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Abstract. This paper describes algorithms, corresponding computer programs and the results of 
computations, supplementing results published earlier. We consider the multiple sequence 
alignment problem, which can be nominated by a central problem in computational biology. For 
it, we continue to consider some different versions of so-called “triangular norm” defined on the 
set of triangles formed by the different distance between genomes computed by different 
algorithms.
Besides, one of the problems considered in biocybernetics is the problem of reconstructing 
the distance matrix between DNA sequences, when not all the elements of the matrix 
under consideration are known at the input of the algorithm. In this connection, the 
problem arises that the developed method of comparative evaluation of algorithms for 
calculating the distances between sequences should be used for another problem, i.e., for 
reconstructing the matrix of distances between DNA sequences.
In this paper, we consider the possibility of applying the method of comparative evaluation of 
the algorithms for calculating the distances between a pair of DNA strings that we developed 
and studied earlier for the reconstruction of a partially filled distance matrix. The restoration of 
the matrix occurs as a result of several computational passes. Estimates of unknown matrix 
elements are averaged in a special way using so-called risk functions, and the result of this 
averaging is considered as the received value of the unknown element.

1. Introduction and motivation
In this paper, we describe the continuation of research on the issues that we started in
[1, 2, 3, 4, 5]. We describe algorithms, corresponding computer programs and the results
of computations, supplementing results published earlier. We consider the multiple sequence
alignment problem, which can be nominated by a central problem in computational biology. For
it, we continue to consider some different versions of so-called “triangular norm”. (The name
“triangular metric”, also sometimes encountered in our previous papers, is also quite possible
and does not contain errors, we will not give detailed comments on this thing. However, the
“norm” in our case is some more correct, both when we speak about the whole matrix, and when
we speak only about the only triangle.) Such norm defined on the set of triangles formed by the
different distance between genomes computed by different algorithms. Thus, in this paper the
word “metric” will be used only as the distance between the genomes, and the word “norm” as
an indicator of the badness of a certain set of such distances.

In previous cited papers, we described Panin’s metric and some algorithms for its
improvement. In this paper, we consider some variants of investigation of various variants
of the triangular norm. Let us remark, that both these directions are interrelated. Namely,
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we improve the interpretation of the Panin’s metric in the same way as it is done in some
interpretations of genetic algorithms: we are trying to achieve a combination of parameters, for
which the triangular norm reaches a minimum value (or is close to it).

Considering this second problem, i.e., the study of variants of the triangular norm, we proceed
as follows. We consider incorrect variants of obtaining the triangle inequality, which for matrices
of the order of about 50 × 50 is violated in the two most successful metrics (including the
Panin’s metric earlier developed by us) in less than 1% of cases. It is important to note that
in order to improve the decrease in the quantitative index of the badness of the entire matrix
of considerations, we also, first of all, consider triangles in which the triangle inequality is not
violated, but in which the badness value is relatively large. Possible improvements are related to
the use of neural networks that were not used by us in previous calculations. In this case, neural
networks solve the inverse problem: we improve (reduce) the overall badness of the matrix of
distances between genomes, forcibly changing the previously obtained distances; further, we try
to reflect these forced changes in the original algorithms for calculating distances.

Thus, to determine the distance between genomes, we need heuristic algorithms; and, if
possible, they should not require too much time. There are various such algorithms, but
their obvious disadvantage is getting a few differing results when using different heuristic
algorithms applied to the distance calculation between the same pair of DNA strings. Therefore,
the problem of quality evaluation of the metrics used (distances) arises; and based on the
results obtained in solving this problem, one can draw conclusions about the applicability of
a particular algorithm for calculating distances to various applied studies. A possible approach
to determining the quality of metrics was given in [4]; also partially we consider these approaches
below in this paper.

However, we used the same approach for a completely different problem; it is as follows.
Even heuristic algorithms require often large time-consuming costs: for example, to construct a
matrix of the order of 50 × 50 into which the distances computed by the Needleman – Wunsch
algorithm ([6] etc.) are recorded, it takes about 28 hours (at a processor clock frequency of
about 2 GHz, see [4]). Therefore, one of the problems considered in the biocybernetics is the
problem of restoration of the distance matrix between DNA sequences (below we simply shall
write “DNA matrix”), in which not all elements of the matrix under consideration are known at
the input of the algorithm, see [7, 8], compare also [9, 10]. In connection with all this, another 
problem arises: to use the developed method of comparative evaluation of algorithms for
calculating distances between sequences for a completely different purpose, namely, for the briefly
described problems of reconstructing the distance matrix between DNA sequences. For this
problem, in this article we consider the application of the previously developed method of
comparative evaluation of distance calculation algorithms between a pair of DNA strings.

Using this approach (i.e., using the method of comparative evaluation of algorithms for
calculating distances to matrix reconstruction), the reconstruction itself occurs as a result of
several computational passes. On each of the passes, for some of the as-yet-unfilled (unknown)
elements of the matrix, different estimates are obtained; these estimates are averaged in a
special way-and the result of averaging is taken as the value of the unknown element. From the
physical point of view, the applied averaging gives the position of the center of gravity of a one-
dimensional system of bodies whose mass is specified by a special function, i.e., the risk function,
see [11, 12]. We note that earlier we used risk functions in completely different subject areas; these 
areas were always connected with auxiliary algorithms related to multicriteria optimization.

Below, the matrices to be reconstructed are referred to as incompletely filled with distance
matrices. We enter this term for the matrix, from which a number of elements are “crossed out”.
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2. Preliminaries

Thus, like our previous papers, we consider the square symmetric matrix of distances between
genomes. There it is necessary to note the following. First, the genomes we choose random enough
and took them off the site [13]. Second, like previous works, we consider in fact three variants for 
each of the considered problems:

• for very distant species, including, for example, a mammal “Bison bison” and a reptilia
“Apalone spinifera” (we use the official scientific Latin names), see detailed the species’ list
by the link for direct download [14];

• for a sufficiently close species (human and apes);

• and also for human races (in fact, they can be considered as subspecies of a biological
species).

Let us note, looking ahead, we believe that our a theoretical construction is best applicable for
more distant species, however, acceptable results are obtained also in two other cases.

Thus, we look at algorithms of comparing the quality of different algorithms that calculate
the distance between two genomes. Apparently, all these algorithms are based on the use of
various versions of the Levenshtein distance (or Levenshtein metric), see [15] and very many 
other following papers. It is very important to note, that for the simplest formulation of the
problem (to make the strict calculating the value of Levenshtein metric for two given genomes),
we unfortunately obtain a very long-running algorithm (program): it has to do with the actual
length of the strings of genomes. Therefore, in each of the actual algorithms (see [16, 17, 18, 19] 
etc.), computation of distances between genomes in reality is a heuristic extension of the exact
algorithm for calculating the Levenshtein distance. And apparently, the approach closest to
our one is given by [20]; let us note, a little running forward, that it also uses a version of the 
branch-and-bound method.

Thus, the considered in our previous papers Panin’s metric is no exclusion, It also is a heuristic
algorithm for calculating the close version of such metric; it is an optimization problems, see [21] 
etc. However, we used in it a special approach (so called multi-heuristic approach for discrete
optimization problems), and for it, we use the same heuristic as in very different problems. From
many such problems, let us mention two ones only:

• the classical traveling salesman problem (however, we consider our own approach to this
problem, and, most importantly, our original way of specifying the input data, different from
the traditional geometric placement, see, e.g., [22]);

• and the problem of state-minimization for nondeterministic finite automata, see, e.g.,[23, 24]. 

3. The triangular norms: their study and possible attempts of improvement
It was justified in our previous works cited above, there is desirable that in the matrix of distances
between genomes, any of the resulting triangles be close to an acute angled isosceles one with
two angles exceeding 60 degrees. Several various empirically selected numerical characteristics
describing such differences are also given in our works, see [4] etc. However, in the previous
articles we did not consider detailed examples, let us consider them in this section.

In [14], the results of calculations for several metrics and several norms are presented. In this 
section, we shall consider the Panin’s metric only, and 3 norms (“badnesses” for the triangle
under consideration). Thus, for each triangle with the sides a ≥ b ≥ c and the angles α ≥ β ≥ γ
we considered the following norms:

bad1 = (α − β)/π , bad2 = (α − β)/α , bad3 = (a − b)/a .
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In case if α ≥ 90o, we have considered each norm by the maximum possible (1.0) or even usually
exceeding this value. We assigned an even greater value to the value of badness in the case when
the three considered sides do not form a triangle at all (that is, they do not satisfy the triangle
inequality); let us note, running ahead, that similar situations is happened for any of metrics
considered by us.

The resulting value of the norm of the whole matrix was considered as the arithmetic mean of
the norms of all triangles. We note that for the matrices of distances between genomes (usually
from 30× 30 to 50× 50), the number of triangles is

30 · 29 · 28

2 · 3
= 4060

for dimensions 30, and 19600 for dimension 50; from these values, it is clear that the calculations
we need are quite difficult.

Thus, let us consider the part of the table given on the page titled “Panin’s metrics” of [14]
(they are designed as an xlsx-file and are available for the direct download), see the table on Fig.
1. (The names of the considered species can be found there on the page titled “Types of animals”.)

Figure 1. The part of the table of Panin’s metric.

Let us choose species with the numbers 5, 15, 25; while doing so, we specifically chose exactly the
three of those considered, where the metric gives rather poor results (that means the following:
the badnesses of Panin’s metric give relatively worse results than other metrics comparing most
other triangles of the matrix under consideration). For all 5 considered metrics, we obtain the
following 5 triangles corresponding to the species with the numbers 5, 15, 25:

1) sides 3533, 3142, and 2940 (Panin’s metric);

2) sides 1215, 1179, and 704 (van der Loo’s 1st metric);

3) sides 4379, 4036, and 4029 (van der Loo’s 2nd metric);

4) sides 2943, 2674, and 2492 (Pages’ 1st metric);

5) sides 3444, 3046, and 2838 (Pages’ 2nd metric)

(here, the numbers correspond to numbers of metrics of [4, 14]). Let us consider these 5 triangles 
and also 3 other ones, see Fig. 2:
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Figure 2. Examples of triangles of metrics (No.No. 1–5) and 3 other ones.

Let us note once again, that we only need the relative lengths of the sides of the triangle.
The further calculations yield the following auxiliary values and values of badnesses, see

Table 1.

Table 1. The values of badnesses and the auxiliary calculations.
No. a b c cos(α) cos(β) cos(γ) α, o β, o γ, o bad1 bad2 bad3

1 3533 3142 2940 0.33 0.54 0.62 70.1 57.2 51.8 0.076 0.194 0.111
2 1215 1179 704 0.25 0.34 0.83 75.4 70.2 34.2 0.029 0.068 0.027
3 4379 4036 4029 0.41 0.541 0.544 65.8 57.19 57.05 0.048 0.130 0.078
4 2943 2674 2492 0.35 0.53 0.61 69.4 58.1 52.5 0.062 0.160 0.091
5 3444 3046 2838 0.32 0.54 0.62 71.6 57.0 51.4 0.081 0.203 0.116
6 5 4 3 0 0.6 0.8 90 53.1 36.9 – – –
7 7 6 5 0.2 0.54 0.71 78.4 57.1 44.4 0.119 0.272 0.143
8 10 6 5 −0.65 0.89 0.93 130.5 27.1 22.3 – – –

We can see, that three bad orderings for all five triangles give the same sequence of metrics.
Once again, we mention (above, this thing has already been said, but in connection with other
facts) that this ordering differs significantly from the ordering of the badness considered for
complete matrices, see the results of the calculations below and, in more detail, in [4]. However,
in all our calculations (in any case, with the exception of less than 1% of all triangles, i.e.,
including ordering for complete matrices), such ordering turns out to be the same for all three
norms (badnesses).

Another option for investigating the comparative characteristics of norms is the following one
(we will continue to consider 30 species, and the matrix of distance between genomes, given in
[14]). We choose two metrics and for any one fixed norm we arrange 4060 triangles in order of 
increasing values of this norm. At the same time, when reading that both these norms are good
(that is, they give acceptable results), we should ideally obtain identical sequences of triangles.
Actually, one of these two sequences of triangles is obtained from the other by some sequence
transpositions of neighboring elements. Since, as we have noted, the number of triangles in our
case is 4060, then the maximum possible number of transpositions of neighboring elements is
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equal to
4060 · 4059

2
= 8 239 770.

Let us give concrete results of work (Table 2) for the first norm (value “bad1”) only.

Table 2. The joint study of pairs of metrics for the selected first norm (bad1).
Pairs {1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}
Transpositions 175199 163214 169720 175267 154301 159737 160614 180413 179384 181700
Percentages 2.13 1.98 2.06 2.13 1.87 1.94 1.95 2.19 2.18 2.21
Correlation 0.957 0.960 0.959 0.957 0.963 0.961 0.961 0.956 0.956 0.956

Let us give some comments to this table. The pair of metrics is selected in the first line.
The number of transpositions of neighboring elements (for obtaining the monotone sequence)
is given in the second line. The percent of the maximum possible number of transpositions
of neighboring elements (8 239 770) is given in the third line. We do not use Spearman’s rank
correlation coefficient (and some others correlation coefficients used in similar problems); instead
of them, we use the linear function having value 1 for 0 transpositions and value −1 for 8 239 770
transpositions.

Still, we note that the two other norms give somewhat worse results; but for them, the number
of transpositions does not exceed 600 000 (i.e., less than 7.5%), and, therefore, calculated by our
method rank correlation coefficient is more than 0.85.

Thus, all three norms almost always give similar results. Therefore we often use the singular
for the word “norm”: “some different versions of so-called triangular norm” etc.

4. About one method of DNA matrix reconstruction
In this section, one of the methods of comparative analysis of various algorithms for calculating
distances between DNA sequences is presented, and on the basis of this, a method for
reconstructing an incompletely filled matrix is developed. In order to carry out this comparative
analysis, we propose for the resulting algorithm to calculate the distances between genomes,
consider all possible triangles, because ideally they should be acute-angled isosceles.

To answer the question of how “correct” is the matrix obtained as a result of some heuristic
algorithm, we propose to use the “characteristic of the departure” of the obtained triangles
from “elongated isosceles” triangles; i.e., the “badness”, below we shall write this term without
quotes. In this case, as one of the variants of the badness, the following formula can be used:

σ =
α− β
γ

(1)

where α, β and γ are the angles, and we admit, that α ≥ β ≥ γ [4]. In the opinion of the
authors of this paper, this formula best characterizes the requirements described by us. Here is
the informal explanation for this: The closer the triangle to the isosceles triangle, the less the
difference between α and β, and in the ideal case, the numerator is 0; in accordance with our
assumptions, an obtuse (or rectangular) isosceles triangle cannot be obtained. The performance
of the properties of acute angles increases the denominator. Consequently, the approximation
of a triangle to an isosceles triangle reduces the numerator and increases the denominator in the
formula, i.e., σ tends to 0.

When calculating the badness of the entire matrix for each recovery option, we can:

• either summing the corresponding badness over all possible triangles of the matrices in
question;
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• or take the maximum badness for these triangles.

In the future, we propose to consider other approaches to calculating the badness of the entire
matrix.

To determine the unknown element, we consider all the possible triangles formed from
elements of this matrix for which one of the sides is unknown. For each such triangle, from
the condition that it is isosceles acute-angled, we get one of the possible values of this unknown
side. Next, we calculate the final value of this side (an unknown element) in a special way.
Namely, for its calculation, on the basis of all the estimates obtained, the element is assumed to
be equal to the arithmetic mean of all the values obtained. As an alternative, we can exclude
the largest and smallest of the values obtained.

With a large number of missing elements, the matrix of the triangles with two known sides
will be small, so the restoration of the matrix in one pass is usually impossible. When restoring
the matrix on the second and subsequent passages, we can either use only the elements of the
matrix of the last pass, or use all the matrices obtained in the previous passes. In the second
case, with each successive passage in the matrix, there are more and more elements calculated
approximately. Therefore, when evaluating an unknown element, it is possible to use the analog
of the risk function, which will adjust the weight of the elements depending on the pass number.

When using the so-called static risk function, the weight of the elements with each pass
decreases with the same coefficient, and to estimate the unknown element of the matrix, formula

E =
c0E0 + c1E1 + . . .+ ckEk

c0 + c1 + . . .+ ck
, (2)

where:

• Ei is the value of the matrix element, calculated on i-th pass;

• c0 , . . . , ck are some specially chosen coefficients.

In practice (see [5]), good results are achieved when the following formulas are used for the
coefficients:

c0 = 1, ci = p ci−1. (3)

By [11, 12], the risk function can be also dynamic: when using it, we take averaging, depending 
on the “rough estimate” of the final value: whether it is “good”, “middle” or “bad”. Besides, we
can also consider the sequence of such dynamic risk functions, where at each stage we rely on the
value obtained in the previous step as such a “rough estimate”. In our case, to evaluate the
unknown element of the matrix of distances between DNA strings, the formula∑k

i=1 aif(ai)∑k
i=1 f(ai)

, (4)

is used; f(x) is some specially chosen decreasing function.

5. The formal description of the algorithm
Let us consider the detailed formal description of the algorithm briefly considered before.

Algorithm 1 (Restoring a matrix using a static risk function)

Input: Incompletely defined matrix A = aij (all elements equal to zero outside the main diagonal
are assumed to be unknown).
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Used auxiliary variables: bi is the array of unknown element estimates.

Description of the algorithm.

Step 1: We set s := 1 (the number of the pass).

Step 2: We count h, i.e. the number of elements of the upper triangle, which are equal to 0.

Step 3:
if aij = 0 and i 6= j then

begin
kol := 0 {We count the number of triangles,

built on the unknown element under consideration}
for k := 0 to n do begin

if k 6= i and k 6= j and aki 6= 0 and akj 6= 0 then
begin
kol := kol + 1; c0 := 1; cs := cs−1 · p;

Eki :=
c0E

0
ki + . . .+ csE

s
ki

c0 + . . .+ cs
;

Ekj :=
c0E

0
kj + . . .+ csE

s
kj

c0 + . . .+ cs
;

if Eki > Ekj then bkol := Eki else bkol := Ekj

end;
end;

end;

aij :=
b1 + . . .+ bkol

kol
.

Step 4: We count h1, i.e., the number of elements of the upper triangle, which are equal to 0
after the next pass.

Step 5:
if h1 = 0 then goto Output 1;
if h1 = h then goto Output 2;
s := s+ 1;
goto Step 2.

Output 1: Filled matrix A.

Output 2: Matrix A cannot be filled.

End of description of the algorithm.

After execution of the algorithm for performing a comparative analysis of the results of the
reconstruction of the matrix, we use such an indicator as the residual; it characterizes the
deviation of the resulting matrix from the original one. We calculate the residual on the basis
of the natural metric

d =

√∑n−1
i=1

∑n
j=i+1(aij − ãij)2

n(n− 1)/2
, (5)

where:
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• ãij are elements of the matrix obtained as a result of applying some algorithm for calculating
the distances between a pair of genomes (in our case, the Needleman – Wunsch algorithm);

• aij are elements of the matrix restored as a result of the above algorithm.

Some examples of operation of the algorithm and corresponding values of residual are given
in [5].

6. Conclusion
Thus, a very small change of the given matrix greatly reduces its badness. The values marked
in red are chosen by us manually. However, at the present time we have a neural network that
implements such an algorithm; we are going to describe this neural network in the following
publication. But the following is much more important: these “red” changes give input
information to another neural network, the one that computes the constants for the metric.
Thus, along with one “loop” of algorithms already described in previous section, we get one
more. Table 3 above already takes into account similar improvements in the metric.

As we said before, the received results of our computer programs are designed as an xlsx-file
and are available for the direct download by [14]. The whole article i s actually a comment to this 
file.

We also note that different “places” of different metrics for different cases (i.e., the case of
distant animal species, the case of close animal species and the case of subspecies) talk about
the need to continue research in this direction.

Also in the near future we expect to develop other approaches for comparative analysis of
various algorithms for calculating distances between sequences, as well as describe the algorithms
for reconstructing matrices based on these approaches. At present, we are working on comparing
two of such algorithms, both for application in the “normal” problems of DNA analysis, and in
the problems of DNA matrix reconstruction close to those considered in the present paper.
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