
Dynamic Goal Decomposition and Planning in MAS
for Highly Changing Environments

Stefania Costantini and Giovanni De Gasperis

DISIM, Università di L’Aquila, Italy
email: {stefania.costantini, giovanni.degasperis}@univaq.it

Abstract. This paper studies the problem of dynamic goal decomposition and
planning in scenarios characterized by a strong inter-dependency between action
and context, for instance those related to rescue intervention in a territory upon
occurrence of some kind of catastrophic event. We propose an architecture that
integrates DALI MASs (DALI Multi-Agent Systems) and ASP (Answer Set Pro-
gramming) modules for reaching goals in a flexible and timely way, where DALI
is a computational-logic-based fully implemented agent-oriented logic program-
ming language and ASP modules allow for affordable and flexible planning capa-
bilities. The proposed DALI MAS architecture exploits these modules for flexible
goal decomposition and planning with the possibility to select plans according to
a suite of possible preferences and to re-plan upon need. We present a case-study
concerning DALI agents which cooperate for exploring an unknown territory un-
der changing circumstances in an optimal or at least sub-optimal fashion. The
architecture can be exploited not only by DALI agents, but rather by any kind of
logical agent.

1 Introduction and Motivation

Scenarios characterized by inter-dependency between action and context are [1] for
instance the ones related to the rescue intervention in a territory upon occurrence of
some kind of catastrophic event. Cities with damaged / nonfunctional roads, people
moving to safe places, people in need that cannot move, busy telecommunication chan-
nels, chaotic car traffic, etc. In such cases, data and knowledge about the territory is
often outdated within a few seconds.

What is required in these scenarios includes:

– repeatedly monitor and explore the environment by means of an infrastructure in-
cluding drones, sensors, robots, and human operators equipped with some kind of
system terminals to regain up-to-date knowledge of the environment;

– suggest dynamic plans of intervention obeying to physical, ethical and organiza-
tional constraints (e.g., a sequence of intervention according to priorities);

– guide human or robotic rescuers in the exploration of the territory.

Action and context are in such scenarios intertwined and mutually dependent, with
actions determined by a context in turn dynamically modified by the actions (e.g., by
removal of debris), as well as by external events (like aftershocks in case of an earth-
quake).



Fig. 1. Top row: Earthquake : L’Aquila, Italy, 2009;
Bottom left Flooding : USA, 2010;
Bottom right Fire : Chile, 2012.

In this paper we propose an approach which seamlessly integrates activity plans and
dynamic knowledge acquisition on the environment within the framework of a logic-
based multiagent-oriented system. In particular, we concentrate as a case-study on the
exploration of the environment: in fact, after catastrophic events previous knowledge
about the environment may be no longer valid, and hence the environment must be
considered as (at least partially) unknown. Thus, exploration and dynamic acquisition
of up-to-date data is a prerequisite for organizing rescue.

Adaptive autonomous agents [2–4] are capable of adapting to partially unknown and
potentially changing environments. This requires agents to be capable of various forms
of commonsense reasoning and planning. Since [5], we advocated agent architectures
capable of smooth integration of several modules/components representing different
behaviors/forms of reasoning, possibly based upon different formalism. Therefore, the
overall agent’s behavior can be seen as the result of dynamic combination of these
behaviors, also in consequence of the evolution of the agent’s environment.

We propose in particular to adopt Answer Set Programming (ASP) modules, where
ASP (cf., among many, [6–9] and the references therein) is a successful logic program-
ming paradigm which is nowadays a state-of-the-art tool for planning and reasoning
with affordable complexity, for which many efficient implementations are freely avail-
able [10]. We in fact augmented the DALI agent-oriented language, invented and de-
veloped by our research group [11–14], with a plugin for the invocation of answer set
solvers. ASP modules can be exploited in agents in a variety of ways [5], for instance
(but not only) for (limited forms of) reasoning about possibility and necessity. We have



recently enhanced the integration by adopting ASP modules for planning purposes, al-
lowing an agent or a MAS to choose among the various plans that can be obtained by
means of suitable preferences. Lately, we also introduced a ProbLog [15] in DALI, to
compute answers with associated probabilities: in this way, an agent is able to choose
the course of action also according to probabilistic considerations.

In this paper, we show an architecture (that we have designed and developed for
DALI, but that can be easily adapted to other agent-oriented frameworks) to cope with
complex goals, i.e., goals that can take profit from the subdivision into sub-goal because
one of the following (or both) is the case:

– the instance size of the planning problem to be solved for reaching the goal is too
big for efficient and timely solution, so the instance must be partitioned (if possible)
and the sub-solutions must then be combined/merged together;

– the goal naturally splits into sub-goals where plans can/must be devised separately,
and then combined/merged together.

The architecture exploits not a single DALI agent but a MAS (Multi-Agent Sys-
tem), with suitable components for planning and executing plans, but also for partition-
ing goals and controlling the generation/exploitation of solutions, and possible (even
partial) re-planning in case of environmental changes.

The effectiveness of this solution is demonstrated by means of a case-study where
DALI agents cooperate in order to explore an unknown territory upon occurrence of
some kind of catastrophic event (earthquake, fire, flooding, terrorist attack, ect.).

We propose a solution based upon a MAS instead of a monolithic software solution
because we consider important that each software component, that we implement as
an agent, should partially retain its autonomy during asynchronous event processing.
In fact, in this way each agent can be enriched with high-level reasoning/control be-
haviors that can coexists with the planning/executing activity. The MAS solution also
permits to distribute the computational effort and increases overall robustness by means
of advanced features such as self-monitoring and self-diagnostic, as shown in [16]. As
discussed below, the MAS can be based upon a controller agent which partitions a plan-
ning problem and, according to certain features (e.g., related to plan selection), assigns
tasks of planning, re-planning and plan execution. ASP modules are meant to be ex-
ploited for planning purposes. Qualitative aspects of the proposed solution consist in:
(1) the general MAS structure, that can be customized in order to cope with real-world
problems rather than toy instances; (2) the interaction between the MAS and the ASP
module(s); (3) the adoption of preferences for choosing among possible plans.

The paper is structured as follows. First, we recall ASP and the DALI language and
framework. We then present the proposed architecture, and the case study. Finally we
discuss the proposal and some related work and conclude.

2 Answer Set Programming in a Nutshell

“Answer set programming” (ASP) is a well-established logic programming paradigm
adopting logic programs with default negation under the answer set semantics, which
[17, 18] is a view of logic programs as sets of inference rules (more precisely, default



inference rules). In fact, one can see an answer set program as a set of constraints on
the solution of a problem, where each answer set represents a solution compatible with
the constraints expressed by the program. For the theory and the applications of ASP,
the reader can refer for instance to [6–9]. Planning is among the most suitable and
successful applications of ASP: c.f., e.g., [19, 20] and the references therein, treating
planning in ASP even under incomplete information. Several well-developed answer
set solvers [10, 6] that compute the answer sets of a given program can be freely down-
loaded by potential users. The functioning and features of such solvers is illustrated in
articles appearing in [6].

Syntactically, an ASP program (or, for short, just “program”) Π is a collection of
rules of the form

H ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n

where H is an atom, m > 0 and n > 0, and each Li is an atom. Symbol← is usually
indicated with :- in practical systems. An atom Li and its negative counterpart notLi

are called literals. The left-hand side and the right-hand side of the clause are called
head and body, respectively. A rule with empty body is called a fact. A rule with empty
head is a constraint, where a constraint of the form

← L1, ..., Ln.

states that literals L1, . . . , Ln cannot be simultaneously true in any answer set.
Unlike other paradigms, a program may have several answer sets, each of which

represents a solution to given problem which is consistent w.r.t. the given problem de-
scription and constraints, or may have no answer set, which means that no such solution
can be found. Whenever a program has no answer sets, it is said to be say that the pro-
gram is inconsistent (w.r.t. consistent). In the case of planning, each answer set (if any
exists) represents a plan.

All solvers provide a number of additional features useful for practical program-
ming, that we will introduce only whenever needed. Solvers are periodically checked
and compared over well-established benchmarks, and over significant sample applica-
tions proposed at the yearly ASP competition (cf. [21] for a recent report).

3 The DALI language: Framework and Applications

DALI [11, 12] (cf. [13] for a comprehensive list of references) is an Agent-Oriented
Logic Programming language. The DALI semantics [22] is fully logical, and the change
of state proper of agents’ functioning is modeled by means of a concept of Evolutionary
Semantics. DALI agent is triggered by several kinds of events: external events, internal,
present and past events.

External events are syntactically indicated by the postfix E. Reaction to such events
is defined via reactive rules, indicated by the special token :>, i.e., a reactive rule is of
the form Externalevent :> Reaction; reactive rules can also be defined upon a set of
external events. The agent remembers to have reacted by converting an external event



into a past event (postfix P), with a related time-stamp. An event perceived but not yet
reacted to is called “present event” and is indicated by the postfix N.

In DALI, actions (indicated with postfix A) may have or may not have precondi-
tions: in the former case, the actions are defined by actions rules, in the latter case they
are just action atoms. An action rule is characterized by the new token :<. Similarly to
events, actions are recorded as past actions.

Internal events is the device which makes a DALI agent proactive. An internal
event is syntactically indicated by the postfix I, and its description is composed of two
rules. The first one contains the conditions (knowledge, past events, procedures, etc.)
that must be true so that the reaction (in the second rule) may happen. Thus, a DALI
agent is able to react to its own conclusions. Internal events are automatically attempted
with a default frequency customizable by means of directives in the initialization file,
where the frequency will depend upon the very nature of each such event, and the degree
of criticality for the agent.

The sample DALI program below is aimed to illustrate how to use the main lan-
guage features, and which is their role. There is an external event, namely requestE (K ),
representing some request, say of kindK. The event is first of all detected in the incom-
ing event queue, where at this stage it is considered as a present event requestN (K ).
The presence of the event determines some kind of reasoning (not specified here), per-
formed by the procedure evaluate request(K ,Outcome) which will return a result in
its output parameter Outcome . Then, the event will be reacted to by a dedicated reac-
tive rule, which in the example invokes a procedure manage request(K ); in general
however, the reaction may involve any combination of reasoning tasks and action ex-
ecution. The manage request(K ) procedure is supposed to check some conditions,
choose a suitable action to perform and then try to actually execute this action by in-
voking perform actionA(Act). However, executing the action may not be immediate,
as in this case the action has preconditions (expressed in the last rule). Specifically, for
the action to be executable the necessary resources must be acquired. In the meanwhile,
if the evaluation of the request leads to an outcome of suspect attack , then this is in-
terpreted as an internal event, namely evaluate requestI (K , suspect attack), which
leads to another reaction, in this case raising some kind of alert. Thus, application of
event-condition-action reactive rules constitutes only a part of a DALI agent behavior.
In fact, in addition to reacting to external events a DALI agent can reason on incom-
ing events, can trigger new reactions based upon internal reasoning, can reason about
actions, etc.

evaluate request(K ,Outcome) :- requestN (K ).
evaluate request(K ,Outcome) :- . . .
evaluate requestI (K , suspect attack) :> raise alert(suspect attack).
requestE (K ) :> manage request(K ).

manage request(K ) :- check conditions(K ),
choose action(Act), perform actionA(Act).

perform actionA(Act) :< get resources(Act).

The DALI communication architecture [23] implements the DALI/FIPA protocol,
which consists of the main FIPA primitives, plus few new primitives which are par-



ticular to DALI. The architecture includes a filter on communication based on special
primitives, ontologies and forms of commonsense reasoning. This advanced commu-
nication architectures allows DALI agents to implement quite sophisticated forms of
interaction, like learning by exchanging sets of rules [24]. DALI has also a goal con-
struct to define simple plans, similarly to what done in the AgentSpeak language [25,
26]. As seen below however, for more involved planning tasks one can employ suitable
ASP modules.

The DALI programming environment at current stage of development [14] offers a
multi-platform folder environment, built upon Sicstus Prolog programs, shells scripts,
Python scripts to integrate external applications, a JSON/HTML5/jQuery web interface
to integrate into DALI applications, with a Python/Twisted/Flask web server capable to
interact with A DALI MAS at the back-end. We have recently devised a cloud DALI
implementation, reported in [27, 28]. In fact, as we have since long been convinced of
the potential usefulness of the DALI logical agent-oriented programming language in
the cognitive robotic domain, in the above-mentioned papers we have presented the ex-
tensions to the basic pre-existing DALI implementation which add a number of useful
new features, and in particular allow a DALI MAS to interact with robots. As shown
in [27], the DALI framework has been extended to “DALI 2.0” by using open sources
packages, protocols and web based technologies. DALI agents can thus be developed to
act as high level cognitive robotic controllers, and can be automatically integrated with
conventional embedded controllers. The web compatibility of the framework allows
real-time monitors and graphical visualizers of the underline MAS activity to be spec-
ified, for checking the interaction between an agent and the related robotic subsystem.
The cloud package ServerDALI allows a DALI MAS to be integrated into any practi-
cal environment. In [28] illustrate the recent “Koiné DALI” framework, where a Koiné
DALI MAS can cooperate without problems with other MASs, programmed in other
languages (logical or non-logical), and with object-oriented applications. In summary,
the enhanced DALI can be used for multi-MAS applications and hybrid multi-agents
and object-oriented applications, and can be easily integrated into preexisting applica-
tions.

The DALI framework has been experimented, e.g., in applications for user mon-
itoring and training, in emergencies management (like first aid triage assignment), in
security or automation contexts, like home automation or processes control, and, more
generally, in every situation that is characterized by events (either simple events and/or
events that are correlated to other ones even in complex patterns). An architecture en-
compassing DALI agents and called F&K (Friendly-and-Kind) system [29] has been
proposed for (though not restricted to) applications the e-Health domain. F&Ks are
“knowledge-intensive” systems, providing flexible access to dynamic, heterogeneous,
and distributed sources of knowledge and reasoning, within a highly dynamic computa-
tional environment consisting of computational entities, devices, sensors, and services
available in the Internet and in the cloud. As a suitable general denomination for sys-
tems such as F&Ks we propose “Dynamic Proactive Expert Systems” (DyPES): in fact,
such systems are aimed at supporting human experts and personnel or human users in
a knowledgeable fashion, so they are reminiscent of the role of traditional expert sys-
tems. However, they are proactive in the sense that such systems have objectives (e.g.,



monitoring patients, managing resources, exploring territories, etc.) that they pursue au-
tonomously, requiring human intervention only when needed. They are also dynamic,
because they are able to exploit not only a predefined knowledge base: rather, they
are equipped with a number of reasoning modules, and they are able to locate other
such modules, and the necessary knowledge and reasoning auxiliary resources. In fact,
DyPESs are characterized by “Knowledge Intensity”, in the sense that in general a large
amount of heterogeneous information and data must be retrieved, shared and integrated
in order to reason within the system’s domain. DyPESs can be Cyber-Physical Sys-
tems integrating software and physical components [30], and can be able to perform
Complex Event Processing, i.e., to actively monitor event data so as to make automated
decisions and take time-critical actions (DALI has been in fact empowered with CEP
capabilities [31]).

Agents (and in particular robotic agents) have complex goals that may need to be
decomposed, either hierarchically or anyway into related sub-goals; moreover, such
goals may change in time depending upon the interaction with the environment. Prolog-
based logical agents such as DALI agents but also agents written in other agent-oriented
computational-logic-based languages (e.g., AgentSpeak [25, 26], GOAL [32, 33], 3APL
[34, 35]) can devise and execute plans. However, they are not easily able to decompose
goals into sub-goals, evaluate (based upon preferences) alternative plans, and re-plan if
needed, possibly for some sub-goals only; implementing such features within a single
agent would in fact make the agent code heavy to understand and execute.

We have since long equipped DALI with a plugin for invoking ASP solvers and
thus executing ASP modules. If such a module is used for planning, the possibility has
been recently introduced to choose among the generated plans based upon preferences;
the preference strategies implemented so far are: (i) shortest plan; (ii) minimal-cost
plan; (iii) plan including a minimum/maximum number of a certain kind of actions; we
intend to implement plan evaluation based upon preferences on resource consumption,
following the principles of [36–39].

Below we propose a DALI MAS architecture aimed at goal decomposition, sub-goal
assignment, planning and re-planning concerning complex goals.

4 The MAS Architecture

In this section we illustrate the features of the proposed architecture. The DALI MAS
is intended to fulfill the so-called bounded rationality principle, by which a plan for
reaching a goal has to be devised and executed in a timely manner before a ultimate
Tmax deadline. Consequently, there is a second deadline TPlanMax < TMax by which
a plan has to be computed and selected, so that the remaining time is sufficient for plan
execution.

Thus, given the input set TPlanMax, TMax, G,N , where G is the goal, N is the
instance size of the problem to be solved (if applicable), the MAS operates via the
following steps.

(i) Decompose the overall goal into suitable sub-goals;
(ii) For each sub-goal, generate a plan within the TPlanMax deadline;



(iii) Execute the plan within the TMax deadline; in case of failure (insufficient time),
maximize the length of the partially executed plan;

(iv) In case of a change of conditions in the environment, re-plan, possibly limiting this
activity to specific sub-goals resulting from the partitioning.

Sub-goals can be determined by any kind of goal partitioning algorithm. In the
disaster management case study, here discussed, it is obtained simply by sub-dividing
the main geographical area into slightly overlapping sub-territories. Other algorithms
can be adopted to generate sub-plans, for instance those presented in [40], [41] and
[42]. The planner agent equipped with an ASP module may find more than one plan for
each (sub-)goal; so it is useful (as said before) to apply metrics by which a plan could
be preferred to another one. The proposed DALI MAS architecture is shown in Figure
2 and the agent behaviors are the following.

Fig. 2. DALI MAS architecture: Coordinator, Meta-Planner, Planner, Explorer agents. The MAS
can be deployed over a cloud computing architecture, thus distributing and balancing the re-
quired computational resources. The ASP module is executed via an external solver, configurable
depending on the required capabilities. The EXPLORER agent is supposed to execute a plan,
possibly working “in the field”, i.e., embedded in a mobile robot or some other facility.

– COORDINATOR agent: this agent synchronizes all the actions of the MAS and
updates the global state of goal solving. Its tasks are the following.
(a) Ensure the proper activation of the MAS.
(b) Interact with the external world and whenever needed set new objectives for

the MAS or revise the present goals.



(c) Initialize the TPlanMax and TMax deadlines, depending upon the goal.
(d) Decompose a goal into subgoals.
(e) For each subgoal, activate a copy of the META-PLANNER agent, possibly

providing as input the preference criterion for plan selection.
(f) receive from the META-PLANNER agent the plan to be executed up to

TPlanMax and deliver the plan to the EXPLORER agent, which is in charge
of plan execution within maximum time TMax - TPlanMax.

(h) If time elapses, or new events occur, cancel the current running plan and if
applicable send a replan indication to the META-PLANNER.

(h) Logs all events to a log server.
– META-PLANNER agent, whose tasks are the following.

(a) Receive the triggering event from the COORDINATOR to start the search for
a new plan.

(b) Generate input for the PLANNER agent while monitoring its performances.
If the PLANNER agent does not deliver before TPlanMax, cancel the plan
request and ask PLANNER to generate a trivial plan.

(c) Apply plan selection accorded to preferences, either local or set by COORDI-
NATOR agent. That is, it exploits the given preference criteria in order to select
the plan which is closer to the specified preferences whenever the PLANNER
returns more than one answer.

(c) If requested by COORDINATOR agent, ask PLANNER for re-planning with
updated input.

– PLANNER agent, which receives as input the time constraints TPlanMax, TMax

and spatial constraints C%, N, F (e.g.: coverage, number of reach/do not reach
cells) from META-PLANNER and generates possible plans via an ASP module,
if possible within the TPlanMax deadline. If more than a single answer is produced
by the ASP solver, it returns all available plans to the META-PLANNER. If no so-
lution exists, it generates a trivial plan (if possible), i.e. a simple greedy algorithm
without global optimization.

– EXPLORER: puts into action the plan provided by the COORDINATOR, if pos-
sible within the TMax deadline, and notifies the COORDINATOR upon comple-
tion. The explorer is in charge of plan execution and is so-called as a reminiscence
of the case study presented below; in general however, the name is justified because
this agent can execute plans (also) by means of physical components in a Cyber-
Physical System, and/or by means of robotic elements of various kinds. In Figure
1, EXPLORER is designated as “field controller” as plan execution is situated into
some environment.

5 Case Study

The architecture presented above has been inspired and motivated by a case-study that
has been actually implemented and experimented, and presented in [43]. The overall
goal in the case study is to explore an unknown territory upon occurrence of some kind
of catastrophic event (earthquake, fire, flooding, terrorist attack, ect.). For simplicity, we
have modeled the territory (also called “area”) as a set of a N ∗N parts represented as



chessboards, i.e., squares of cells, where some cells are marked as unreachable/forbid-
den, and are therefore considered as “holes” in the chessboard. This represents the fact
that the agents may be notified by an external authority or by other sources of the actual
impossibility of traversing that location because of some kind of obstruction/danger.
The forbidden/unreachable locations can change in time.

For the sake of experiments, the robot that each agent employs for exploration has
been represented (in the case study) as a chess’ knight piece, which performs knight
leaps. This is to signify that a real robot (whatever its kind) will in practice have limited
possibilities of movement. In this way, the problem of exploration of a single piece
of territory can be modeled as a variant of the well-known “knight tour with holes”
problem, for which well-known ASP solutions exist. The ultimate objective would be
that of devising an Hamiltonian path, thus fully exploring the given piece of territory
while skipping the forbidden squares. As however the Hamiltonian path option results
too heavy with reasonable instance size (actually, it is too heavy for size more than 8),
we resorted to sub-optimal solutions which adopt soft constraints in order to visit each
square as few times as possible.

The Knight Tour with holes problem has constituted a benchmark in recent ASP
competitions, aimed at comparing ASP solvers performances. We performed a number
of modifications to the original version [44] concerning: the representation of holes;
the objective of devising a path which, though not Hamiltonian, guarantees a required
degree of coverage with the minimum number of multiple-traversals; simple forms of
loop-checking for avoiding at least trivial loops. For the sake of completeness, below is
the sketch of our solution, formulated for the DLV ASP solver [45], though it might be
easily reformulated for other solvers. The key modifications to the base solution are the
following.

– We modified the reached constraint, and transformed it into a “soft” (or weak)
constraint, satisfied if possible, denoted by connective :∼, so as not to be forced to
finding a Hamiltonian path.

reached(X,Y) :- move(1,1,X,Y).
reached(X,Y) :- reached(X1,Y1),

move(X1,Y1,X,Y).
:∼ cell(X,Y),

not forbidden(X,Y),
not reached(X,Y).

– We added a coverage-satisfaction rule, where coverage denotes the required degree
of coverage and number forbidden the number of holes, and V is the instance size,
i.e., the chessboard edge. The maximum possible coverage is 100% of the available
cells, i.e., M = V ∗ V , while the minimum coverage N is computed in terms of
coverage, considering the holes. Suitable application of the count DLV constraint
[45] guarantees the desired coverage.

coverage(95). % sample coverage degree,
% can be changed

number_forbidden(5).
cov(N) :-
N <= #count{X,Y : reached(X,Y)} <= M,



size(V), coverage(Z),
number_forbidden(F),
M = V * V, N2 = M * Z,
N3 = N2 /100, N = N3 - F.

Experimental results, presented in [43, 46], have demonstrated the usefulness of the
proposed MAS architecture, that is actually able to effectively cope with real-world
instance sizes. The architecture in this case study works as follows.

– The COORDINATOR agent partitions the territory that must be explored into a
number of (possibly overlapping) sections (chessboards) of reasonable size, each
one to be assigned to a META-PLANNER instance.

– Each instance of the META-PLANNER agent exploits its own associated copy of
the planner agent (ASP module), which computes possible plans.

– Different preference policies for plan selection can possibly be associated with dif-
ferent sections of the territory to be explored, and can therefore be applied to the
associated META-PLANNER, according to directions provided by the user/envi-
ronment.

– Each plan selected for execution (exploration to be performed) is assigned to a
separate EXPLORER agent, specifically assigned to that territory section.

– The COORDINATOR will devise re-planning for each portion of the territory for
which the unreachable location have changed.

Reasonable metrics to evaluate plans returned by the ASP module can be in terms
of: (i) number of cells that have to be visited when using coverage, (ii) length of the
path, (iii) presence of loops (when the Hamiltonian constraint is released), (iv) plan
cost, in case there is a specific cost associated to each cell, (v) preference on which
(kinds of) cells one should prioritarily visit. Preference criteria can then be defined by
selecting one metric, or by combining different metrics: for instance, a criterium may
consist in preferring the shortest path, if it does not exceed a certain cost.

6 Related Work, Discussion and Concluding Remarks

Goal reasoning and goal decomposition is very relevant task, crucial in dynamic and
unpredictable environments where such decomposition can hardly be performed “a pri-
ori”. We have proposed a MAS architecture for flexible goal decomposition, plan for-
mation and execution 1. In real applications, a MAS for each (class of) goal(s) would
be designed, implemented and located into the DALI cloud. In fact, each MAS will be
programmed according to a goal to be reached, i.e., to a problem to be solved. Then, an
agent that needs to solve a certain goal can refer to the suitable MAS. As mentioned,

1 Previous versions of this paper have been presented at SIRLE 2018, AAAI 2018 Spring Sym-
posium on Integrating Representation, Reasoning, Learning, and Execution for Goal Directed
Autonomy, held at Stanford University, Palo Alto, CA, United States, March 26-28, 2018 and
at the 6th Goal Reasoning Workshop at IJCAI 2018 (both with no archival Proceedings).



the DALI framework allows uniform access also to agents written in other languages/-
formalisms. So, the proposed solution is not DALI-specific but rather can be generally
adopted.

Relevant related work exists concerning robotic applications in changing environ-
ment. The work presented in [47] proposes a method to temporarily reassign individual
service robots in a multi-robot system from their original task provide guide to humans
in need from one location to another in the environment. This is related to rescue after
some kind of unexpected event. Our approach comes prior to rescue, of which it may
constitute a prerequisite: in fact, after catastrophic events previous knowledge of the
environment may become obsolete, so that the action of service robots can become dif-
ficult or even impossible. Thus, exploration can provide such a multi-robot system with
reliable information (to be constantly updated) to perform their task.

[48, 49] propose the ER-DCOPs approach to model DCOPs (Distributed Constraint
Optimization Problems, that are useful to model a number of multi-agent coordination
problems) when there is uncertainty in constraint utilities. The ER-DCOPs solution can
implemented in ASP (a highly parallel GPU-based implementation is also described),
so as to exploit reasoning in order to reduce the solution search space. Agents are sup-
posed to communicate in order to jointly solve the given problem. This kind of solution
can again be very useful for rescue and assistance, in order, for instance to decide to
which hospitals to send the injured and which route to advise to the survivors so as
to avoid bottlenecks. For exploration, we have devised instead a solution that for the
sake of efficiency makes interaction among the meta-planners and the explorer agents
unnecessary, even if this implies to disregard full optimality.

7 Acknowledgement

This research has been carried out thanks to internal funding provided by our Depart-
ment (DISIM - Dipartimento di Ingegneria e Scienze dell’Informazion e Matematica)
at the University of L’Aquila.

References

1. Costantini, S., De Gasperis, G., Nazzicone, G., Tarantino, L.: Context and action: A unitary
vision within a logic-based multi-agent environment. Lecture Notes in Information Systems
and Organisation 18 (2016) 97–111

2. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road
map of current technologies and future trends. Computational Intelligence Journal 23(1)
(2007) 61–91

3. Bordini, R.H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A.E., Gómez-Sanz, J.J., Leite,
J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming languages and platforms
for multi-agent systems. Informatica (Slovenia) 30(1) (2006) 33–44

4. Artikis, A., Pitt, J.V.: Specifying open agent systems: A survey. In Artikis, A., Picard, G.,
Vercouter, L., eds.: Engineering Societies in the Agents World IX, 9th International Work-
shop, ESAW 2008, Revised Selected Papers. (2008) 29–45

5. Costantini, S.: Answer set modules for logical agents. In de Moor, O., Gottlob, G., Furche,
T., Sellers, A., eds.: Datalog Reloaded: First International Workshop, Datalog 2010. Volume
6702 of LNCS. Springer (2011) Revised selected papers.



6. Brewka, G., Eiter, T., (eds.), M.T.: Answer set programming: Special issue. AI Magazine
37(3) (2016)

7. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press (2003)

8. Leone, N.: Logic programming and nonmonotonic reasoning: From theory to systems and
applications. In Baral, C., Brewka, G., Schlipf, J., eds.: Logic Programming and Nonmono-
tonic Reasoning, 9th International Conference, LPNMR 2007. (2007)

9. Truszczyński, M.: Logic programming for knowledge representation. In Dahl, V., Niemelä,
I., eds.: Logic Programming, 23rd International Conference, ICLP 2007. (2007) 76–88

10. Web-references: Some ASP solvers Clasp: potassco.sourceforge.net; Cmod-
els: www.cs.utexas.edu/users/tag/cmodels; DLV: www.dbai.tuwien.
ac.at/proj/dlv; Smodels: www.tcs.hut.fi/Software/smodels.

11. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In
Flesca, S., Greco, S., Leone, N., Ianni, G., eds.: Logics in Artificial Intelligence, European
Conference, JELIA 2002, Proceedings. Volume 2424 of Lecture Notes in Computer Science.,
Springer (2002)

12. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In
Alferes, J.J., Leite, J.A., eds.: Logics in Artificial Intelligence, 9th European Conference,
JELIA 2004, Proceedings. Volume 3229 of Lecture Notes in Computer Science., Springer
(2004) 685–688

13. Costantini, S.: The DALI agent-oriented logic programming language: Summary and refer-
ences 2015 (2015)

14. De Gasperis, G., Costantini, S., Nazzicone, G.: Dali multi agent systems framework, doi
10.5281/zenodo.11042. DALI GitHub Software Repository (July 2014) DALI: http://
github.com/AAAI-DISIM-UnivAQ/DALI.

15. Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J., Janssens, G.,
Raedt, L.D.: Problog technology for inference in a probabilistic first order logic. In: ECAI
2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20,
2010, Proceedings. (2010) 719–724

16. Bevar, V., Muccini, H., Costantini, S., Gasperis, G.D., Tocchio, A.: A multi-agent system
for industrial fault detection and repair. In: Advances on Practical Applications of Agents
and Multi-Agent Systems. Advances in Intelligent and Soft Computing, Springer, Berlin
Heidelberg (2012) 47–55 Paper and demo.

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,
R., Bowen, K., eds.: Proceedings of the 5th International Conference and Symposium on
Logic Programming (ICLP/SLP’88). The MIT Press (1988) 1070–1080

18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

19. Son, T.C.: Answer set programming and its applications in planning and multi-agent systems.
In Balduccini, M., Janhunen, T., eds.: Logic Programming and Nonmonotonic Reasoning -
14th International Conference, LPNMR 2017, Proceedings. Volume 10377 of Lecture Notes
in Computer Science., Springer (2017) 23–35

20. Romero, J., Schaub, T., Son, T.C.: Generalized answer set planning with incomplete infor-
mation. In Bogaerts, B., Harrison, A., eds.: Proceedings of the 10th Workshop on Answer Set
Programming and Other Computing Paradigms co-located with the 14th International Con-
ference on Logic Programming and Nonmonotonic Reasoning, ASPOCP@LPNMR 2017.
Volume 1868 of CEUR Workshop Proceedings., CEUR-WS.org (2017)

21. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The answer set programming competi-
tion. AI Magazine 33(4) (2012) 114–118



22. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages. In
Baldoni, M., Endriss, U., Omicini, A., Torroni, P., eds.: Declarative Agent Languages and
Technologies III, Third International Workshop, DALT 2005, Selected and Revised Papers.
Number 3904 in Lecture Notes in Computer Science. Springer (2006) 106–123

23. Costantini, S., Tocchio, A., Verticchio, A.: Communication and trust in the DALI logic
programming agent-oriented language. Intelligenza Artificiale 2(1) (2005) 39–46 Journal of
the Italian Association AI*IA.

24. Costantini, S., Tocchio, A.: Learning by knowledge exchange in logical agents. In Corradini,
F., Paoli, F.D., Merelli, E., Omicini, A., eds.: WOA 2005: Dagli Oggetti agli Agenti. 6th
AI*IA/TABOO Joint Workshop ”From Objects to Agents”: Simulation and Formal Analysis
of Complex System, Pitagora Editrice Bologna (2005) 1–8

25. Rao, A.S., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Proceed-
ings of the Second Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’91), Morgan Kaufmann (1991) 473–484

26. Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak (plan failure
and some internal actions). In Coelho, H., Studer, R., Wooldridge, M., eds.: ECAI 2010 -
19th European Conference on Artificial Intelligence, Proceedings. Volume 215 of Frontiers
in Artificial Intelligence and Applications., IOS Press (2010) 635–640

27. Costantini, S., De Gasperis, G., Nazzicone, G.: DALI for cognitive robotics: Principles and
prototype implementation. In Lierler, Y., Taha, W., eds.: Practical Aspects of Declarative
Languages - 19th International Symposium, Proceedings. Volume 10137 of Lecture Notes in
Computer Science., Springer (2017) 152–162

28. Costantini, S., De Gasperis, G., Pitoni, V., Salutari, A.: Dali: A multi agent system framework
for the web, cognitive robotic and complex event processing. In: Proceedings of the 32nd
Italian Conference on Computational Logic. Volume 1949 of CEUR Workshop Proceedings.,
CEUR-WS.org (2017) 286–300 http://ceur-ws.org/Vol-1949/CILCpaper05.pdf.

29. Aielli, F., Ancona, D., Caianiello, P., Costantini, S., Gasperis, G.D., Marco, A.D., Ferrando,
A., Mascardi, V.: FRIENDLY & KIND with your health: Human-friendly knowledge-
intensive dynamic systems for the e-health domain. In: Highlights of Practical Applica-
tions of Scalable Multi-Agent Systems. The PAAMS Collection - International Workshops
of PAAMS 2016, Proceedings. Volume 616 of Communications in Computer and Informa-
tion Science., Springer (2016) 15–26

30. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems:
A survey. IEEE Systems Journal 9(2) (2015) 350–365

31. Costantini, S.: Ace: a flexible environment for complex event processing in logical agents.
In Matteo Baldoni, L.B., Dastani, M., eds.: Engineering Multi-Agent Systems, Third Inter-
national Workshop, EMAS 2015, Revised Selected Papers. Volume 9318 of Lecture Notes
in Computer Science., Springer (2015)

32. Hindriks, K.V.: Programming rational agents in goal. In: Multi-Agent Programming.
Springer US (2009) 119–157

33. Hindriks, K.: A verification logic for goal agents. In Dastani, M.M., Hindriks, K., Meyer,
J.J.C., eds.: Specification and Verification of Multi-agent Systems. Springer (2010)

34. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming language for
cognitive agents goal directed 3apl. In Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.:
Programming Multi-Agent Systems, First International Workshop, PROMAS 2003, Selected
Revised and Invited Papers. Volume 3067 of Lecture Notes in Computer Science., Springer
(2004) 111–130

35. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in
3APL. In Bordini, R.H., ed.: Multi-Agent Programming: Languages, Platforms and Applica-
tions. Volume 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations.
Springer (2005) 39–67



36. Costantini, S., Formisano, A.: Answer set programming with resources. Journal of Logic
and Computation 20(2) (2010) 533–571

37. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on resource
consumption and production in ASP. Journal of of Algorithms in Cognition, Informatics and
Logic 64(1) (2009)

38. Costantini, S., Formisano, A.: Weight constraints with preferences in ASP. In Delgrande,
J.P., Faber, W., eds.: Logic Programming and Nonmonotonic Reasoning - 11th International
Conference, LPNMR 2011, Proceedings. Volume 6645 of Lecture Notes in Computer Sci-
ence., Springer (2011) 229–235

39. Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Fundam.
Inform. 105(1-2) (2010) 1–33

40. Shivashankar, V., Alford, R., Kuter, U., Nau, D.S.: The GoDeL planning system: A more
perfect union of domain-independent and hierarchical planning. In: IJCAI. (2013) 2380–
2386

41. Alford, R., Shivashankar, V., Roberts, M., Frank, J., Aha, D.W.: Hierarchical planning:
Relating task and goal decomposition with task sharing. In: IJCAI. (2016) 3022–3029

42. Cox, M.T., Dannenhauer, D., Kondrakunta, S.: Goal operations for cognitive systems. In:
AAAI. (2017) 4385–4391

43. Costantini, S., De Gasperis, G., Nazzicone, G.: Exploration of unknown territory via DALI
agents and ASP modules. In Omatu, S., Malluhi, Q.M., Rodrı́guez-González, S., Bocewicz,
G., Bucciarelli, E., Giulioni, G., Iqba, F., eds.: Distributed Computing and Artificial Intelli-
gence, 12th International Conference, DCAI 2015, Salamanca, Spain, June 3-5, 2015. Vol-
ume 373 of Advances in Intelligent Systems and Computing., Springer (2015) 285–292

44. Calimeri, F., Zhou, N.F.: Knight tour with holes ASP encoding (2014) See
http://www.mat.unical.it/aspcomp2013/files/links/benchmarks/
encodings/aspcore-2/22-Knight-Tour-with-holes/encoding.asp.

45. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

46. Nazzicone, G.: Definizione, implementazione e sperimentazione di estensioni del linguaggio
orientato agli agenti DALI nel campo della robotica cognitiva (Definition, implementation
and experimentation of extensions to the DALI agent-oriented language for applications in
cognitive robotics). PhD thesis, Dipartimento di Ingegneria e Scienze dell’Informazione e
Matematica, Università degli Studi di L’Aquila (2018) in Italian, Supervisor Prof. Stefania
Costantini.

47. Zhang, S., Jiang, Y., Sharon, G., Stone, P.: Multirobot symbolic planning under temporal
uncertainty. In Larson, K., Winikoff, M., Das, S., Durfee, E.H., eds.: Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017. (2017)
501–510

48. Le, T., Son, T.C., Pontelli, E., Yeoh, W.: Solving distributed constraint optimization problems
using logic programming. In Bonet, B., Koenig, S., eds.: Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, AAAI Press (2015) 1174–
1181

49. Le, T., Fioretto, F., Yeoh, W., Son, T.C., Pontelli, E.: Er-dcops: A framework for distributed
constraint optimization with uncertainty in constraint utilities. In Jonker, C.M., Marsella,
S., Thangarajah, J., Tuyls, K., eds.: Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent System, ACM (2016) 606–614


