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Abstract. A characteristic feature of mathematical modeling at the present stage of 
development is the consideration of the architecture of the computer system, not only for stage 
of compiling a computer program, but also during the development of a numerical method and 
synthesis of the mathematical model. This method significantly broadens the researcher's 
ability to search for the optimal mapping of the numerical method to the mentioned 
architecture, in the sense of accelerating computations. In this paper, this idea is illustrating by 
examples of the basic mathematical model of computational electrodynamics and optics, 
Maxwell's equations, and the FDTD. This modification allows to reducing the data exchange 
rate between the operational and cache memory due to the greater number of arithmetic 
operations per one grid function in solving the d’Alembert equation. On the other hand, freely 
use the technologies FDTD method and ready-made software implementations for setting the 
incident wave, imposing the absorbing layers, taking into account the dispersion of the 
medium. 

1. Introduction
Despite the old beginning of researches [1] in the field of the numerical solution of the equations of
Maxwell, interest in this subject domain only increases over time. This remark first of all belongs to
application of a method of final differences [2] – to version of the numerical decision most popular so
far the specified equations. In the seventies the last century [3] he has received own abbreviation of
FDTD (Finite-Difference Time-Domain) under which it is widely known to this day.

The relevance of development of a FDTD method is due to several reasons. First, broad demand in 
new subject domains: to nanophotonics [4], radiobiology [5], etc. owing to community of 
mathematical model. Indeed, by means of Maxwell's equations are described any processes connected 
with the wave nature of electromagnetic radiation without restrictions. Secondly, the necessity of 
taking into account the features of modern computing architectures: cluster [6], vector [7], etc. If 
previously the performance of computers was increased mainly due to the increase in the clock speed 
of the central processor, but now it is increasing using various methods of parallel processing of data.  
In the study proposed by the authors of this work, the emphasis in synthesizing a new variant of the 
FDTD method is made on the basis of the hierarchical structure of computer storage devices, in 
particular, on the possibility of optimizing communications between the operational and cache 
memory of the processor. Specified subject sparingly illuminated in the scientific press in force the 
interdisciplinary nature of the task. Experts in calculus mathematics traditionally are interested in other 
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problems of the theory of differential schemes: increase in an order of approximation of a differential 
task [10], designing of mobile net areas [11]. In turn, developers of mathematical software that 
implements the FDTD method, seeking to keep pace with the development of "large" modern forms of 
parallel and distributed computing: using processors [12] the clouds [13]. 

Nevertheless, fresh works appear on the block algorithms for the difference solution of the basic 
equalizations of electrodynamics [14-16]. This testifies to the attention to "small" forms of 
organization of calculations, taking into account the inconspicuous architectural features of the 
processors and demonstrates significant acceleration at the expense of such an account. In 
computational practice, it has long been possible, with the example of matrix calculations, to manage 
the duration of calculations by changing the block sizes [17, 18] in block algorithms. Unfortunately, 
the features of the theory of difference schemes (the absence of the need for multiplication of dense 
matrices, the traditional emphasis on stability problems) until recently hampering the penetration of 
blockiness into this subject area. 

Another obstacle to the development of block methods is the complexity of controlling the 
loading/unloading of data into the processor's memory cache during the computing process. Load (but 
not unload) statements are present only in Assembly language and their use is not prescriptive: data 
may not be loaded into the cache after they are executed if the block is already there.In more common 
programming languages, the management of communications between the operational and cache 
memory is achieved indirectly by receiving a partitioning of the cyclic constructs referred to as tiling 
[19, 20]. 

The application of this technique for the joint difference solution of the equations of d’Alembert 
and Maxwell and is devoted to the proposed publication. 

2.  Peculiarities of the joint difference solution of the d'Alembert and Maxwell’s equations 
The theory of the joint difference solution of the d'Alembert and Maxwell’s equations is described in 
detail in [21, 22], the results of his experimental research, significant for the chosen subject. The 
following software and hardware tools were used during the experiments: the Intel Core i7-3770 
processor, the Ubuntu 16.04.1 operating system (the 4.4 kernel), the gcc 5.3 compilerand Meep 1.3 
(compiled for comparison by the same compiler) is a free and open-source software package for 
simulating electromagnetic systems via the finite-difference time-domain (FDTD) method. Actually 
being a reference for a wide range of researchers [23]. The grid area was chosen with the dimensions 
of 10000 × 10000 nodes in space and 200 nodes in time, which provided sufficient memory load (as 
for real computational experiments in nanophotonics) for an acceptable duration of calculations. 

In the case of simulating the propagation of TM-mode (in terms of the fundamental work [24]) 
differential solution of the equations of d'alembert and Maxwell differ from each other on the 
magnitude of the machine precision and converge to the analytical. When using the MEEP package, 
the duration of the calculations made 124.75 sec., calculations on the author's software implementation 
of the difference solution of Maxwell's equations lasted 112.71 sec., for the difference solution of the 
d’Alembert equation lasted 41.34 sec. Acceleration in the case of the difference solution of the 
d’Alembertequation in 41.34 sec. and 2.73 times, respectively, can not be explained by a decrease in 
computational complexity by 10% in the difference solution of the d’Alembert equations compared to 
that for Maxwell. The authors associate the observed effect with an increase in the ratio of the number 
of arithmetic operations that fall on the calculation of the differential pattern, to the amount of memory 
involved in working with the same pattern. For a two-dimensional Yee scheme, the specified value is 
3/2 (three operations are performed on two different field projections); for the first and second 
difference equations and 7/4 (7 operations on 3 field projections and the value of dielectric 
permeability) for the third; for the second scheme – 9/3 (9 operations on two different time layers of 
the same projection and the value of dielectric permeability), which apparently leads to a significant 
decrease in the intensity of communications between the operational and cache memory. 

The joint difference solution combines the advantages of both approaches: acceleration for the 
dalamber equation and the developed Toolkit (overlays of absorbing layers, the setting of the incident 
wave, etc.) for the Maxwell’s equations. The Maxwell’s equations were experimentally solved in PML 
layers [24] with a thickness of 100 knots along the edges of the grid area, and the dalamber equation 
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was solved in the center. The duration of the transactions in this case amounted to 47.47 sec. and 
slightly superior to the previous result (in which the calculations in PML layers was not carried out), 
obtained by accelerations of 2.63 times compared to the Meep package and 2.37 times compared to the 
author's implementation of the Yee scheme. 

Further, the authors use the observed effect of reducing the duration of calculations with a decrease 
in the intensity of communication between the operational and cache memory for further acceleration 
of calculations in the case of a joint solution. 

3.  Block algorithm for the joint difference solution 
To date, block algorithms for the difference solution of Maxwell's equations [14] (2009) and for 
d’Alembert [16] (2015) are known. The method of transition to cloud computing with diamond 
toroidal block shape (Diamond Torre Algorithm) proposed in the last work served as the basis for the 
synthesis of the author's block algorithm of joint difference solution. The transition to cloud 
computing consists of the following two steps. 

The first one performs calculations on theh time layers of the grid area to update the values of the 
grid functions in the sub-area of the PML location. In figure 1 it can be said "bucket handle". Due to 
the information dependence on the iteration space coinciding with the grid area, the values in the 
nodes adjacent to the distance h and smaller to the PML, which are already related to the wave 
equation, are also to be calculated at this stage.So in the node separated from the absorbing layers on k 
other nodes ( k h≤  ) the value of the grid function on the ktime layer will be formed.All such units 
will make up the "bucket wall" in figure 1. 

 
Figure 1. Distribution of grid functions on time layers before block stage of calculations. From 

white (the layer at the maximum height and near) to black (the layers at a lower altitude and around it). 
 
The second stage is characterized by the organization of calculations in the internal volume of the 

"bucket" according to the algorithm, which the authors called the wave by analogy with the method of 
transition to the block of [19]. As shown in figure 2, during the computing process inside the bucket, 
the values of the grid functions are calculated from left to right in such a way that the front of the 
process has the form of an inclined plane.In the nodes of the grid area before it, the function values are 
not yet defined, in the nodes of the grid area after it are found on the layer h. On the very surface of 
the front, values are calculated on different layers in ascending order with increasing height and 
decreasing node abscissa. After the second stage of the algorithm, the first one comes again, and their 
alternation continues until the values of the grid functions on all layers of the region are found. 

In contrast to the diamond toroidal algorithm from [16], such an approach is easier to implement 
and leads to a slight but stable reduction in the duration of calculations compared to the other method 
of transition to blockage. 
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Figure 2. The distribution grid functions at the temporary segments on a block calculation step. 

Table 1. The dependence of the duration of computations (sec.) the height of the block h. T1  is the 
duration for the wave algorithm, T2  is the duration for the diamond toroidal algorithm. The value V is 

the volume of the block in megabytes. 
h  2 4 8 10 20 40 50 100 

T1 42.63 36.88 33.88 33.49 32.54 36.83 40.80 48.42 
T2 42.75 37.15 34.13 33.57 33.64 37.16 40.90 48.44 
V 0.45 0.9 1.79 2.24 4.49 8.97 11.22 22.43 

 
It is noteworthy that the best results for both algorithms are achieved for h=20the maximum wave 

height (or torus) at which the block still fits into the cache memory as a whole (the volume of L3 
cache for Intel Core i7-3770 is 8 MB). Indeed, ath>20 the block is no longer placed in the cache and 
you have to load it in parts, and for h<20 the fast cache memory is not used entirely. Both of these 
circumstances lead to an increase in communications and, as a consequence, the total duration of 
calculations. 

4.  The study of the silicon Fresnel’s lens 
Of particular interest is the calculation and creation of elements to control the radiation of the 

Novosibirsk free electron laser (NovoFEL) [25], which is the most powerful source of terahertz 
radiation. By now, focusing elements in the form of binary diffraction lenses made of silicon [26, 27] 
are known for it, which are characterized by the known advantages and disadvantages of binary optics. 
Diffraction elements favorably with refractive [28] much smaller thickness, high radiation resistance, 
greater manufacturability in use and manufacture. However, the focusing element with the binary 
relief mentioned in [26, 27] is characterized by low efficiency (often not exceeding 40% [28]), in 
which most of the energy of the illuminating beam does not fall into the focus area. 

However, diffraction elements with a continuous profile, free from this drawback, have been 
known for a long time. Moreover, the calculation of the binary lens itself is traditionally [28] preceded 
by the calculation of the Fresnel’s lens, which is such an element. The problem of forming a 
continuous relief on a silicon plate has not yet been solved technologically, the processes of 
mechanical and chemical processing of silicon are considered to be sufficiently coarse to obtain an 
uninterrupted profile with the necessary accuracy. However, advances in plasma etching of the 
diamond surface (not inferior to silicon in hardness and inertness to various kinds of effects) [29] 
allow us to hope for the rapid improvement of the technology of reactive-ion etching of silicon 
demonstrated so far in the manufacture of binary relief [30]. 

The model, numerical method and software complex presented in [22, 31, 32] and based on the 
joint difference solution of Maxwell's equations with the use of block algorithm of organization of 
calculations are chosen as a tool for calculating diffraction on various silicon lenses. Вased on 
[26,27,30], we assume the refractive index of silicon n=3.42 for the wavelength λ=141 µm, to which 
we further give all distances. Thus, the aperture of the refractive lens put equal 101.74 λ, the thickness 
and the radius of curvature of 10.33λ and 130.41λ, respectively. Then, according to the geometric 
optics [33], the focus area will be located at a distance f=50.87λ from the right pole. Calculation of 
Fresnel’s lens traditionally assumed the height of its relief equal to h=λ/(n-1), which is unacceptable in 
this case. For a lens with such a high numerical aperture, half of its Fresnel’s zones will be less than 
the width of the wavelength, which is why the work of the element is strongly unpredictable. Taking 
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h=2.07λ, Fresnel's own lens was calculated (figure3), consisting of 5 zones, the extreme of which is 
characterized by an acceptable width of 5.18 λ. 

 
Figure 3. The intensity distribution in the computational region for a Fresnel’s lens without 

technological errors in the manufacture of. 
 
Figure 3 shows the lens focusing of the radiation incident from left to right. On figure 4, there is a 

noticeable drop in the intensity I (normalized to the intensity of the incident beam) for the lens under 
discussion as compared to the refractive one. The intensity after the first one is δ=0.9 from the 
intensity value after the second one in the coordinates of the maxima. The latter are shifted by 4.73 λ 
and δ=2.47 λ to the left for refractive and diffraction lenses, respectively. 

 
Figure 4. Intensity distributions on the main optical axis behind the right pole for refractive 

(continuous curve) lens, Fresnel’s lens without manufacturing process error (dotted line) and Fresnel’s 
lens manufacturing process error of 0.15 λ (points). 

 
Of particular interest is the modeling of elements with manufacturing process errors [34], 

especially since such studies have not yet been conducted for silicon elements. Let's assume that the 
height error is associated with overheating of the plate surface (figure5), leading to an uneven increase 
in the height of the profile. On figure 5, the value of the discussed value is taken to be equal to λ for 
better clarity, then consider the more real smaller values (table 2). Indeed, the maximum height error 
for the spent process is unlikely to exceed 10%. 

Table 2. Characteristics of the studied lenses with manufacturing errors. 
Characteristics Profile height error 

0.05λ 0.1λ 0.15λ 0.2λ 0.25λ 0.3λ 
Imax 24.86 24.74 34.03 28.98 23.93 21.07 

f 47.54 47.15 47.05 46.82 46.96 46.42 
δ 0.91 0.91 1.25 1.06 0.88 0.77 
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Figure 5. Estimated profile of a lens of Fresnel (dark) and a profile with a technological error of 

manufacture (dark and light) in case of the maximum error on height in λ. 
 
The results of modeling the Fresnel’s lenses with manufacturing process errors presented in table 2 

were somewhat unexpected. The natural assumption about the negative influence of errors on the 
profile height on the focusing efficiency was justified only for sufficiently large error values exceeding 
a quarter of the wavelength. The deviation of 0.15λ (figure 4, table 2) led to an increase in intensity in 
the focus area by a quarter compared to the refractive lens. This may be due to the high Fresnel 
reflection coefficient of silicon, and, consequently, to the significant fluctuations of the intensity of the 
transmitted wave with a slight change in the height of the profile. Curiously, for a plane-parallel plate, 
the maximum intensity also fell by a width of 0.15λ. 
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