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Abstract—Extending the range of pedestrian decision making
activities represented in a simulation model represents a serious
challenge: different decisions are taken at distinct levels of
abstraction, employing different types of information and knowl-
edge about the environment, from path planning to the regulation
of distance from other pedestrians and obstacles present in the
environment. Pedestrians, moreover, are not robots: although
empirical observations show that they consider congestion when
planning, there are evidences that their decisions are not al-
ways optimal (even in normal situations). We present a model
integrating and improving consolidated results mitigating the
optimization effects of congestion aware path planning by making
commonsense estimations of the effects of perceivable congestion,
also embedding an imitation mechanism stimulating changes in
planned decisions whenever another nearby pedestrian did the
same. The model is formally described and experimented both
in a validation scenario as well as in a real-world situation: an
interesting counterintuitive result, in which reducing available
choices and exits actually reduces overall egress time, is also
presented and discussed.

Index Terms—agent-based simulation, pedestrian simulation,
wayfinding

I. INTRODUCTION

Pedestrian and crowd simulation is a consolidated research
and application context, in which results that lead to technol-
ogy transfer (off-the-shelf available commercial tools are daily
used by designers and planners) co-exist with open challenges
for researchers in different fields and disciplines, to improve
model expressiveness (i.e. simplifying the modeling activity
or introducing the possibility of representing phenomena that
were still not considered) and efficiency of the simulators
based on those approaches. Trying to extend the range of
pedestrian agents’ decision making activities represented in
a computational model represents a serious challenge, though:
different types of decisions are taken at different levels of
abstraction, employing different types of information and
knowledge about the environment, from path planning (tactical
level decision [1]) to the regulation of distance from other
pedestrians and obstacles present in the environment (opera-
tional level decision). Moreover, the measure of success and
validity of a model is definitely not the optimality with respect
to some cost function, as (for instance) in robotics, but the
plausibility, the adherence of the simulation results to data that
can be acquired by means of observations or experiments.

In previous works we defined a model for the simulation
of wayfinding decisions, especially considering the possibility
of considering the perceivable congestion in agents’ path
planning [2]): the achieved results were somewhere between
basic path planning exclusively based on a “shortest path”
heuristics and a globally optimal solution. Later results [3]
allowed us to further enrich the model, on one hand to
embed an imitation mechanism for which a change in the
initially planned line of action can be perceived by nearby
agents and it can trigger analogous decisions. On the other,
it supported a calibration of the significance of the different
components of the wayfinding model, that are path length,
perceived congestion and perceivable recent changes in the
intentions of nearby pedestrians. In the present paper we
improve and extend the above work by providing a deeper
discussion and a more thorough evaluation of the implications
of the commonsense evaluation of the effects of perceivable
congestion on path planning and evaluating the effects of these
modeling choices in a real-world scenario. New results show
that the present model represents a step in the direction of
a more plausible, although farther from optimality, overall
simulation results.

The following Section will better set this work in the
relevant literature, while Section [[IIf will formally describe the
proposed modeling approach, that essentially incorporates an
extension of the floor field [4] pedestrian modeling approach
in which agents are provided with a representation of the
environment in which they are situated, that they can employ
to construct plans of action considering the above mentioned
factors. Results of the model are provided in the form of
calibration tests, provided in Section and exploration of
implications of the chosen path planning model in a real-world
scenario, in Section E Conclusions and future developments
will end the paper.

II. LITERATURE REVIEW

The modeling of pedestrians’ wayfinding decisions, es-
pecially considering the inevitable and empirically observed
trade off between trajectory length and estimated travel time
(considering the perceived congestion in alternative choices),
represent an open challenge for pedestrian simulation re-
search. Despite the topic has been considered by different



disciplines studying spatial cognition processes for a long
time, as testified by [5], research trying to provide empirical
evidences supporting modeling and simulation efforts is still
lively: for instance, [6] used a questionnaire to ask pedestrians
what are the most relevant factor influencing their choices,
whereas [7] actually performed both a simplified walking
experiment involving wayfinding and also asked the involved
participants to draw a trajectory on a map, in an outdoor
setting; [8] describes observed trajectories followed by pedes-
trians attending a festival; [3] performed an experiment to
observe actual wayfinding choices in a very simple situation, in
which pedestrians had to choose between a short but congested
path and a longer but faster one. All of these works show
that wayfinding decisions are not exclusively determined by
the length of the path or the expected travel time, and they
highlight that pedestrians actually do not choose optimal paths
even in normal, non stressful situations. Despite these results,
however, the support to the modeling of this kind of decision
making activities is still in relatively early stages.

Most works in the area of pedestrian and crowd simulation
investigate wayfinding from the perspective of including in
the model the necessary elements to perform the wayfinding
operation from the first execution of the model. The approach
described in the previously mentioned work by [8] considers
spatial cognition aspects, in particular combining allocentric
and egocentric contributions to overall pedestrian navigation
in an integrative approach considering different heuristics.
Results of the approach have been proposed showing a good
accordance with empirical observations in outdoor situations,
the kind of scenario in which the approach seems more
plausible. [9] explored the implications of different strategies
for the management of route choice operations, through the
combination of applying the shortest or quickest path, with
local (i.e., minimize time to vacate the room) or global (i.e.,
minimize overall travel time) strategies. [10] proposed the
modification of the floor-field Cellular Automata [4]] approach
for enabling pedestrian choices also considering the impact of
congestion on the expected travel time in evacuation situations.
[11] proposed a pedestrian model to simulate route choice in
case of evacuation and they were able to reproduce the ob-
served data of an experiment. [12] also considered evacuation
situations, discussing the results of an experiment about the
evacuation of a classroom with two exits, proposing a cellular
automata model, whereas [[13]] studied the evacuation of a two
exits classroom, proposing a differentiation between rational
behavior, mainly aimed at optimizing the own travel time, and
irrational one, attracted by the choices of other people and
leading to higher evacuation times. Although the results of the
above cited works are an interesting starting point for further
studies, they are not conclusive.

It is important to highlight that all of the above cited
approaches imply that modeled pedestrians are provided with
a complete map of the environment in which they are situated.
Whereas this seems a rather implausible assumption, we must
consider that these research efforts are generally set within
or very close to the transportation research area: within a
train station, it is almost inevitable to find first time visitors
of such an environment, nonetheless their presence represents

generally a small minority of the simulated population and
they are often not considered to evaluate the performance of
the design in withstanding a certain type of demand.

III. SIMULATING WALKING AND ROUTE CHOICE OF
PEDESTRIANS

A. The Representation of the Environment and the Knowledge
of Agents

The adopted agent environment [[14] is discrete and modeled
with a grid of 40 cm sided square cells: the size considers
the average area occupied by a pedestrian [15], and it allows
representing reasonable densities usually observed in real
scenarios. The cells have a state informing nearby agents
about their movement possibilities: they can be vacant or
occupied by an obstacle or at most two pedestrians, so as
to be able to manage locally high density situations [16].
This modification to the basic floor field approach is based
on observations described by [17] that highlight the fact
that in some situations (especially counter-flows) pedestrians
actually adjust their spatial orientation to temporarily accept a
reduction of their personal space to allow a smoother flow.

To allow the configuration of a pedestrian simulation sce-
nario, several markers are defined with different purposes in
addition to the basic map of the area describing obstacles and
walkable space. This set of objects has been introduced to
allow the movement at the operational level and the reasoning
at the tactical level, identifying intermediate and final targets
for agents’ plans: (i) start areas, generating agents in the simu-
lation; (ii) openings, sets of cells that (together with obstacles)
divide the environment into regions; (iii) final destinations of
agents, generally implying their removal from the simulation.

An example of environment annotated with this set of
markers is proposed in Fig. [I(b)} the above model implies the
fact that the environment is divided in regions that, as well as
other markers, are associated to additional relevant metadata
used to characterize the associated element (e.g. define the
demand associated to a start area).

This model uses an extended version of the floor fields
approach [4] for supporting agents’ navigation at locomo-
tion/operational level, using the agents’ environment as a con-
tainer of information for the management of the interactions
between entities. In this particular model, discrete potentials
are spread from cells of obstacles and destinations, informing
about distances to these objects. The two types of floor fields
are denoted as path field, spread from openings and final
destinations (one per destination object), and obstacle field,
a unique field spread from all the cells marked as obstacle.
In addition, a dynamic floor field that has been denoted as
proxemic field is used to reproduce a proxemic behavior [18§]]
in a repulsive sense, allowing agents to preserve acceptable
distances from other agents. The overall approach generates
a plausible navigation of the environment as well as an
anthropologically founded means of regulating interpersonal
distances among pedestrians.

This framework, on one hand, enables the agents to have a
position in the discrete environment and to perform movement
towards a user configured final destination. On the other hand,
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Fig. 1. (a) An example of plausible (continuous line) and implausible (dashed)
paths in a simple environment. (b) An experimental scenario (two open areas
connected by means of a constrained corridor separated in two sections
connected by three openings - 01, o2, and 03,) with the considered annotation
tools and its respective cognitive map (c) and the shortest path tree leading
to the southern exit (d).

the presence of intermediate targets supports choices at the
tactical level of the agent, with the computation of a graph-
like representation of the walkable space, based on the concept
of cognitive map [[19]. The method for the computation of this
environment abstraction has been defined in [20] and it uses
the information of the scenario configuration, together with
the floor fields associated to openings and final destinations.
In this way a data structure for a complete knowledge of the
environment is pre-computed. The cognitive map identifies
regions (e.g. a room) as nodes of the labeled graph and
openings as edges. An example of the data structure associated
to the sample scenario is illustrated in Fig. Overall the
cognitive map allows the agents to identify their position in
the environment and it constitutes a basis for the generation of
an additional knowledge base, which will enable the reasoning
for the route calculation.

This additional data structure has been called Paths Tree
and it contains the information about plausible paths towards a
final destination, starting from each region of the environment.
The concept of plausibility of a path is encoded in the
algorithm for the computation of the tree, which is discussed
in [2] and only briefly described here. The procedure starts
by considering the destination as the root of a tree that
is recursively expanded, adding child nodes mapped to an
intermediate destination reachable in the region. Nodes are
added if the constraints describing the plausibility of a path
are satisfied: in particular, paths that imply cycles or a not
reasonable usage of the space (e.g. passing inside a room to
reach the exit of a corridor, as illustrated in Fig. [[(a)) are
simply avoided.

The results of the computation is a tree whose nodes are
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Fig. 2. The complete life-cycle of the agent.

mapped to targets in the environment and each edge refers to
a particular path between two targets. The root of the tree is a
final destination, while the underlying nodes are only mapped
to openings connected or reachable from it. To complete the
information, each node n is labeled with the free flow expected
travel time (i.e. without encountering any congestion in the
path) associated to the path starting from the center of the
opening associated to n and passing through the center of all
openings mapped by the parent nodes of n, until the final
destination.

For the choice of their path, agents access the information
of a Paths Tree generated from a final destination End
with the function Paths(R, End). Given the region R of
the agent, the function returns a set of couples {(P;, tt;)}.
P, = {Qy, ..., End} is the ordered set describing paths which
start from )y, belonging to Openings(R), and lead to End.
tt; is the associated free flow travel time.

B. The Route Choice Model of Agents

This aspect of the model is inspired by previously discussed
empirical evidences suggesting the following stylized facts
about pedestrian tactical level decisions: (i) they are able to
consider perceivable congestion when planning their paths; (ii)
their reasoning is inevitably imprecise, both due to the limited
time spent for the decision as well as to the imprecise estimates
results of individual perception; (iii) they are influenced by
nearby pedestrians also through imitation mechanisms, appar-
ently conflicting with the general avoidance tendency.

By considering these aspects, the proposed approach enables
agents to choose their path considering distances as well as the
evolution of the overall simulation dynamics, especially con-
sidering visible changes in decisions of preceding agents. At
the same time, the model must provide a sufficient variability
of the results (i.e. of the paths choices) and the possibility to
be calibrated to reflect observed empirical data.

The workflow of the agent is again reported in Figure [2] to
allow the understanding of the tasks related to route choice.

First of all, the agent performs a perception of its surround-
ing situation, considering its knowledge of the environment,



aimed at understanding its position and the markers perceiv-
able from its region (e.g. intermediate targets). At the very
beginning of its life, the agent does not have any information
about its location, thus the first assignment to execute is a
self localization: it basically implies to perceive the values
of floor fields in its physical position and infers the location
in the Cognitive Map. Once the agent is aware of the region
where it is situated, it loads the Paths Tree and evaluates the
alternatives leading to its final destination.

Figure 2] also emphasizes that the evaluation of the possible
paths and the re-consideration of the plan do not only occur
when the agent is created in the simulation or when it passes
from a region to another (i.e. when new elements influencing
the choice can be perceived). The evaluation is also performed
at specific intervals, according to a timer that can assume
two possible values: (i) a value defining a short interval, set
right after the agent performs a change of its current plan,
to evaluate its adequacy (the new plan, in fact, could lead to
acquire new information about the state of the environment
potentially indicating that the new path leads to a worst
congestion than the one avoided); as a result of the evaluation
associated to the short interval timer, (ii) a higher value is
set when the agent confirms the current choice of path, or
if it changes back to the previous choice employed after the
short interval. This timer-based mechanism is introduced to
limit the natural non-determinism of the probabilistic approach
employed in this model and to avoid excessively frequent
changes in the adopted plan.

The evaluation of a potential plan is designed through the
concept of path utility, assigned to each alternative: just like
for the selection of the next cell at operational level, also the
choice of the overall plan of actions (i.e. set of intermediate
markers leading from the current region to the desired exit)
is in fact based on a probabilistic decision. The result of this
process generates a new intermediate target of the agent, used
to update the reference to the floor field to be followed at the
operational layer.

1) The Utility and Choice of Paths: The function that
defines the probability of choosing a path is exponential with
respect to the utility value associated to it. This is essentially
analogous to the choice of movement at the operational layer:
Prob(P) = N - V()

The usage of the exponential function for the computation
of the probability of adopting a path P is a good solution to
emphasize the differences in the perceived utility values of
paths, limiting the choice of relatively bad solutions, such as
those associated to much longer paths. More precisely, U (P)
comprises the three observed components influencing the route
choice decision, which are aggregated with a weighted sum:

U(P) = kuEvaly(P) — kqEvalg(P) + kyEvaly(P) (1)

where the first element evaluates the expected travel times;
the second provides a commonsense evaluation of the queuing
(crowding) conditions through the considered path and the last
one introduces a positive influence of perceived choices of
nearby agents to pursue the associated path P (i.e. imitation

of emerging leaders). All the three functions provide values
normalized within the range [0, 1], thus the value of U(P) is
included in the range [k, £i + K]

2) The Evaluation of Traveling Times: The evaluation of
traveling times is a crucial element of the model: even if
it is not the only considered factor, it still represents an
extremely significant element for routing decisions. First of all,
the information about the travel time tt; of a path P; is derived
from the relevant Paths Tree. In particular, Paths(R, End) is
used, where E'nd is the agent’s final destination (used to select
the appropriate Paths Tree), and R is the region in which the
agent is situated (it is used to select the relevant path P; in the
Paths Tree structure). This information is integrated with the
free flow travel time to reach the first opening €2 described
by each path:

TravelTime(Py) = tti + —g

2

where PFq, (z,y) is the value of the path field associated
to Q. in the position (z,y) of the agent and Speed, is the
desired velocity of the agent, that can be an arbitrary value.
The value of the traveling time is then evaluated by means of
the following function:

min
P; € Paths(r)

TravelTime(P)

(TravelTime(P;))

Evaltt (P) = Ntt . (3)

where Ny; is the normalization factor, i.e., 1 over the sum
of TravelTime(P) for all paths. By using the minimum value
of the list of possible paths leading the agent towards its own
destination from the current region, the range of the function
is set to (0,1], being 1 for the path with minimum travel
time and decreasing as the difference with the other paths
increases. This modeling choice, makes this function describe
the utility of the route in terms of travel times, instead of its
cost, but the most important consideration is that it allows
performing a normalization employing the minimum travel
time instead of the maximum. This improves the robustness
of the function with respect to the presence of outliers, few
paths (even just one) characterized by very high travel times
that would essentially flatten the differences among cost values
of other reasonable choices after the normalization, reducing
its discriminating power.

3) The Evaluation of Congestion: The behavior modeled
in the agent in this model considers congestion as a negative
element for the evaluation of the path. However, by acting
on the calibration of the parameter x, it is possible to define
different classes of agents with customized (and potentially
dynamic) behaviors, also considering attraction to congested
paths with the configuration of a negative value to generate
mere following or herding behaviors.

For the evaluation of this component of the route decision
making activity associated to a path P, a function is first



introduced for denoting agents that precede the evaluating
agent a in the route towards the opening €2 of a path P:

Forward(Q,a) =
{a' € Ag\{a}: Dest(a') = Q A
PFqo(Pos(a’)) < PFqo(Pos(a))}|

@

where Pos and Dest indicate respectively the position and
current destination of the agent; the fact that PFq(Pos(a’)) <
PFq(Pos(a)) assures that a’ is closer to € than a, due to the
nature of floor fields. Each agent is therefore able to perceive
the main direction of the others (its current destination). This
kind of perception is plausible considering that only preceding
agents are counted, but we want to restrict its application
when agents are sufficiently close to the next passage (i.e.
they perceive as important the choice of continuing to pursue
that path or change it). A schema providing a sample situation
describing the above defined functions is shown in Figure [3]
(a): in particular, agent A; has five other agents that should
reach passage {2, before it, according to current intentions and
state of the environment (agent A, is actually farther from
Q1), whereas there are six other agents that should arrive to
Q9 before it, should it change its plan (something that seems
implausible given this state of the system). To introduce a
way to calibrate this perception, the following function and
an additional parameter  are introduced:

Forward(Q2, a),
0,

PerceiveForward(Q,a) = { i}if;iifos(a)) <7

(&)

The function Eval, is finally defined with the normalization
of values of PerceiveForward for all the openings connecting
the region of the agent:

_ PerceiveForward(FirstEl(P), myself)

Evaly(P) = N width(FirstEL(P))

(6)

where FirstEl returns the first opening of a path, myself
denotes the evaluating agent and width scales the evaluation
over the width of the door (larger doors sustain higher flows).
It must be emphasized that this modeling choice represents
a deliberately imprecise estimation of the expected increase
in the travel time towards the next intermediate goal, a form
of commonsense reasoning, in the vein of [21]], unlike what
happens in a previous modeling effort [2]].

4) Propagation of Choices - Following Behavior: This
component of the decision making model aims at representing
the effect of an additional stimulus perceived by the agents
associated to sudden decision changes of other persons that
might have an influence. An additional grid has been in-
troduced to model this kind of event, whose functioning is
similar to the one of a dynamic floor field. The grid, called
ChoiceField, is used to spread a gradient from the positions
of agents that, at a given time-step, change their plan due to
the perception of congestion.

The functioning of this field is described by two parameters
pe and 7., which defines the diffusion radius and the time
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Fig. 3. Example situations describing Forward function (a) and ChoiceField
(in particular, for p. = 3) (b).

needed by the values to decay. The diffusion of values from
an agent a, choosing a new target ', is performed in the cells
¢ of the grid with Dist(Pos(a),c) < p. with the following
function:

1/Dist(Pos(a),c) if Pos(a) # c
1 otherwise

Diffuse(c,a) = { N

The diffused values persist in the ChoiceField grid for
T. simulation steps, then they are simply discarded. The
index of the target Q' is stored together with the diffusion
values, thus the grid contains in each cell a vector of couples
{(Qm, diffq ), (Qn, diff, )}, describing the values of
influence associated to each opening of the region where the
cell is situated. While multiple neighbor agents changes their
choices towards the opening €/, the values of the diffusion are
summed up in the respective diff o,. In addition, after having
changed its decision, an agent spreads the gradient in the grid
for a configurable amount of time steps represented by an
additional parameter 7,. In this way it influences the choices of
its neighbors for a certain amount of time. Figure [3| (b) shows
a sample situation in which agent A;, as a consequence of
changing its next intermediate target from €2; to 5, spreads
a ChoiceField (with range p. = 3) that can be perceived by
the agent immediately following it.

The existence of values diff;, > 0 for some opening €2y
implies that the agent is influenced in the evaluation phase
by one of these openings, but the probability for which this
influence is effective is, after all, regulated by the utility weight
k. In case of having multiple diff;, > 0 in the same cell,
a individual influence is chosen with a simple probability
function based on the normalized weights diff associated to



the cell. Hence, for an evaluation performed by an agent a at
time-step ¢, the utility component Eval; can be equal to 1
only for one path P, between the paths having diff Q. > 0in
the position of a.

IV. VALIDATION OF THE MODEL

While operational level aspects of pedestrian modeling
and simulation have a reasonably stable set of results that
a plausible simulation model should produce (to the point
that there is even a technical note by the National Institute
of Standards and Technology on this point [22]), a similar
type of standard validation process for tactical level decisions
and wayfinding is still not feasible due to lack of knowledge
and data. For these reasons, an experiment involving human
participants in a controlled setting has been performed in 2015
and its results have inspired and have been used for the design,
calibration and initial validation of the wayfinding model.

The experiment has been configured to achieve evidences
regarding the influence of crowding conditions on the route
choice. 46 students participated to the experiment, and the
setting was designed to describe an elementary choice: it was
characterized by a rectangular environment divided in two
areas of equal size along the long side, each one of 7.2 x 6 m?.
The two sides were connected by three passages, which were
creating three paths of different lengths, respectively Path,,
Path;, and Path. in order of length: Figure [I(b)| graphically
describes this scenario. The two gates defining longer routes
were closed according to four different procedures: (1) only
the shortest path was available; (2) Path, and Path; open; (3)
Path, and Path. open; (4) all paths available. Each procedure
has been repeated four times to achieve more consistent data.
For each procedure, the number of people employing each
path has been manually counted. More thorough details about
the experiment can be found in [3].

A similar setting has been simulated with the three sim-
ulation case studies: (i) wayfinding based on shortest path;
(i1) wayfinding based on quickest path, as defined in [2]; (iii)
wayfinding with the proposed model. Results are reported in
Table [ To achieve consistent and reliable results, a set of 50
simulations has been performed for the bottleneck scenario, for
each width of the door. A smaller set containing longer runs
has been configured for the fundamental diagram tests, where
the corridor was configured as toroidal with respect to the long
side in order to maintain the same global density. The chosen
configuration (K, g, £¢) = (100,25, 5) of the parameters is
effective to reproduce the distribution of chosen paths over
the simulated pedestrians, leading to much closer results to
the empirical data than with the other two case studies.

V. SIMULATION OF A REALISTIC SCENARIO

This section shows the application of the proposed and
overall model in a realistic scenario, simulating a sample
egress from a football arena similar to the one described
by [9]. The aims are: (i) to allow the reader to understand
the impact of the chosen modeling purposes on the simulated
dynamics; (ii) to discuss the difference of the results proposed
by the current model with a baseline implementation based on

Procedure 2 Path, Path,, Path.
Experiment 232 22.8 0
wayfinding based on shortest path 30.1 14.9 0
wayfinding based on [2] 40.8 52 0
Present model 23.9 22.1 0
Procedure 3 Path, Path;, Path.
Experiment 28 0 18
wayfinding based on shortest path 46 0 0
wayfinding based on [2] 44.9 0 1.1
Present model 28.6 0 17.4
Procedure 4 Path, Path, Path.
Experiment 20.8 18 72
wayfinding based on shortest path 30.1 14.9 0
wayfinding based on [2] 40.8 52 0
Present model 19.3 17.8 8.9
TABLE T

AVERAGE CHOSEN PATHS (OBSERVED AND SIMULATED) OF PEDESTRIANS
IN THE EXPERIMENTAL SCENARIO DESCRIBED IN [3]].

a pure floor-field approach and with the model proposed in [2],
which describes a model of wayfinding considering in a more
analytically precise the effects on the perceivable level of con-
gestion, without considering imitative effects. Finally, a simple
modification of the analyzed spatial configuration is evaluated
with additional simulations, identifying how counterintuitive
results — similar to well-known paradoxes in the transportation
field [23]], and also present in pedestrian dynamics [24] — can
be observed in this particular scenario.

Decision Parameters Value
utility parameter K¢t 100.0
utility parameter kg 25.0

utility parameter & s 5
ChoiceField Parameters

diffusion radius parameter p. | 1.2 m
decay parameter 7. 05s
diffusion time of agent 7, ls

TABLE IT
CALIBRATION PARAMETERS USED FOR THE WAYFINDING MODEL.

The scenario is represented in Fig. 4 starting areas
(green in the figure) are associated to the bleachers of the
stadium and they generate the agents in the simulation, whose
aim is to reach the outside area indicated with the blue object
(i.e. the Northern and Eastern borders of the scenario). Cyan
objects are the intermediate targets, generating the alternative
opportunities for agents’ wayfinding decisions. Larger ones
and closer to the start areas represents the corridors connecting
the bleachers to the atrium, where a total of 11 doors of 1.2
m of width provide the way out from the stadium. 250 agents
are generated in random positions of the related start area at
the beginning of the simulation, producing a total of 1000
pedestrians. The parameters of the model are the same one
employed for the validation tests.

Differences among pedestrians are introduced with respect
to the desired walking speed, defined through a discretization
of a Gaussian distribution described by p = 1.4 m/s and
0.2 m/s, to represent an egress situation in normal
conditions. The maximum speed in the model is set to 1.8
m/s to cover the majority of values defined by the distribution.
An example distribution from one simulation run is shown in
Figure The structure of the environment and the nature of
the simulated situation limit the impact of the assumption that
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Fig. 4. (a) A screenshot from a simulation run describing the environment used for the experiments. Colors of objects define their type as explained in
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Fig. 5. Comparison of evacuation times of the whole environment achieved
among the 4 scenarios. The black square represents the average, while the
individual time related to one iteration is plotted with a transparency effect
to describe the distribution.

agents are provided with a complete map of the environment:
first of all, pedestrians are in the process of exiting from
the environment, which means that they have already seen
a portion of the area at least once; moreover, the map is quite
simple, with associated plans that require the passage between
just one intermediate target (i.e. the associated path trees are
surely wide but quite shallow).

Within the illustrated scenario, four case studies have been
simulated with sets of 50 simulation runs, a number sufficient
to achieve consistent results. Case Study N. 1 aims only at
achieving a base line dataset, describing the results achievable
by only using the model at the locomotion layer following
the “shortest path” heuristics, without a dynamic wayfinding:
the fact that most direct gateways are used by a large number

of pedestrians causes congestions that are apparent in space
utilization diagrams that will be described later on, and that
also have an influence on the total evacuation time. Case Study
N. 2 represents uses the wayfinding model proposed in
that essentially tries to select the quickest path, employing
an analytically precise estimation of the impact of perceived
congestion surrounding the nearest intermediate targets (that
are supposed to be perceivable from the regions of which they
represent a border). Agents are therefore able to select the
best alternative at the time of planning to the shortest path
in case of a congested environment. Case Studies N. 3 and 4
use the model described in this paper, with parameters set to
ke = 100, kg = 25, Ky = 5. The fourth scenario is config-
ured with a modified version of the environment, achieved by
actually closing the middle gateway connecting the bleachers
to the atrium: this represents a counterintuitive design choice,
since it makes more difficult to exit the bleachers area but, on
the other hand, the atrium turns out to be much less congested,
smoothening the flow towards the final exits, reducing the
overall egress time.

These above discussed features are clarified with the results
shown in Figure [ and [ In particular, Figure [3] shows the
evacuation times of each run of the simulation sets of the
case studies, simply calculated as the time interval starting
at the beginning of the simulation and ending when the last
agent reaches its final destination, vacating the area. The model
described in [2] is substantially more efficient in terms of
travel times of agents, achieving an average evacuation time
of about 62 s. This is due to the effective strategy of the
agents that leads to an extremely well balanced usage of the
exit doors, shown in Figure [6{b): this kind of diagram shows
the evacuation times over the space. The values shown in
the map are achieved by storing the latest time step 7 in
which each cell has been occupied by a pedestrian in the
simulation, representing essentially how long it takes to vacate
the area associated to a given cell. Adopting the quickest path
approach the emptying times are extremely well balanced in



the available exits, something that does not happen with the
case study 3, where the two exit doors at the extremes of the
scenario become the most used due to their attractiveness in
terms of utility (they are the most obvious choices for the
agents coming from the top left and bottom right start areas,
due to the short distance). Some pedestrians initially directed
towards those exits, actually change the initial plan and finally
select other nearby and less congested exits, but this does not
happen so systematically as for case study 2.

Finally, case study 4 represents a typical “what—if” scenario:
in fact, we considered the issue of congestion in the exits
from the atrium and tried to actually reduce the flow from the
bleachers area by deciding not to use the central of the three
gateways from those areas to the common atrium. While this
certainly increases the congestion in the remaining passages
(although the maximum measured level of density is lower
than the one achieved in case study 3), the overall evacuation
time is significantly lower and the density in the atrium is also
much lower.

An additional, although less perceivable, effect of the adop-
tion of the model proposed in this paper is the fact that
available exits that are far from the gateways connecting the
bleachers and the atrium, which are actually never used in
case study 1 and extremely rarely employed in case study
2, are slightly more frequently selected in case studies 3 and
especially 4. Considering overall evacuation time, the approach
adopted in case study 2, that is the algorithm proposed
in [2]], actually represents a very rational choice from the
collective intelligence perspective, and it produces results that
are likely close to the system optimum (surely closer than all
the other proposed alternatives). This is particularly evident
by looking at Figure [§(b), where the emptying times are
balanced among the exit doors, much differently from what
shown by Figure [6fc). This difference actually represented
one of the main motivations leading to the definition of the
model here proposed. Indeed, several works from the literature
(e.g. [25]) generally observe an unbalanced usage of exit
doors in evacuation drills, leading to evacuation times even
significantly higher then in the optimal case. Moreover, the fact
that this model is calibrated employing results of an experi-
mental observation supports the conjecture that it represents an
approach closer to the actual wayfinding strategies employed
by pedestrians in everyday situations.

VI. CONCLUSIONS AND FUTURE WORKS

The paper has presented an approach integrating and im-
proving consolidated results on the modeling of pedestrian
behavior at the basic locomotion level with higher level
decisions on the overall path to be followed in an environment
composed of several regions connected by different gateways
or passages. The model, derived as an extension of a previous
approach described in [2]], has been set in the relevant literature
and it has been formally described, motivating its components,
calibrating it on an observed situation, showing exploratory
results in a real-world situation, in which the implications of
its application are discussed in comparison with results of
existing approaches from the literature. In particular, thanks

to the empirical results and calibration performed in [3], we
consider the present results as a step in the direction of more
plausible wayfinding decisions, that are surely more effective
than baseline “shortest path” based heuristics, but not as close
to optimality as results of a previous approach [2].

Current and future works are aimed at incorporating results
on the impact of groups in the simulated pedestrian population
within the wayfinding decisions; we are also considering the
opportunity of developing a serious game, also employing
video games and virtual reality technologies, to achieve a
more sustainable way of acquiring empirical evidences on
human wayfinding. This would allow to consider arbitrary
environmental structures, also more complicated than the ones
studied and simulated so far, and to achieve a more thorough
validation of the proposed model.
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