
Property-Based Testing of the Meta-Theory of
Abstract Machines: an Experience Report

Francesco Komauli and Alberto Momigliano

DI, Università di Milano, Italy

Abstract. Contrary to Dijkstra’s diktat, testing, and more in general vali-
dation has found an increasing niche in formal verification, prior or even in
alternative to theorem proving. In particular, property-based testing (PBT)
is quite effective in mechanized meta-theory of programming languages,
where theorems have shallow but tedious proofs that may go wrong for
fairly banal mistakes. In this report, we abandon the comfort of high-level
object languages and address the validation of abstract machines and typed
assembly languages. We concentrate on Appel et al.’s list-machine bench-
mark [ADL12], which we tackle with αCheck, the simple model-checker on
top of the nominal logic programming αProlog. We uncover one major bug
in the published version of the paper plus several typos and ambiguities
thereof. This is particularly striking, as the paper is accompanied by two
full formalizations, in Coq and Twelf. Finally, we carry out some mutation
testing on the given model, to asses the trade-off between exhaustive and
randomized data generation, using for the latter the PBT library FSCheck
for F#. Spoiler alert: αProlog performs better.

1 Introduction

Does this sound familiar? You are in the middle of a long but supposedly straight-
forward formal proof trying to drag your favourite proof assistant to confirm the
blindingly obvious truth of the result, when you get stuck in an unprovable part of
the derivation; you realize that the statement needs to be adjusted or more com-
monly that there is something afoul, typically a banality, in your specification. If
only you had a way to realize that the theorem was unprovable before wasting
precious time in a doomed proof attempt, perhaps some kind of testing . . .

This is where, with due respect to Dijkstra and his “thou shall not test” com-
mandment, validation prior to theorem proving comes in: as a matter of fact,
such tools have been available for some time in the leading proof assistants,
e.g. [BBN11,PHD+15].

In this paper we are not concerned with the issue of verification vs. validation
in general, but in a particular domain: the mechanization in a logical framework of
the meta-theory (MMT) of programming languages (PL) and related calculi. To fix
ideas, think about the formal verification of compiler correctness [Ler09]. As most
practitioners may testify, the main properties of interest are well known and have
mathematically shallow proofs. The difficulty lies in the potential magnitude of the
cases that one must consider and in the trickiness that some encodings require.

Here, very minor mistakes in the specification, even at the level of what we would
consider a typo, may severely frustrate the verification effort, to the point to make
it not cost-effective. Further, we aim to support the designer of PL artifacts in her
work in developing, and eventually formally proving correct, such calculi, rather
than concentrating on representations that we already know to be correct.

The technique we adopt is property-based testing (PBT), which successfully com-
bines two very old ideas: automatic test data generation and refuting executable
specifications. Pioneered by QuickCheck for functional programming [CH00], PBT
tools are now available for pretty much every programming language and having a
growing impact in industry [Hug07]1. To make this concrete, consider the following
snippet of a (faulty) Prolog specification of an ordered list and a check validating
the preservation of order by insertion (we are using the concrete syntax of αCheck,
more on this later):

ordered([]).
ordered([X]).
ordered([X,Y|Xs]):-less_equal(X,Y),ordered(Xs). % should be ordered([Y|Xs]).

insert(X,[],[X]).
insert(X,[Y|Ys],[X,Y|Ys]):- less_equal(X,Y).
insert(X,[Y|Ys],[Y|Zs]) :- greater(X,Y), insert(X,Ys,Zs).

#check "ins_corr" 15: ordered(Xs), insert(X,Xs,Ys) => ordered(Ys).

Checking depth 1 2 3 4 5 6 7 8 9 10. Total: 0.012 s:

X = z
Xs = [z,s(z),z]
Ys = [z,z,s(z),z]

The tool reports a minimal counterexample to the conjecture, namely a substitution
that verifies the antecedent but not the consequent.

PBT is also applicable at the meta-programming level, that is where the proper-
ties of interest are the theorems that some PL artifact (think again about a compiler)
must satisfy. Significant examples in this area can be found in [Kle12,FM17].

αCheck [CM17] is a light-weight PBT tool built on top of αProlog [CU08],
a logic programming language based on nominal logic. The latter is particularly
suited to represent object logics where binders and associated notions such as α-
equivalence, (declarative) generation of new names, capture-avoiding substitutions
are paramount. In contrast to QuickCheck, αCheck uses its logic programming
engine to perform exhaustive symbolic search for counterexamples, as we elaborate
further in Section 3.1.

In this paper, we take αCheck beyond the comfort of PBT of high-level ob-
ject languages, which have been investigated extensively (https://github.com/
aprolog-lang/checker-examples), and address the validation of abstract ma-
chines and (typed) assembly languages [Mor05]. This domain seems more chal-
lenging from a validation standpoint, since instructions operating at a low level
provide less “structure” while searching for counterexamples, which then tend to
be substantially more complex. Further, it seems hard to generate meaningful se-

1 An exception is the logic programming world, where the porting of QuickCheck to SWI-
Prolog (http://www.swi-prolog.org/pack/list?p=quickcheck) seems broken, nor has
the work in [AFSC14] been released.

quences of machine states and machine runs so that properties may be validated
with a reasonable coverage. Similar remarks have appeared in the context of PBT
of C programs [YCER11]. Not coincidentally, the authors of [Hca13] suggests that
“[counterexamples to properties such as dynamic non-interference in abstract ma-
chines may be] well beyond the scope of naive exhaustive testing” (op.cit. pag. 12).

We validate with αCheck Appel and al.’s list-machine benchmark [ADL12] (CIV-
mark, Compiler Implementation Verification). We concentrate mostly on its base
version 1.0, but we also touch on 2.0, see Section 5.1. CIVmark is conceived as a
benchmark for “machine-checked proofs about real compilers”. Two implementa-
tions, including sketch of proofs of type soundness in the proof assistants Twelf and
Coq come with the paper [ADL12].

PBT’s data generation strategy comes in other flavours, beyond the exhaustive
one taken by αCheck: random [CH00] and the combination of the two based on func-
tional enumeration [DJW12], with an ever increasing emphasis on coroutining the
generation and testing phases [Fca15,LPP18]. αCheck is unique in taking the logic
programming way, which naturally supports many of the optimizations currently
researched in the functional setting; the latter is re-discovering logic programming
features such as mode inference [Bul12b] or CLP [Fca15]. Another contribution
of this paper is to compare the merits of exhaustivity-based PBT in a logic pro-
gramming style versus the more usual randomized functional setting popularized
by QuickCheck. It is also a stress test for αCheck, since CIVmark does not exploit
any of the features offered by nominal logic that makes αProlog effective.

A testing approach is “good” only if it uncovers bugs, and so we did: we falsi-
fied the type preservation property as presented in the paper [ADL12], caused by an
incorrect specification of typing for values, see Section 4.1. This is particularly strik-
ing, considering the paper comes with two formalized proofs of the main theorems
claimed for the list-machine model. The mystery disappears once we realized that
the Coq implementation of that judgment was different from what was reported in
the paper. We also found several typos and ambiguities in the typing rules in the
published paper, but this is not unusual where there is no connection between the
text in the paper and the model verified by the proof assistant.

That was encouraging, but to assess further the efficacy of our approach, we
resorted to mutation testing [PY07] of the given debugged model. To gauge the
trade-off between exhaustive and randomized data generation, we encoded the same
model in the strict functional language F# and tested with its checker FsCheck
(https://fscheck.github.io/FsCheck). As we will see in Section 4, exhaustive
generation, in all its naivety, tends to be more cost effective than pure random PBT.
Finally, we report on some ongoing work on the list-machine 2.0 and on replaying
the first section of [Hca13]. Here again, exhaustive PBT shows its colours.

2 The list-machine

We present here the highlights of the syntax, static and dynamic semantics of CIV-
mark. It consists of a basic pointer machine with instructions that build and destruct
a list, and (un)conditional jumps to iterate them. The dynamics of the machine is

described with a standard SOS, accompanied by a reasonably sophisticated type
system which, being able to make static predictions about lists being empty or not,
guarantees that a well typed machine’s run does not get stuck. Full listings of the
rules are in the electronic appendix [KM18].

2.1 The plumbing of the machine

The list-machine, as the name suggests, operates over an abstraction of lists, where
every value is either nil or the cons of two values

value a ::= nil | cons(a1, a2)

Given a set of variables v and labels l, the machine features the following set of
instructions:

ι1, ι2, . . . : I instructions

jump l : I jump to label l
branch-if-nil v l : I if v = nil then jump to l
fetch-field v 0 v′ : I fetch the head of v into v′

fetch-field v 1 v′ : I fetch the tail of v into v′

cons v0 v1 v
′ : I make a cons cell in v′

halt : I stop executing
ι1; ι2 : I sequential composition

Programs are sequences of labelled instructions and stores map variables to values.

program p ::= end | p, ln : ι
store r ::= { } | r[v 7→ a]

We use a functional notation such as p(l) for look up into such structures. Writing
r[v 7→ a] assumes that the variable v is not in the domain of r and we use r[v :=
a] = r′ for functional update.

2.2 Dynamic and static semantics

The behaviour of the machine is described by a small-step relation (r, ι)
p7→ (r′, ι′)

that, given a fixed program p, works on store/instruction configurations (r, i) in a
continuation-passing style. We comment on some of the rules:

r(v) = cons(a0, a1) r[v′ := a0] = r′

(r, (fetch-field v 0 v′; ι))
p7→ (r′, ι)

step-fetch-field-0

r(v) = cons(a0, a1) r[v′ := a1] = r′

(r, (fetch-field v 1 v′; ι))
p7→ (r′, ι)

step-fetch-field-1

r(v0) = a0 r(v1) = a1 r[v′ := cons(a0, a1)] = r′

(r, (cons v0 v1 v
′; ι))

p7→ (r′, ι)
step-cons

If we are executing a fetch-field v 0 v′, we look up in the store the value of v,
which better be a cons cell, and we update the store assigning to v′ its head. If
the tag is 1, we assign to v′ its tail and in both cases return a new configuration

consisting of the updated store and the continuation instruction. Similarly, cons v0
v1 v

′ will build a cons cell of the values of the first two variables in the store and
assign it to v′.

A chain of computations is built as the Kleene closure of the small-step relation,
with the instruction halt signaling the end of a program execution. A program p
is said to run if it runs in the Kleene closure, starting from the instruction at p(l0)
with an initial store containing only the binding v0 7→ nil, until a halt instruction
is reached. For example, this program from [ADL12] consists of three blocks that
builds a list of length 3 and iterates over it until it is empty.

L0 : cons v0 v0 v1; cons v0 v1 v1; cons v0 v1 v1; jump L1,
L1 : branch-if-nil v1 L2; fetch-field v1 1 v1; branch-if-nil v0 L1; jump L2,
L2 : halt,
end

The type system assigns to each variable a list type that is then refined to empty
and nonempty, to guarantee safety of certain operations such as fetch-field.

type τ ::= nil | list τ | listcons τ

The type system includes therefore the expected subtyping relation and a notion
of least common super-type τ t τ ′. A type environment Γ is a mapping between
variables and types and subtyping is extended to environments width and depth-
wise. A program typing Π is an association list of labeled environments, where
Π(l) = Γ represents the types of the variables when entering a block labeled with
l.

typing env Γ ::= { } | Γ, v : τ
program typing Π ::= { } | Π, l : Γ

Type-checking is stratified in several judgments following the structure of a
program as a labeled sequence of blocks. At the bottom, instruction typing Π `instr
Γ{ι}Γ ′ can be seen as a sort of Hoare triple by which an instruction transforms
a typing environment (a precondition) Γ into post-condition Γ ′ under the fixed
program typing Π. We list here some of those rules:

Γ (v) = listcons τ Γ [v′ := τ] = Γ ′

Π `instr Γ{fetch-field v 0 v′}Γ ′ check-instr-fetch-0

Γ (v) = listcons τ Γ [v′ := list τ] = Γ

Π `instr Γ{fetch-field v 0 v′}Γ ′ check-instr-fetch-1

Γ (v0) = τ0 Γ (v1) = τ1
(list τ0) t τ1 = list τ Γ [v := listcons τ] = Γ ′

Π `instr Γ{cons v0 v1 v}Γ ′
check-instr-cons

Typing fetch-field v 0 v′ in an environment where v is a non-empty list of τ will
yield a new environment where v′ has that very type τ . If we fetch the tail, then
v′ will have some list type. In the cons case, we want v to have a non empty list
type in the resulting environment, but of which carrier type? The smallest one in
the subtyping order compatible with the types of v0, v1.

The above judgment is the basis for checking blocks (Π;Γ `block ι), that is
sequences of instructions terminated by a halt or a jump. Finally, the top-level
relation p : Π checks a program p against a program typing Π when blocks and
environments have matching labels, every block typechecks with its corresponding
environment, and the initial environment is Γ0 = (v0 : nil).

The following is a program typing compatible with the sample program previ-
ously described: initially only v0 is present in the environment, with type nil; in
the L1 environment, v0 keeps the same type because it may not be altered by the
program, while v1 has type list nil because it can be either a listcons coming from
L0 or an empty list coming from the second branch-if-nil in the L1 block. The last
environment is empty because it does not refer to any variable.

L0 : {v0 7→ nil}, L1 : {v0 7→ nil, v1 7→ list nil}, L2 : { }

2.3 Properties

One of the crucial aspects of PBT as a testing technique for programming units is
coming up with meaningful properties. In MMT, this is a non-issue, as PL calculi
come equipped with the meta-theorems they must satisfy, when they are not variants
of standard results. As far as the list-machine is concerned, we are spoiled with
choices: the paper (pages 467–8) lists more than a dozen theorems ranging from
basic properties of subtyping to type soundness. We concentrate on the top-level
soundness results:

Progress: given a well-typed instruction and a well-typed store, the machine is
not stuck.

p : Π Π `instr Γ{ι}Γ
′ r : Γ

step-or-halt(p, r, ι)

Preservation: if a well-typed block steps, there is an environment typechecking
the next instruction.

p : Π `env Γ r : Γ Π;Γ `block ι (r, ι)
p7→ (r′, ι′)

∃Γ ′. `env Γ
′ ∧ r′ : Γ ′ ∧ Π;Γ ′ `block ι

′

Soundness: a well-typed program, started in the initial configuration will not get
stuck.

p : Π Γ = Π(l0) ι = p(l0) (r, ι)
p7→∗(r′, ι′)

step-or-halt(p, r′, ι′)

Note that all the above properties are existential — not being stuck is defined as
the existence of a reachable configuration — and this may be a challenge for testing,
not only in the functional setting, but also when logic programming is concerned,
as we shall see in Section 3.1.

The Twelf implementation adds more properties, mostly linked to its own pe-
culiar meta-theory. So, what shall we test? Past experience with αCheck [CM17]
suggests that testing intermediate lemmas is beneficial, while systems such as PLT-
Redex [FKF15] tend to go for the bull’s eye. We report in Section 4.2 some partial
answers to this dilemma.

r(v0) = a0 r(v1) = a1 r[v′ := cons(a0, a1)] = r′

(r, (cons v0 v1 v
′; ι))

p7→ (r , ι)
step-cons*

Γ (v) = listcons τ Γ [v′ := ��HHlist τ] = Γ ′

Π `instr Γ{fetch-field v 1 v′}Γ ′ check-instr-fetch*

Fig. 1. Sample mutations

2.4 Mutation testing

How do we know that PBT is effective in catching bugs in MMT? There are very
few Prolog implementation of PL calculi in the wild that we can try to validate.
One way to asses the effectiveness of PBT (and more in general of other testing
techniques) is via mutation testing [PY07]. As well known, the latter is a form of
white box testing, whereby a program is changed in a localized way by introducing
a fault. The resulting program is called a “mutant” and the aim of a testing suite
is to recognize the faulted code, which is known as “killing” the mutant.

While mutation testing is widely applied to programming languages [JH11],
there is no theory for mutations of representations of PL artifacts that we know
of. Standard mutation operators from (imperative) programming languages largely
do not apply; hence we took some inspiration from the very limited literature
about logic programming [RTV06]; this resulted in the following mutation oper-
ators, adapted to a strongly-typed setting:

Clause mutations: predicate deletion and swap, replacement of conjunction by disjunc-
tion.

Operator mutations: arithmetic and relational operator mutation.
Variable mutations: exchanging variable with (anonymous) variable.
Constant mutations: exchanging constant with constant or with (anonymous) variable.

We thus manually produced two dozens mutations of the list-machine: in Fig. 1
we show two sample: the first one is a variable mutation, by which the step-cons
rule fails to update the store forgetting r′. The second one is a constant mutation
where, removing the list type constructor, v′ gets the wrong type.

While we readily acknowledge that a “manual” approach to mutation testing is
seriously limited, we point out that this is common in the field [FKF15] and that
a general theory and implementation of a tool for mutation testing of PL calculi is
beyond the scope of this paper.

3 αProlog implementation

αProlog [CU08] is a logic programming language particularly suited to encoding
PL calculi and related systems due to its support for nominal logic. However, since
this case study is purposely first order only, we did not get to use any of those
goodies and the encoding is many sorted pure Prolog code. In fact, it follows quite

closely the reference Twelf implementation by Appel [ADL12]. The only place one
would naturally try and use name types, and hence inherit α-equivalence, is in the
encoding of variables and labels. Yet, the machine model calls for distinguished
(initial) variable and label v0 and, l0 and this suggests an encoding based on an
enumeration of constants — remember, we are in the business of bounded model
checking, so we tend to avoid using infinite types as integers. The only downside
is the need for an explicit inequality predicate. We use association lists for all the
environments the list-machine uses (note the Haskell like syntax for lists in type
abbreviations) and standard Prolog predicates for related operations such as looking
up or updating (non-destructively) such a list. Do not be fooled by the functional
notation: it is flattened at compile time to the equivalent relation. While αProlog
supports polymorphism, the checker does not, as term generations is type-driven.
Note, this is a good thing: any PBT tool for Prolog will have to come up with some
type information, see [AFSC14], which struggles exactly in this regard.

We show some highlights, while the complete code can be found at https:

//bitbucket.org/fkomauli/list-machine.

var : type.
v0 : var.
v1 : var.
...
pred not_same_var (var, var).
not_same_var(v0, v1).
not_same_var(v0, v2).
...
type block = (label,instr).
type program = [(block)].
type store = [(var,value)].
...
func var_lookup (store,var) = value.
var_lookup([(V,A)|R],V) = A.
var_lookup([(V,A)|R],V1) = A1 :-
not_same_var(V,V1), A1 = var_lookup(R,V1).

The operational semantics encoding is an unsurprisingly translation of the rules re-
ported in the electronic appendix into a predicate step (program, store, instr,

store, instr), where the first three arguments are inputs. We show the rules men-
tioned in the previous Section.

pred step (program, store, instr, store, instr).
step(P, R, seq(instr_fetch_field(V1, zf, V2), I), R’, I) :-

value_cons(A, _) = var_lookup(R, V1),
R’ = var_set(R, V2, A).

step(P, R, seq(instr_fetch_field(V1, sf, V2), I), R’, I) :-
value_cons(_, A) = var_lookup(R, V1),
R’ = var_set(R, V2, A).

step(P, R, seq(instr_cons(V1, V2, V3), I), R’, I) :-
A1 = var_lookup(R, V1),
A2 = var_lookup(R, V2),
R’ = var_set(R, V3, value_cons(A1, A2)).

...

Type checking is slightly more interesting: we summarize the main type defini-
tions with a sample of typechecking instructions. We add their mode declarations,

which will become relevant as soon as we try to test existential properties such as
preservation. Note that mode checking is not implemented yet, but it is in Twelf,
which we mutate mutandis inherited from.

pred check_instr (program_typing,env,instr,env).
% mode check-instr +Pi +G +I -G.
check_instr(Pi, G, instr_fetch_field(V, zf, V’), G’) :-

(ty_listcons(T), _) = env_lookup(G, V),
G’ = env_set(G, V’, T).

check_instr(Pi, G, instr_fetch_field(V, sf, V’), G’) :-
(ty_listcons(T), _) = env_lookup(G, V),
G’ = env_set(G, V’, ty_list(T)).

check_instr(Pi, G, instr_cons(V0, V1, V), G’) :-
(T0, _) = env_lookup(G, V0),
(T1, _) = env_lookup(G, V1),
ty_list(T) = lub(ty_list(T0), T1),
G’ = env_set(G, V, ty_listcons(T)).

...
pred check_block (program_typing,env,instr).
%mode check-block +Pi +G +I.
pred check_blocks (program_typing,program).
%mode check-blocks +Pi +P.
pred check_program (program,program_typing).
%mode check-program +P +Pi.

3.1 PBT with αCheck

αCheck [CM17] is a tool for checking desired properties of formal systems imple-
mented in αProlog. The idea is to test properties of the form H1 ∧ · · · ∧Hn → A by
searching exhaustively (up to a bound) for a substitution θ such that θ(H1), . . . , θ(Hn)
hold but the conclusion θ(A) does not. In this paper, we identify negation with
negation-as-failure, but the tool includes also another strategy based on negation
elimination [CMP16]. The concrete syntax for a check is

#check ‘‘name’’ depth: G => A.

where G is a goal and A an atom or constraint — since in this paper we make no use
of nominal features, the latter means syntactic equality. As usual in Prolog the free
variables are implicitly universally quantified and depth is the user-given bound.
The above pragma is translated to the formula

∃X : τ . G ∧ genτ1(X1) ∧ . . . ∧ genτn(Xn) ∧ ¬A (1)

where genτi(Xi) are type directed exhaustive generators automatically compiled by
the tool to ground the free variables of A, needed to make the use of NF sound.
The user can, alternatively, specify her own generators as αProlog code, if she feels
she needs to implement a smarter generation strategy, as we will see shortly and in
Section 5.2.

A query such as (1) builds all “finished” derivations of the hypothesis G up to the
given depth, considers all sufficiently ground instantiations of variables, and finally
tests whether the conclusion finitely fails for the resulting substitution. αCheck

implements a simple-minded iterative deepening search strategy over a hard-wired
notion of bound, which roughly coincides with the number of clauses that can be
used in the derivation of each of the premises.

Let’s look more closely at a check, progress. While αProlog does not have first
class existentials and disjunction, it is a basic Prolog exercise to code it:

pred step_or_halt (program,store,instr).
step_or_halt(P,R,instr_halt).
step_or_halt(P,R,I) :- step(P,R,I,R’,I’).

#check "progress" 10:
check_program(P, Pi), check_block(Pi, G, I), store_has_type(R, G)

=> step_or_halt(P, R, I).

Keeping in mind that the tool add generators for P,R,I before trying to re-
fute step_or_halt(P, R, I), mode analysis for step suggests that R’,I’ will be
ground when the partial proof tree for the check is built.

The same approach will not work for preservation:

pred exists_env (program_typing,store,instr).
exists_env(Pi,R,I) :-
store_has_type(R,G), env_ok(G), check_block(Pi,G,I).

#check "pres" 20 :
check_program(P, Pi), step(P, R, I, R’, I’),
env_ok(G), store_has_type(R, G), check_block(Pi,G,I)

=> exists_env(Pi, R’, I’).

This because store_has_type(R,G) expects G to be ground and we are in effect
trying to use αProlog for an impossible type inference task that makes the checker
loop. The solution is to write a specialized generator build_env for type environ-
ments (and recursively, for types and variables). The peculiarity is that we need to
add a local depth bound, so that smallish environments can be built independently
from the hard-wired bound, which is additively distributed along all the atoms in
the check.

pred exists_env_b (int,program_typing,store,instr).
exists_env_b(N,Pi,R,I) :-
N > 0, exists_env_b(N - 1,Pi,R,I).

exists_env_b(N,Pi,R,I) :-
N = 0, build_env(N,G), store_has_type(R,G), env_ok(G), check_block(Pi,G,I).

#check "pres_b" 20: ... % as before
=> exists_env_b(4,Pi,R’,I’).

4 Experimental results

Reasons of space suggest to present only a selection of all the experiments that
we have carried out. Full details can be found in [Kom18], available at https:

//doi.org/10.13140/RG.2.2.27992.39681.

4.1 A cautionary tale

A testing approach is any good only if it uncovers bugs; still, we were not expecting
to find any in the model presented in the paper, which came equipped with a type

soundness proof formalized in two proof assistants. So, imagine our surprise when
αCheck came up with this counterexample to the type preservation check pres_b

(pretty-printed here for better reading):

p = (l0 : cons(v0, v0, v0); jump l1); (l1 : fetch-field(v0, 0, v0); jump l2); (l2; halt)

Π = (l0 : [v0 7→ nil]); (l1 : [v0 7→ listcons nil]); (l2 : [v0 7→ nil])

r = [v0 7→ cons(cons(nil,nil),nil)]

ι = fetch-field(v0, 0, v0); jump l2 (block referenced by l1)

This configuration after a single step from block l1 yields:

r′ = [v0 7→ cons(nil,nil)] ι′ = jump l2

However, there can be no Γ ′ satisfying the postconditions: any such type environ-
ment must contain either the binding [v0 : listcons τ] or [v0 : list τ] to accommodate
r′, but both would not be compatible with what is required by the jump.

After some soul searching, we zeroed on the encoding of the judgment value-
has-ty, (page 481 of [ADL12]).

nil : nil nil : list τ cons(a0, a1) : listcons τ
a : listcons τ
a : list τ

This is an essential component of the definition of store typing r : Γ , which is the
case iff for all v ∈ dom(r), it holds r(v) : Γ (v). The listcons case looks fishy, since it
makes no assumption about the types of a0 and a1. Once we changed that case to:

a0 : τ a1 : list τ

cons(a0, a1) : listcons τ

the counterexample failed to show up. This change was also confirmed by inspecting
the Coq implementation, which defines value-has-ty exactly like that — the Twelf
“proof” is left as an exercise and the above typing judgment undefined.

We found more issues with the paper: less dramatically, the check-instr-branch-
listcons typing rule contains additional preconditions regarding the jump target
environment similar to those in the check-instr-branch-list rule; however, they are
absent in the Coq implementation, as they should, considering the proof of equiva-
lence with the algorithmic version of type checking, where they are notably absent.
Several typos are also present, viz. rule check-instr-cons0 (Section 8.1) and in the
type checking algorithm (instruction typecheck instr Π Γ ι). Typos were spotted
through formalization, not PBT.

The moral is, of course, that if there is no formal connection between a formal-
ization and the paper reporting it — Isabelle/HOL and literate Agda being the
precious exceptions — you may want to be skeptical of the latter. Similar findings
appear in [Kle12].

Progress Preservation Soundness UT

Mutant ⊗ Depth Time (s) ⊗ Depth Time (s) ⊗ Depth Time (s) ⊗
none 13 1771 13 15180 25 8.098

1 � 13 451.0 13 1933 ⊗ 19 0.2910 ⊗
2 13 1260 ⊗ 13 5.517 ⊗ 23 1.794

3 13 1330 ⊗ 13 4.632 ⊗ 23 1.811 ⊗
4 13 1524 13 2147s 25 31.20

5 13 1370 13 2000 � 25 4356

6 13 1188 ⊗ 13 2.168 ⊗ 23 1.881 ⊗
7 � 13 265.0 13 1571 ⊗ 23 1.751 ⊗
8 13 1275 13 1851 ⊗ 23 1.786

9 ⊗ 13 0.01350 13 1867 ⊗ 13 0.01367

10 13 1461 13 2411 25 30.88

11 � 13 223.0 13 1478 25 7.755 ⊗
12 13 1229 � 13 1345 25 7.496 ⊗
13 13 1238 13 1777 25 7.673 ⊗
14 13 980.0 13 1798 25 7.691 ⊗
15 13 1085 ⊗ 13 4.422 25 7.602

16 13 1252 ⊗ 13 21.66 25 7.655 ⊗
17 13 14.03 13 258.0 25 7.171 ⊗
18 interrupted ⊗ 12 3.142 ⊗ 12 0.3680

19 13 1269 13 4853 ⊗ 19 0.4871

20 13 37020 interrupted ⊗ 13 0.06200

Table 1. Mutation testing for the list-machine

4.2 Mutation analysis

We used our “home-baked” mutation testing to assess αCheck’s ability to kill mu-
tants. Checks are divided into three groups: top-level theorems as in our Section 2.3,
intermediate lemmas collected in Section 8 of [ADL12] and auxiliary checks regard-
ing low-level details of the machine specification. We have also ported from PLT-
Redex [Fin16] a few dozens unit tests, as an additional baseline in our analysis.
Since those are just Prolog queries exercising the static and dynamic semantics of
the machine, we have made them parametric, so that exhaustive generation of those
parameters would be more far-reaching. The experimental results are collected in
Table 1: rows list the mutations considered and whether they were killed by our
test suite (marked by ⊗). There are columns for the top-level checks, detailing the
time spent (in seconds) and the maximal depth we allowed, while the rightmost
column gives information about unit tests. We configured the tool so as to make
the execution of each check stays within ten seconds2, as it is good practice to try
and keep the execution time of a test suite reasonably short, so that it can be run

2 Checks executed on machine with Intel Core i5-4-200U CPU, clock speed of 1.60GHz
and 8GB of RAM, with 64 bit Ubuntu 17.10 Artful and Linux kernel 4.13.0.

after every change in the model. Exception to this discipline are the progress and
preservation checks, whose search space size tend to explode. Checks that found
a counterexample but exceeded a further one minute time-out are marked with �
instead of ⊗. Unit tests (UT) of course, even in a parametric fashion, execute in
just few seconds.

As better shown in a table in the electronic appendix, top-level checks kill 12
mutants (within the strict time out), 10 with the soundness check alone. The score
raises to 15/20 if lemmas are included and to 18/20 with lower level lemmas. In this
sense PBT outperforms unit tests, which have a 1/2 killing ratio.

We are also very interested in comparing exhaustive and random generation
for MMT of abstract machines. We thus ported the benchmark to F# and its
PBT tool FsCheck. We have no space to detail this implementation, for which
we refer again to [Kom18]. We simply note that, as by now well-known in the
literature [Hca13,Kle12], random PBT requires a lot of ingenuity in crafting custom-
made generators to ensure even a basic level of coverage in testing; further, we had to
write shrinkers to provide small readable counterexamples. Existentials properties
are also hard to code.

In summary, the FsCheck implementation of PBT is quick (as promised, al-
though not as much as you would expect), not only because of the efficiency of the
host language, but also thanks to the flexibility of the configuration of how checks
are executed. The whole FsCheck BPT suite completes in around 5 minutes: roughly
10 seconds are taken by top-level checks and about 40 seconds by the intermediate
lemmas, while the remaining time is taken by the auxiliary checks.

We do not compare times to find counterexamples in αCheck vs. FsCheck, be-
cause it is a serious case of oranges and apples. What we can reasonably compare
(Fig. 2) is the rate of mutants killed by the two testing approaches and the αCheck
implementation comes marginally ahead. Note that we have to discard roughly half
of the mutations, as they do not apply to a functional encoding of the machine.
While we do not want to read too much in such a limited experimentation, it is safe
to say that αCheck keeps its ground, considering how inexpensive it is to set up.

5 Extensions

Here we very briefly report on extending the list-machine model to its 2.0 version,
see http://www.cs.princeton.edu/~appel/listmachine/2.0/ and on replicat-
ing some of the results in [Hca13].

5.1 List-machine 2.0

In the final part of the paper [ADL12], the model is extended to cater for indirect
jumps. This entails some small but far-reaching changes: we coerce labels into values
and replace the nil value with the initial label l0. We therefore generalize the jump
instruction and add a way to get the current label. This yields the following changes
to the operational semantics:

r(v) = l p(l) = ι′

(r, jump v)
p7→ (r, ι′)

step-jump
r[v := l] = r′

(r, get-label l v; ι)
p7→ (r′, ι)

step-get-lab

Theorems Lemmas Auxiliary Checks Unit Tests
0

5

10
9

2 2

77

1 1

7

K
il
le

d
M

u
ta

n
ts

αCheck FsCheck

Theorems Lemmas Auxiliary Checks Unit Tests
0

5

10
9

2 2

77

1 1

7

K
il
le

d
M

u
ta

n
ts

αCheck FsCheck

Fig. 2. Mutation analysis with αCheck and FsCheck

We also modify the type system:

Π(l) = Γ1 Γ ⊂ Γ1 v 6∈ dom(Γ1)

Π;Γ `block get-label l v; jump v
check-block-jump2

Updating the αProlog implementation to reflect those changes is a matter of
half an hour and we refer to the online documentation for all the details (https:
//bitbucket.org/fkomauli/list-machine/branch/2.0). As the paper does not
spell out the soundness proof, the first thing we did was running our PBT suite
to validate our implementation of the extension . . . and preservation as formulated
beforehand fails! The pretty-printed counterexample

p = L0 : halt
Π = L0 : [v0 7→ nil]
ι = get-label L0 v1; jump v1
ι′ = jump v1

points this time not a specification error, but the fact that the statement of the
theorem has to be generalized as well. In fact, in the new typing rule both instruc-

tions have to occur in sequence: if we take a single step after get-label, no typing
rule will match the remaining jump, thus making the typing requirement in the
existential conclusion fail. We modify the statement of preservation so as to try
another optional step to “get over” the jump.

pred step_at_most_once (program, store, instr, store, instr).
step_at_most_once(P, R, I, R, I).
step_at_most_once(P, R, I, R’, I’) :- step(P, R, I, R’, I’).

pred exists_env_opt(int, program, program_typing, store, instr).
exists_env_opt(N,P,Pi,R,I) :-

step_at_most_once(P, R, I, R’, I’),
exists_env_for_store_and_block(N, Pi, R’, I’).

#check "preservation" 13:
... % as before

=> exists_env_opt(5, P, Pi, R’, I’).

After this modification, αCheck did not find any other counterexamples w.r.t. the
2.0 model.

5.2 Testing non-interference, not so quickly

It is natural to consider, in addition to the well trodden type soundness property,
more intensional properties, such as dynamic secure information-flow control (IFC).
This choice is not casual, since this is extensively studied in [Hca13], using random
testing with QuickCheck. As we said, that paper challenges naive exhaustive testing
in this domain and we wanted to have a say. We mainly concentrate on Section 1–4
of [Hca13] and refer the reader to the paper for full details of the model and their
testing outcome.

The starting point is a simple, but not simplistic, abstract stack-and-pointer ma-
chine with instructions such as push, pop, load and store. A machine state 〈pc, s,m, i〉
consists of a program counter, a stack, a random-access memory, and a fixed in-
structions sequence. In dynamic IFC, security levels (labels, here only public ⊥
and private >) are attached to run-time values and propagated during the execu-
tion, with the goal of making sure that private data does not leak. In this model,
the values manipulated by the machines are labeled integers x@L. The property
that the abstract machine must satisfy is end-to-end noninterference: let us call
indistinguishable two machine states if they differ only in their private values; non-
interference guarantees that in any execution starting with indistinguishable states
and ending in a halted state, the final states are indistinguishable as well.

In [Hca13, Section 2.3], the authors present an operational semantics for the
machine, which, while intuitive, turns out to be incorrect; then (Section 4) they
detail the sophisticated testing strategies they had to program to catch the four
bugs inserted. To give an idea, we list the buggy rule for Load and below the fixed
one, where i(pc) = Load and the box signals where the bug is/was.

〈pc, (x@L : s),m〉 =⇒ 〈pc, (m(x) : s),m〉
Load∗

〈pc, (x@L : s),m〉 =⇒ 〈pc, (m(x)@L : s),m〉
LoadOK

QuickCheck managed to locate the first two bugs with a relatively naive gen-
eration strategy by which two indistinguishable states were generated together by
randomly creating the first and modifying the second in their secret part. The
other two bugs necessitated a far more complex strategy for generating meaningful
sequences of instructions and addresses to trigger the bugs.

αCheck found the first two bugs in less than a minute without any setup. The
third one required writing a generator that yields more structured programs, such as
sequences of push and store so that values in memory can change during execution, a
necessary condition to find distinguishable states. This generator is a simplification
of the weighted and sequence strategy in [Hca13]. The fourth bug seemed, however,
out of reach of αCheck, until we got it instead using a (bounded) αProlog query
for noninterference rather than a check, the difference being the search strategy:
depth-first vs. un-optimized iterative deepening. After the last bug has been fixed,
the query did not find any counterexample and completes in about 5 minutes.

[Hca13, Section 2] ends by introducing three additional and more outlandish
bugs. We got them all with each of the previous techniques (vanilla check, check
with a generator and query with a generator) with queries being the more efficient
one. Additionally, we have also carried out some experiments with a second version
of the machine that includes a jump instruction ([Hca13, Section 5]), but the results
are too preliminary to draw any conclusion.

6 Conclusions and future work

Our experience suggests that off-the-shelf PBT tools, and αCheck in particular,
are already quite useful in validating the meta-theory of PL models, may they be
already formalized as the list-machine, and even more if under development. PBT
helps in finding errors in the specifications and also in adjusting the statements
of theorems when the model changes, as in the case of list-machine 2.0. From the
costs/benefits perspective, exhaustive generation, even in the naive way realized in
αCheck, seems to be a winner over the random approach. Even discounting our
obvious bias, “spec’n’check” in αCheck is dead simple, requires very little effort
and more than often turns out to be pretty useful. Validating low-level languages
brings in more challenges, but those can be handled with the techniques we have
and some work-around. Clearly, there are many other TAL models, see Chapter 4
of [Mor05], that could confirm this conclusion.

We are keenly aware that FsCheck and αCheck are the extremes of a (small)
number of PBT-tools that we could have used for this case study. The present
paper is not meant to be an exhaustive (sorry for the pun) survey of any appli-
cable tool. Still, a gap that should be filled is replaying the benchmark with ap-
proaches that goes beyond pure generate-and-test and try to automatically derive
(random) generators that intrinsically satisfy certain pre-conditions. The obvious
candidate is the new Quickchick [LPP18], but also Bulwahn’s smart generators in
Isabelle/HOL[Bul12a] are a possibility.

αCheck performs better than we hoped for, considering that its implementation
is nothing more than an OCaml interpreter for nominal logic programming, explor-

ing the full search space in an iterative deepening way. In other terms, it is probably
orders of magnitude slower than standard Prolog and it makes no effort to prune
the search space or to explore it in more flexible ways. As the preservation example
shows, a hard-wired additive bound is, to say the least, inconvenient; therefore it
is natural to try and make the search strategy more modular, possibly using the
notion of hookable disjunction from TOR [SDTD14].

Finally, many specifications are coinductive in nature [LG09]: for example, con-
sider reasoning about contextual equivalence [Mom12] of pieces of code, possibly
over source and target languages. It would be interesting to extend αCheck to deal
with those.

Acknowledgements This research was partially supported by INdAM/GNCS ’s
project “Certificazione di verificatori automatici del sofware basati su clausole di
Horn con vincoli”.

References

[ADL12] Andrew W. Appel, Robert Dockins, and Xavier Leroy. A list-machine bench-
mark for mechanized metatheory. J. Autom. Reasoning, 49(3):453–491, 2012.

[AFSC14] Cláudio Amaral, Mário Florido, and Vı́tor Santos Costa. Prologcheck –
property-based testing in prolog. In Michael Codish and Eijiro Sumii, editors,
Functional and Logic Programming, pages 1–17, Cham, 2014. Springer.

[BBN11] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. Automatic
proof and disproof in Isabelle/HOL. In C. Tinelli and V. Sofronie-Stokkermans,
editors, FroCoS, volume 6989 of LNCS, pages 12–27. Springer, 2011.

[Bul12a] Lukas Bulwahn. The new Quickcheck for Isabelle - random, exhaustive and
symbolic testing under one roof. In Chris Hawblitzel and Dale Miller, editors,
CPP, volume 7679 of LNCS, pages 92–108. Springer, 2012.

[Bul12b] Lukas Bulwahn. Smart testing of functional programs in Isabelle. In Nikolaj
Bjørner and Andrei Voronkov, editors, LPAR, volume 7180 of LNCS, pages
153–167. Springer, 2012.

[CH00] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. In ICFP, pages 268–279. ACM, 2000.

[CM17] James Cheney and Alberto Momigliano. αcheck: A mechanized metatheory
model checker. TPLP, 17(3):311–352, 2017.

[CMP16] James Cheney, Alberto Momigliano, and Matteo Pessina. Advances in property-
based testing for αProlog. In Bernhard K. Aichernig and Carlo A. Furia, editors,
TAP 2016, volume 9762 of LNCS, pages 37–56. Springer, 2016.

[CU08] James Cheney and Christian Urban. Nominal logic programming. ACM Trans.
Program. Lang. Syst., 30(5):26:1–26:47, 2008.

[DJW12] Jonas Dureg̊ard, Patrik Jansson, and Meng Wang. Feat: functional enumeration
of algebraic types. In Janis Voigtländer, editor, Haskell Workshop, pages 61–72.
ACM, 2012.

[Fca15] Burke Fetscher and co authors. Making random judgments: Automatically gen-
erating well-typed terms from the definition of a type-system. In Jan Vitek,
editor, ESOP 2015, volume 9032 of LNCS, pages 383–405. Springer, 2015.

[Fin16] Robbie Findler. The PLT-Redex list-machine model. https://github.com/

racket/redex/tree/master/redex-benchmark/redex/benchmark/models,
2016. Latest commit: Oct 2016.

[FKF15] Robert Bruce Findler, Casey Klein, and Burke Fetscher. Redex: Practical se-
mantics engineering, 2015. Online at http://docs.racket-lang.org/redex.

[FM17] Guglielmo Fachini and Alberto Momigliano. Validating the meta-theory of
programming languages. In Alessandro Cimatti and Marjan Sirjani, editors,
SEFM 2017, volume 10469 of LNCS, pages 367–374. Springer, 2017.

[Hca13] Catalin Hritcu and co authors. Testing noninterference, quickly. In ICFP, pages
455–468. ACM, 2013.

[Hug07] John Hughes. Quickcheck testing for fun and profit. In PADL’07, LNCS, pages
1–32, Berlin, Heidelberg, 2007. Springer-Verlag.

[JH11] Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEE Trans. Software Eng., 37(5):649–678, 2011.

[Kle12] Casey et al. Klein. Run your research: on the effectiveness of lightweight mech-
anization. In POPL ’12, pages 285–296, New York, NY, USA, 2012. ACM.

[KM18] Francesco Komauli and Alberto Momigliano. Electronic appendix to: Property-
based testing of the meta-theory of abstract machines: an experience report.
https://fkomauli.bitbucket.io/PBTAM-appendix.pdf, 2018.

[Kom18] Francesco Komauli. Property-based testing abstract machines. Master’s thesis,
DI, University of Milan, April 2018.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–115,
2009.

[LG09] Xavier Leroy and Herv Grall. Coinductive big-step operational semantics. In-
formation and Computation, 207(2):284–304, 2009.

[LPP18] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. Gener-
ating good generators for inductive relations. PACMPL, 2(POPL):45:1–45:30,
2018.

[Mom12] Alberto Momigliano. A supposedly fun thing I may have to do again: A HOAS
encoding of Howe’s method. In Logical Frameworks and Meta-languages: Theory
and Practice (LFMTP’12), pages 33–42. ACM, 2012.

[Mor05] Greg Morrisett. Advanced Topics in Types and Programming Languages, chapter
Typed assembly language. MIT Press, 2005.

[PHD+15] Zoe Paraskevopoulou, Catalin Hritcu, Maxime Dénès, Leonidas Lampropoulos,
and Benjamin C. Pierce. Foundational property-based testing. In ITP, volume
9236 of LNCS, pages 325–343. Springer, 2015.

[PY07] Mauro Pezzè and Michal Young. Software testing and analysis - process, prin-
ciples and techniques. Wiley, 2007.

[RTV06] Juliano R Toaldo and Silvia Vergilio. Applying mutation testing in prolog
programs. http://www.lbd.dcc.ufmg.br/colecoes/wtf/2006/, 2006.

[SDTD14] Tom Schrijvers, Bart Demoen, Markus Triska, and Benoit Desouter. Tor: Modu-
lar search with hookable disjunction. Science of Computer Programming, 84:101
– 120, 2014. PPDP 2012.

[YCER11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in C compilers. In PLDI, pages 283–294. ACM, 2011.

