 2 2 2 2,    : ,c f g f g C F G F G− − − −= ◊ = ⋅ = ♥ = ⋅F F F F F F F F  

i.e.,

( )*
2 2 2( ), ( ), ( ) , ( )C F G L lg∈ Ω Fω ω ω A
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( ) ( )1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ), ),    ( ) ( ) ( ) ( ) ( )c f g C F G c t f t g t C F Gτ = ♣ τ ←→ ω = ω ⋅ ω = ←→ ω = ♥ ωF F . 

2.3. Codes invariant with respect to GSOs 
We are going to consider block codes of length N as subsets ( ), ( )L lg⊂ Ω FC A and

( )* *, ( ) ,L lg⊂ Ω FC A i.e., a collections of N  length vectors with components from ( )Alg F . Let

{ }( ) tt
∈Ωωϕ and { } *( )t

∈Ωω ω
ϕ be orthonormal systems of functions for ( ), ( )L lgΩ FA and ( )*, ( )L lgΩ FA ,

respectively. They generate two hypergroups HG- and *HG . 
Definition 6. HG- and *HG - invariant  block codes ( ), ( )L lg⊂ Ω FC A  and ( )* *, ( )L lg⊂ Ω FC A are

linear block codes with the property that if ( )c t ∈Cand *( )C ω ∈C then 

( )( ) ( ) ,   t tT c t c t Tτ τ= τ ∈ ∀ ∈' C HGand  ( ) *( ) ( ) ,    D C C Dν ν
ω ωω = ω ν ∈ ∀ ∈$ C HG , respectively.

It means that HG- and *HG - invariant  block codes ( ), ( )L lg⊂ Ω FC A  and ( )* *, ( )L lg⊂ Ω FC A have

hypergroup symmetries . 
Reed-Solomon (RS) codes are nonbinary cyclic codes [23]. The most natural definition of HG- 

and *HG - invariant RS codesare in terms of a certain evaluation maps from the subspace ( )klg FA  of 
all k -tuples 0 1 1( , ,..., )km m m −=m  (information symbols = massage) over  ( )lg FA  to the set of 
codewords [ ] ( ), | ( ) , ( )Cod N k lg L lg= ⊂ ΩF FC= A A

( )0 1 1( , ,..., ) ( ) ( (0), (1),..., ( 1)),     ( ) , ( )k
km m m t c c c N lg L lg−= = − → Ωm c F F A A (16) 

or  to the set of codewords [ ] ( )* * *, | ( ) , ( )Cod N k lg L lg= ⊂ ΩF FC A A

( )*
0 1 1( , ,..., ) ( ) ( (0), (1),..., ( 1)),      ( ) , ( )k

km m m C t C C C N lg L lg−= = − → Ωm F F A A

Definition 7. We define an encoding function for HG- and *HG - invariant Reed-Solomon codes as 
( ) ( )* *-RS: ( ) , ( ) ,     -RS: ( ) , ( )k klg L lg lg L lg→ Ω → ΩF F F FHG A A HG A A

in the following forms. A message 0 1 1( , ,..., )km m m −=m with ( )im lg∈ FA are transformed by F and 1 :−F  

0 0

1 1

1
1 1

(0) (0)
(1) (1)
(2) ... (2) ...

,           .... ....
... 0 ... 0

( 2) ... ( 2) ...
( 1) 00 ( 1) 00

k k

C m c m
C m c m
C c

m m

C N c N
C N c N

−
− −

       
       
       
       
       = =       
       
       

− −       
      − −       

F F ,



 

Hence, generator matrices for HG- and *HG - invariant Reed-Solomon codesare the generalized 
Fourier matrices F  and 1.−F  

Convolutional cyclic codes (CC’s, for short) form an important class of error-correcting codes in 
engineering practice. The mathematical theory of these codes has been set off by theseminal papers of 
Forney [24] and Massey et al. [25]. 
Definition 8. HG- and *HG - invariant  convolutional codes of length N and dimension k are ideals 

( ) ,  ( )h t G ωg of ( ), ( ) ,L lgΩ ◊FA and ( )*, ( ) ,L lgΩ ♥FA having the following forms 

( ) ( )( ) ( ) ( )c t h m t h t m
τ∈Ω

= ◊ = τ τ∑ ' and ( ) ( ) ( )
*

( ) ( )C G m G m
ν∈Ω

ω = ♥ ω = ω ν ν∑ $

where 
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( ) ( )
( ) ( )1

( ) ( ) (0), (1),..., ( 1),0,...,0 ( ),

( ) ( ) (0), (1),..., ( 1),0,...,0 ( ).

k

k

H h H H H k lg

g G t g g g k lg−

ω = ω = − ∈

ω = = − ∈

F

F

F A

F A

We call matrices ( ) *,
G

ω ν∈Ω
 = ω ν G $  and [ ] ,

( )
t

h t
τ∈Ω

= τH '  encoders. 

It is easy to see that cyclic convolutional codes and group convolutional codes are particular cases 
of HG- and *HG - invariant convolutional codes. 

3. Examples
Let NH  be a finite Abelian group of order 1 2 nN N N N= ⋅⋅ ⋅ .The fundamental structure theorem for 
finite Abelian group implies that we may write NH  as the direct sum of cyclic groups,

1 2
... ,

nN N N N= × × ×H Z Z Z where 
lNZ identified with the ring of integers 

lNZ under with respect to 

modulo lN and an element Nt∈H is identified with a point ( )1 2, ,..., nt t t t=  of n D discrete torus. The 
addition of two elements , Nt τ∈H  is defined as

*
1 2

1 2 1 1 2 2( , ,..., ) ( , ,..., )
N N NN n

n n n
H

t t t tσ = ⊕ τ = σ σ σ = ⊕ τ ⊕ τ ⊕ τ
Z Z Z

. 

The Fourier transforms in the space of all functions, defined on the finite Abelian group

1
,

l

n

N N
l=

=⊕H Z  and with their values in the finite commutative ring (field) or some finite algebra A  has

a great interest for digital signal processing. Denote this space as  ( ), ( ) .NL lgH FA Let 
lNε a primitive 

lN –th root in the algebra ( )lg FA . Let us construct the following functions
( ) ,       0,1,..., 1.l l

l l

k t
k l N l lt k Nχ = ε = −  They form the set of characters of the cyclic group 

lNZ . Then theset 
of all characters of the group NH can be describe by the following way 

        
1 1 2 2

1 2 1 2( , ,..., ) 1 2( ) ( , ,..., ) ,n n

n n

k tk t k t
k k k k n N N Nt t t tχ = χ = ε ε ⋅ ⋅ ⋅ ε    (16) 

where 1 2( , ,..., )nk k k k= .The set of all characters { } *( )
N

k k
t

∈
χ

H
 and the set of all indexes *

NH  forms 

isomorphic multiplicative and additive groups, respectively, with respect to multiplication of 
characters and addition of indexes

*

( ) ( ) ( ) ( ),
N

k m lk mt t t tχ χ = χ = χ⊕
H

where 

*
1 2

1 2 1 1 2 2( , ,..., ) ( , ,..., )
N N NN n

n n n
H

l k m l l l k m k m k m= ⊕ = = ⊕ ⊕ ⊕
Z Z Z

. 

The following matrix [ ] *,
( )

N N
k t k

t
∈ ∈

=
H H

F= χ forms Fourier transform on NH . 

The set *
NH  is called the dual group. It forms ”frequency” domain. If initial group has the structure 

1 2
...

nN N N N= ⊕ ⊕ ⊕H Z Z Z then the dual group has the same structure *
N N=H H .Let us embed finite 

groups NH  and *
NH  into two discrete segments [0, 1]NΩ = −  and * [0, 1]NΩ = −  

* *[0, 1],       [0, 1],N NN N→Ω = − →Ω = −H H    (17) 
respectively. For this aim we briefly describe a mixed–radix number system now. 

A number system is called a weighted number system if any number t can be uniquely expressed in 

the following form i i
i

t t w=∑  for some set of integers it ,  called digits, and iw ’s, called weights. If the 

weights are successive powers of the same number (for example, 2 or 10), the number system is called 
a fixed–radix number system (for example, 10–radix or 2–radix). Any number t in mixed–radix 

number system can be expressed in the form 
1

1 1

.
nn

i j
i j i

t t N
+

= = +

 
=  

 
∑ ∏ Let 1 2 1 1, ,..., , ,  where 1n n nN N N N N+ + ≡

be a finite set of positive integers. Then, with respect to the mixed radixes above, any nonnegative 
integer [0, 1]t N∈ − , where 1 2 nN N N N= ⋅⋅ ⋅ , can be uniquely expressed as 
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( ) ( ) ( ) ( )
11

1 2 1 2 3 1 2 1 1
0 1

, ,..., ... ,
n in

n n n n n n n n n n i j
i j n

t t t t t N N N N t N N t N t t N
− +−

− − − − −
= = +

 
= = ⋅ ⋅ ⋅ + + + + =  

 
∑ ∏  

where 1 1 2 1 1 1[0, 1],  [0, 1],  ...,  [0, 1],  [0, 1].n n n nt N t N t N t N− −∈ − ∈ − ∈ − ∈ − The weights of it is
1

1

n i

j
j n

N
− +

= +
∏ . 

The weight of nt is unity 1( 1)nN + = .The radix-2 representation is 1 1 1 0
1 2 1 02 2 ... 2 2n n

n nt t t t t− −
− −= + + + + =  

1

0
2 .

n
i

n i
i

t
−

−
=

=∑ Let ( )1 2, ,..., n Nt t t t= ∈H and *
1 2( , ,..., )n Nω ω ω ∈H   then expressions

11

0 1

,
n in

n i j
i j n

N
− +−

−
= = +

 
ω = ω  

 
∑ ∏

11

0 1

n in

n i j
i j n

k k N
− +−

−
= = +

 
=  

 
∑ ∏ define the maps (17).

The following operators (with respect to which all characters are invariant eigenfunctions) 
( )
( )

( ) : ( ) ( ) ( ),   ,

( ) : ( ) ( ) ( ),   
N

N

t

t

T t t t

T t t t

τ
ω ω ω ω

τ
ω ω ω ω

χ = χ τ ⋅χ = χ ⊕ τ ∀τ∈Ω

χ = χ τ ⋅χ = χ τ ∀τ∈Ω

H

H
$

           (18)
and 

( )
( )

*

*

*

*

( ) : ( ) ( ) ( ),   ,

( ) : ( ) ( ) ( ),   
N

N

D t t t t

D t t t t

ν
ω ω ν ω ω ⊕ ν

ν
ω ω ν ω ω ν

χ = χ ⋅χ = χ ∀ν∈Ω

χ = χ ⋅χ = χ ∀ν∈Ω

H

H
$        (19)

are called commutative 
NH

F –generalized "time"–shift and "frequency"–shift operators, induced an 

abelian group NH . Itinduces ”exotic” shifts in segments [0, 1],N N→Ω = −H * * [0, 1]N N→Ω = −H
too, which we will denote as 

1 2

*
1 2

1 1 2 2

*
1 1 2 2

( , ,..., ) [0, 1],

( , ,..., ) [0, 1].
nN

nN

n nN N N

n nN N N

t t t t N

k m k m k m k m N

⊕ τ = ⊕τ ⊕τ ⊕τ ∈Ω = −

⊕ = ⊕ ⊕ ⊕ ∈Ω = −

H

H

Instead of spaces ( ), ( )NL lgH FA and ( )* , ( )NL lgH FA   we will speak aboutspaces ( ), ( )L lgΩ FA

and ( )* , ( )NL lgΩ FA and if necessary, in this designations we will distinguish groups, acting in 

intervals: ( ), ( ) | NL lgΩ F HA and  ( )* *, ( ) |N NL lgΩ F HA . 

Definition 9. NH - and *
NH - invariant  block codes ( ), ( ) | NL lg⊂ Ω F HC A and 

( )* * *, ( ) |N NL lg⊂ Ω F HC A are linear block codes with the property that if ( )c t ∈Cand *( )C ω ∈C then

( )( ) ( ) ,   
N

tT c t c tτ = ⊕ τ ∈ ∀τ∈Ω
H

C and  ( ) *

*( ) ( ) ,    
N

D C Cν
ω ω = ω⊕ ν ∈ ∀ν∈Ω

H
C , 

respectively 
It means that NH - and *

NH - invariant  block codes have ordinarygroup symmetries
{ } NHypSym HC  and { }* *

NHypSym HC . The seclass of codes are called the abelian group codes 
[13, 14-16]. Special cases of abelian group codes are 1) a cyclic code, when 

1 2
...

nN N N N N= × × × ≡H Z Z Z Z  is a cyclic group, 2) a dyadic code, when 2 2 22
... .n = × × ×H Z Z Z  In the 

first case *,N N

t
N t∈ ∈

 =   Z Z

ω

ω
εF=  is the ordinary Fourier transform,where Nε a primitive N –th root in the 

algebra ( )lg FA  and in the second one ( )
*

2 2

|

,
1

n n

t

t∈ ∈

 = −  H H

ω

ω
F= is the Walsh transform, where |t ω  is 

the scalar products oftwo vectors ( )1 2, ,..., n Nt t t t= ∈H and *
1 2( , ,..., )n Nω ω ω ∈H :

1
|

n

i i
i

t t
=

=∑ω ω . 
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Let 
1 1(2 1)

2 2, 0 , 0
.

N Nt t t
N N Nt t

− −+

= =
   = =   

ω ω

ω ω
ε ε εF=  Then 

( ) ( )
*

-1
2 2( ) ( ) ( ) ,     ( ) ( ) ( )t t t t

N N N N
t

F f f t f t F t F− −

∈Ω ∈Ω

= = = =∑ ∑ω ω

ω

ω ω ε ε ω ε εF F  

is direct and inverse modulation Fourier transform, where 2Nε  is a primitive 2N –th root in the 
algebra ( )lg FA . According to definition 4 for 2( ) t t

N Nt = ω
ωϕ ε ε  we have 

{ } ( ) ( ) ( )( )

{ } ( ) ( ) ( )( )

2 1 2 1 2 1
2 2 2

2 1 2 1 2 1
2 2 2

ˆ ( ) ( ) ( ) ( ) ,

ˆ  ( ) ( ) ( ) ( ) . 

t t
t N N N

t t
n N N N

T t t t

T t t t

ω+ τ ω+ ω+ +ττ
ω ω ω ω

τ
− ω+ τ ω+ ω+ −τ

ω ω ω ω

ϕ = ϕ τ = ϕ τ ⋅ϕ = ε ε = ε

ϕ = ϕ τ = ϕ τ ⋅ϕ = ε ε = ε

(

'

But ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
2 2 2 2 2 2 2( 1)t N N t t t t

N N N N N N
ω+ + ω+ ω+ ω+ ω+ ω+ ω+ ω+ε = ε ε = ε ε = − ε = −ε . Hence, t̂T τ  and ˆ nT

τ

are negacyclic (skew-cyclic) GSOs: 
{ }

{ }

0 1 ( 1) 1 2 1 0 1 1

0 1 ( 1) 2 1 0 1 ( 1)

ˆ ( ) ( , ,..., ) ( , ,..., , , , ,..., ),

ˆ ( ) ( , ,..., ) ( ,..., , , , ,..., ).

t N N N

n N N N N N

T c t c c c c c c c c c c

T c t c c c c c c c c c

τ
τ τ − τ τ τ+ − − τ−

τ

τ

τ τ − τ −τ − − − τ−

τ

= = − − −

= = − − −





( ( (

' ' '

They generate negacyclic (skew-cyclic) codes. Let 
1 1( 1) t

, 0 , 0
.

N Nt t m
mN N mNt t

− −+

= =
   = =   

ω ω

ω ω
ε ε εF=  Then 

( ) ( )
*

-1( ) ( ) ( ) ,     ( ) ( ) ( )t t t t
mN N mN N

t
F f f t f t F t F− −

∈Ω ∈Ω

= = = =∑ ∑ω ω

ω

ω ω ε ε ω ε εF F  

is direct and inverse t
mN
−ε -modulation Fourier transform, where mNε  is a primitive mN –th root in the 

algebra ( )lg FA .  According to definition 4 for ( ) t t
mN Nt = ω

ωϕ ε ε  we have 

{ } ( ) ( ) ( )( )

{ } ( ) ( ) ( )( )

1 2 1 1

1 1 1

ˆ ( ) ( ) ( ) ( ) ,

ˆ  ( ) ( ) ( ) ( ) . 

m m t m t
t mN mN mN

m m t m t
n mN mN mN

T t t t

T t t t

ω+ τ + ω+ +ττ
ω ω ω ω

τ
− ω+ τ ω+ ω+ −τ

ω ω ω ω

ϕ = ϕ τ = ϕ τ ⋅ϕ = ε ε = ε

ϕ = ϕ τ = ϕ τ ⋅ϕ = ε ε = ε

(

'

But ( )( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 1 1
2

m t N m N m t m t m t
mN mN mN m N m mN
ω+ + ω+ ω+ ω+ ω+ ω+ε = ε ε = ε ε = ε ε . Hence, t̂T τ  and ˆ nT

τ

 are constacyclic 
GSOs: 

{ }

{ }

0 1 ( 1) 1 2 1 0 1 1

0 1 ( 1) 2 1 0 1 ( 1)

ˆ ( ) ( , ,..., ) ( , ,..., , , , ,..., ),

ˆ ( ) ( , ,..., ) ( ,..., , , , ,..., ).

t N N N m m m

n N m N m N m N N

T c t c c c c c c c c c c

T c t c c c c c c c c c

τ
τ τ − τ τ τ+ − − τ−

τ

τ

τ τ − τ −τ − − − τ−

τ

= = ε ε ε

= = ε ε ε





( ( (

' ' '

They generate constacyclic codes codes. 

4. Conclusion
In this paper we studied a new class of codes with generalized symmetry. They are invariant with
respect to a family of generalized shift operators HGor *HG . In particle case when this family is a
group (cyclic or Abelian), these codes are ordinary cyclic and group codes.We deal with GSO-
invariant codes with fast code and encode procedures based on fast generalized Fouriertransforms.
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