
Overview of a Scripting Language for
JADE-Based Multi-Agent Systems

Federico Bergenti, Giuseppe Petrosino
Dipartimento di Scienze Matematiche, Fisiche e Informatiche

Università degli Studi di Parma, 43124 Parma, Italy
Email: federico.bergenti@unipr.it, giuseppe.petrosino@studenti.unipr.it

Abstract—This paper outlines the major features of Jadescript,
a scripting language designed to support agent-oriented program-
ming. The core abstractions that Jadescript provides are those
related to event-driven agents and message passing, and the view
of multi-agent systems that it promotes is closely related to that
offered by JADE. Programmers using Jadescript are granted a
dedicated syntax largely inspired by modern scripting languages,
and major programming activities are supported in the scope of
the language with a marked raise of the level of abstraction with
respect to the direct use of JADE.

I. INTRODUCTION

Agent-Oriented Programming (AOP), as described in [1],
is a programming paradigm supported by specific program-
ming languages, each of which provides dedicated syntax
and semantics. AOP is related to the abstractions which
programmers use for the construction of agents and multi-
agent systems, but it is also related to the concrete syntax,
and underlying semantics, that programmers adopt to manage
such abstractions. Actually, the very first attempt at defining
AOP (e.g., [2]) is immediately related to the definition of a
programming language with suitable syntax and semantics.
For some years, the widespread adoption of agent platforms
like JADE [3] had the effect of decoupling AOP from specific
programming languages because agents and multi-agent sys-
tems were mostly developed using mainstream object-oriented
languages coupled with agent platforms. In recent years, the
original understanding of AOP has been revitalised, and a
number of AOP languages have been proposed (e.g., [4] for
a list of recent proposals). This paper overviews a novel AOP
language called Jadescript, which follows the path traced by
its predecessor JADEL (e.g., [4], [5]), and tries to reduce
even further the gap between an agent-oriented code and
a semantically equivalent pseudocode (e.g., [6], [7]). This
intention was the main guideline behind most of the design
choices for the language. Some of such choices are described
in next section to show how Jadescript was designed with
a strongly expressive and easy-to-read language in mind. For
this reason, Jadescript shares some characteristics with popular
scripting languages like Python, e.g., collection types and the
use of semantically relevant indentation.

Despite being a language intended to support programmers
in the effective use of JADE, Jadescript is not an object-
oriented language, at least not directly. Every Jadescript source
file, if valid, is primarily intended to be compiled to one or

more Java source files. Such files are then compiled to Java
bytecode using one of the available Java compilers, and they
are executed by a Java Virtual Machine (JVM) with the help
of JADE. Such an approach has already been proved effective,
and it is currently adopted, e.g., by JADEL and by SARL [8].
For the specific case of Jadescript, the choice of compiling
source files to Java source files was taken mostly for the
following reasons:

1) It grants interoperability between Jadescript and Java,
extending the potential of Jadescript and enabling the
possibility to reuse code written in one of the most
popular programming languages;

2) Available Java compilers emit Java bytecode using a rich
set of well-tested and decade-proven checks and opti-
mizations, which would be pointless to try to recreate
for a Jadescript to bytecode compiler; and

3) The semantics of Jadescript can be designed in terms of
the underlying semantics of Java (e.g., [9]), which eases
the process of designing the semantics of Jadescript and
it also helps ordinary JADE and Java programmers to
appreciate, and possibly adopt, Jadescript.

Finally, another important reason for the choice of compiling
Jadescript source codes to Java source codes regards the
availability of very powerful tools in the Eclipse ecosystem
for the construction of this type of compilers. In particular,
sharing the approach of, e.g., JADEL and SARL, the current
implementation of the Jadescript compiler uses the tools
of Xtext [10] to ensure a smooth integration with Eclipse,
which ultimately ensures that Jadescript programmers are
immediately supported by professional tools. Note that the
minimal interface to Java which is still present in Jadescript to
support integration with the features of the underlying JVM
is considered low-level its use is discouraged. For example,
Jadescript allows instantiating and accessing Java objects, but
there is no way to define new Java classes or interfaces.
Instead, concepts defined in ontologies written in Jadescript
offer a way to define and manipulate structured data types, as
described in next section.

This paper is organised as follows. Section II shows a brief
overview of Jadescript with emphasis on supported agent-
oriented abstractions using an illustrative example. Section III
concludes the paper and discusses possible future develop-
ments of the language and of its tools.

57



II. OVERVIEW OF JADESCRIPT

Jadescript is an AOP language intended to support the
implementation of agents using an event-driven style of pro-
gramming with emphasis on the possibility for agents to
exchange structured messages. The major abstractions that it
supports are (communication) ontologies, (agent) behaviours,
and agents. Such abstractions are well-known to JADE pro-
grammers, and Jadescript keeps them exactly as JADE pro-
grammers would expect (e.g., [11] for a detailed description of
such abstractions). This section shows how such abstractions
are supported in Jadescript together with a description of
other features that the language provides to accommodate
ordinary abstractions of event-driven programming. Note that
the overview of Jadescript discussed in this section is by far
not exhaustive and many features of the language are not
described. Only a selected set of features is presented and
interested readers are directed to the documentation which
comes with the distribution of Jadescript tools for further
discussions and examples.

In order to ease descriptions, the features of Jadescript
discussed in this section are often presented using illustrative
examples. Besides minimal examples used in the description
of statements and expressions, the illustrative example used
to present the agent-oriented features of the language is a
variation of the well-known ping-pong example discussed in
JADE documentation [11]. The proposed variation assumes
that there are two types of agents: agents of type ping and
agents of type pong. Ping agents contact known pong agents
with direct messages, and pong agents reply to such messages.
Ping agents count sent messages and include the current value
of their counts in outbound messages. Pong agents reply to
each received message citing the value of the count included
in the message. In detail, ping agents send FIPA request
messages [12] to all known pong agents to ask them to
perform an action called reply with argument counter,
which is the current value of the message count of the sender.
Upon executing the requested action, pong agents send back
a FIPA inform message [12] to the sender of the message
using the proposition alive(counter) as message content.
The multi-agent system is assumed to be hosted in a JADE
platform, and the list of pong agents is passed to ping agents
upon initialisation.

The remaining of this section describes the features that can
be included in a Jadescript source file. Note that a Jadescript
source file always has a specific structure. It starts with the
mandatory declaration of the module where all features defined
in the source file are contained using the keyword module.
Modules are simply intended as named groups of features,
each of which can be public or private to the module. After
the declaration of the module, imported features from other
modules are enumerated using the keyword import. Finally,
a list of definitions related to the major features supported
by the language, i.e., ontologies, behaviours, and agents, is
provided. All such features are discussed in the following after
a brief note on the procedural features of the language.

A. Data Types

Jadescript is a statically typed language, and its type system
is based on five groups of types: primitive types, ontology
types, collection types, behaviour types, and agent types. The
following is the list of primitive types currently supported by
the language (in alphabetical order):

1) boolean: Boolean logical values;
2) double: double-precision floating-point numbers;
3) float: single-precision floating-point numbers;
4) integer: integer numbers; and
5) text: texts (strings of characters).

Note that primitive types, with the exception of texts, are
mapped to Java primitive types with similar names.

Structured types are supported in Jadescript in terms of
concepts, propositions, predicates and actions declared in
ontologies (see Subsection II-C). Such structured types can
refer to other primitive, collection or ontology types. Fig. 1
shows an example of a declaration of an ontology which
includes the declarations of two concepts, one predicate, and
one action.

1 ontology BookShop
2 concept person(surname as text,
3 name as text)
4

5 concept book(author as person,
6 title as text, price as double)
7

8 predicate authorOf(author as person,
9 item as book)

10

11 action sell(customer as person,
12 item as book)

Fig. 1. Example of an ontology written in Jadescript.

Jadescript offers two collection types used to refer to
two of the most common data structures, namely lists and
maps. Examples of collection types are list of integer
and map of integer : text. Collection types can be
composed and with any available data type. In particular, any
data type can be used to declare the type of the keys of a map.

Finally, behaviour types and agent types are provided for
the manipulation of behaviours (see Subsection II-D) and of
agents (see Subsection II-E), respectively. Every behaviour
definition or agent definition implicitly defines a new data
type, whose use is restricted with respect of other data types.
In particular, Jadescript provides specific constructs for the
manipulation of behaviours and of agents to ensure that such
abstractions are given first-class support in the language.

Given that Jadescript is designed as a statically typed
language, the types of all features defined and referenced in
a source code are known at compile time, and there is no
way to synthesise new types at run time. However, in order to
relieve the programmer from the burden of explicitly declaring

58



the types of variables, the Jadescript compiler infers auto-
matically the types of variables from mandatory initialisation
expressions. Therefore, there is no need to explicitly declare
the types of variables in Jadescript. In addition, the compiler
tracks declared names and when a new name is found in
an assignment statement, it assumes that a new variable is
implicitly declared. Note that the sort of type inference that
Jadescript provides is limited with respect to other languages,
and the types of some elements of a Jadescript source code,
e.g., the types of formal parameters in function declarations,
need to be explicitly stated.

B. Statements and Expressions

Jadescript is an event-driven language and, as such, it
provides the common statements and expressions of proce-
dural languages. The following is a summary of supported
statements and expressions that cannot be considered specific
to the agent-oriented style of programming. AOP statements
and expressions are discussed together with the agent-oriented
abstractions that they support.

In the tradition of the programming languages derived from
the C language, function calls can be used as statements in
Jadescript. In addition, the do-nothing statement is just a
placeholder to allow users to write empty blocks of code. The
do-nothing statement is necessary because the delimitation
of blocks in Jadescript is based on indentation.

Jadescript provides a single statement to declare variables
and to perform assignments. The common infix = operator is
provided for such tasks. As discussed at the end of previous
subsection, the types of variables is inferred by the compiler
from mandatory initialisation expressions, and there is no need
to make types explicit.

Jadescript provides the create statement to create in-
stances of collection and ontology types. After the create
keyword, the first required term is the type of which the
instance is being created. Right after that, an identifier is
required, which determines the name of the new variable that
refers to the created value. If needed, a list of named arguments
is provided after the with keyword. Fig. 2 is an example
which uses the ontology types declared in Fig. 1.

1 create book odyssey with author homer,
2 title "Odyssey", price 19.99

Fig. 2. Example of the use of the create statement in Jadescript.

The classic if statement can be used to express conditional
blocks of code. Like in most procedural languages, the if
statement can also have multiple if-else branches and an
optional else branch at the end. After every condition, a new
block of code must be opened by increasing the indentation
level. The semantics of this statement is intuitively the same
of conditional constructs in common procedural languages.

Jadescript provides a first form of iterative statement in
terms of the common while-do statement. In addition,
iteration over collections is supported with the for-in-do

statement, which can be used to iterate over the elements of
lists or over the keys of maps. At each iteration, an element
from the collection which follows the in keyword is extracted
and, before the body of the statement is executed, it is assigned
to a variable whose name is declared after the for keyword.

In the procedural parts of a Jadescript source code, the
return statement can be used to terminate the execution
of a procedure or of a function and possibly return a value to
the caller. The use of the return statement is mandatory in
functions and all possible execution paths of a function must
terminate with a proper return statement.

A set of statements is provided by Jadescript to work on
collection types. In particular, add-to, remove-from, and
clear statements are used to manipulate the contents of lists.
Note that add-to and remove-from can possibly specify
an optional index to work on an element different from the last
element of the list. Similarly, remove-from and clear are
available for maps. Note that other common operations on
collections, e.g., the operation to access singles elements of a
list, are provided in terms of expressions.

Just like common procedural languages, Jadescript offers a
system of expressions. Every expression computes a value and
the types of computed values are determined by the compiler.
Operations can be combined to share operands and common
precedence and associativity rules are adopted to disambiguate
the order of evaluation. As usual, a limited set of expressions
can also be used at the left side of the = operator.

Ordinary Boolean expressions are formed in Jadescript us-
ing the keywords and, or, and not. Such Boolean operations
follow a lazy evaluation scheme: if the value of the whole
operation can be deducted from the evaluation of the first
operand, the second operand is not evaluated. In addition,
ordinary comparison operators with common semantics are
provided. Finally, arithmetic expressions are supported in
Jadescript using ordinary operators for addition, subtraction,
multiplication, division, and modulo.

Jadescript provides operators to work with collection types.
Ordinary square brackets are available to access the elements
of lists and maps. When applied to lists, they require a
nonnegative integer to be used as an index in the list. When
applied to maps, they require a value compatible with the type
of the keys to access the corresponding value in the map. Note
that square brackets can also be used at the left side of the
= operator to modify lists and maps. In addition, the size-of
operator can be used to retrieve the number of elements of
lists and maps. The contains operator has the function to
check if the collection returned by the evaluation of the left-
side operand contains the element returned by the evaluation
of the right-side operand. It can work on lists and on the keys
of maps. Finally, Jadescript offers a concise way to instantiate
lists and maps by declaring their contents. A list literal is
written as a comma-separated list of values between square
brackets. The type of the elements contained in the list is
computed by finding the closest common ancestor of all types
in the list literal. Similarly, Jadescript offers a way to quickly
instantiate a map by enumerating a set of key-value pairs. A

59



map literal is written as a comma-separated list of key-value
pairs between curly brackets, where keys are separated from
values by colons. The type of the keys of the map is computed
by finding the closest common ancestor of all types of the
keys of the map literal. The type of the values of the map is
computed by finding the closest common ancestor of all types
of the values of the map literal.

Type casting is supported in Jadescript using the as op-
erator, which forces the type of the result of the evaluation
of the expression on its left side to the type specified on its
right side, if types are actually compatible. Type inspection is
supported in Jadescript by means of a specific operator. The
is operator checks if the type of the value computed by the
expression at its left side is actually compatible with the type
specified as right operand.

C. Ontologies

Ontologies are used by agents to share concepts, actions,
predicates, and propositions, and to refer to them in messages
(e.g., [13]). The support for ontologies that Jadescript provides
allows managing all such features. Concepts are structured en-
tities used to describe the world where agents live. A concept
is defined by stating its name, its main properties, and whether
or not it can be considered an extension of another concept.
Actions are structured entities used to refer to the actions that
agents can be requested to perform. An action is stated by
declaring its name, its main properties, and whether or not it
can be considered an extension of another action. Predicates
are structured entities used to state logic expressions about the
world where agents live. Like concepts and actions, they can
have a set of properties, and they can extend other predicates.
Similarly to predicates, propositions are logic expressions:
they serve the same function as predicates, but they have no
properties. Finally, besides the declaration of concepts, actions,
predicates, and propositions, an ontology is characterised by a
name, unique in its module, and by an optional base ontology
that it extends. Fig. 3 shows the declaration of the ontology
used to implement the ping-pong example in Jadescript.

1 ontology PingPong
2 action reply(counter as integer)
3

4 predicate alive(counter as integer)

Fig. 3. Jadescript ontology used in the ping-pong example.

With the exception of propositions, all features declared in
an ontology can be used to create structured values, whose
elements can be accessed using the of operator. Fig. 4 shows
an example of the use of such an operator at the left side and
at the right side of the = operator.

1 author of odyssey = author of iliad

Fig. 4. Example of the use of the of operator in Jadescript.

D. Behaviours

Behaviours are used to describe how agents operate dur-
ing their lifetime in the multi-agent system. In Jadescript,
these are built on top of JADE behaviours and they are
characterised by the peculiar scheduling mechanisms of JADE
behaviours [11]. The behaviour construct can be used to
define new Jadescript behaviours. A minimal behaviour is
declared by stating its name, which must be unique in the
module, and its type, which can be cyclic or one shot.
More complex types of behaviours, as supported by JADE, are
planned for future versions of the language. The declaration
of a behaviour can restrict the type of the agents that can use
the behaviour by means of the construct for-agent, and
it can link the behaviour to an ontology with the construct
uses-ontology. Finally, the declaration of a behaviour
is completed with a list of optional features to be used to
actually implement the behaviour. Such features are properties,
functions, procedures, actions, and (event) handlers. Note that,
whenever an expression can be used in the definition of one
of such features, the keyword agent can be used to refer to
the agent which is currently linked with the behaviour.

A property of a behaviour is a part of the run-time state
of the behaviour. It is distinguished by a name, unique in
the declaration of the behaviour, a type, and an initialisation
expression. The type is deducted at compile-time from the
type of the initialisation expression by the compiler, and it is
normally not explicitly stated. Properties can be accessed from
other features of the behaviour, and also from other agents and
behaviours, using the of operator.

Functions and procedures can be declared in behaviours
to define parameterized blocks of code to perform tasks.
The declarations of functions must specify the types of the
values that functions return. Functions and procedures can
have zero or more arguments. The names and the types
of such arguments must be specified with a list of formal
parameters. Finally, functions and procedures have bodies in
which sequences of statements define what they are supposed
to do during their executions.

Actions are the primary features used to describe how
behaviours perform their tasks. When a behaviour is selected
for execution, its action is immediately executed. Note that
actions declared in behaviours are conceptually different from
actions declared in ontologies. The former are executable
pieces of code scheduled for execution with the behaviour,
while the latter are descriptions of the actions that agents can
be requested to perform, and they are primarily intended to
support communication among agents.

Various on constructs can be used to declare (event) han-
dlers in the scope of behaviours. Handlers are used to identify
the blocks of code that are supposed to be executed when
interesting events occur. For the time being, the most important
type of event handler available in behaviours is intended to
support the reception of messages. Handlers of this type assign
a name to the messages being received and specify a condition
that interesting messages are demanded to satisfy.

60



Behaviours can be activated using the specific
activate-behaviour statement, which can be used
inside the actions of agents and behaviours. This statement
creates a new behaviour and it marks the behaviour as active,
so that the behaviour can be scheduled for execution by the
agent. Some behaviours need a set of arguments in order
to be properly initialised. Such arguments are passed to the
behaviour by using the with keyword in the scope of the
activate-behaviour statement.

It is evident that sending and receiving messages are the
central activities to support agent communication in multi-
agent systems. The on-when-do construct is meant to man-
age incoming messages, while the send statement is used to
manage outgoing messages. There are two syntactical forms
of the send statement. The most basic form can be used if an
instance of the concept describing FIPA messages is available,
and it allows accessing all the features of FIPA messages [12].
On the contrary, the simplified form is an alternative way
to send messages in a more concise manner. The simplified
send statement creates a message and sends it, but only the
performative, the list of receivers, the content, and, implicitly,
the ontology can be specified.

Fig. 5 shows two behaviours used to implement the ping-
pong example. The SendToPong behaviour is scheduled
by ping agents to send messages to pong agents, while
ReplyToPings behaviour is used by pong agents to reply.
The count of outbound messages is a property of ping agents.

1 one shot behaviour SendToPong for
2 agent Ping uses ontology PingPong
3

4 other as aid
5

6 on create with pong as aid do
7 other = pong
8

9 do
10 counter = counter of agent
11

12 send request reply(counter) to other
13

14 counter of agent = counter + 1
15

16 cyclic behaviour ReplyToPings for
17 agent Pong uses ontology PingPong
18

19 on message m when
20 performative of m is request and
21 counter of m is reply do
22 r = content of m as reply
23 c = counter of r
24

25 send inform alive(c) to sender of m

Fig. 5. Two Jadescript behaviours used in the ping-pong example.

E. Agents

Jadescript agents are the core abstraction used to build
Jadescript multi-agent systems. Essentially, they are JADE
agents and they can be defined using the agent construct.
Agents are structured in terms of the following features: prop-
erties, procedures, functions, and (event) handlers. Properties,
procedures, and functions are the same features available in the
declaration of behaviours. In particular, the of operator can be
used to access the properties of agents. Handlers are restricted
forms of handlers with respect to the handlers available in
behaviours because they can be used only to react to events
regarding the lifecycle state of agents. One of such events is
captured with the on-create handler, which is activated
just before the agent becomes available to the multi-agent
system. Similarly, the on-destroy handler is triggered just
before the agent is removed from the multi-agent system.
Interested readers should consult JADE documentation [11]
for a description of the possible lifecycle states of an agent.
Fig. 6 shows the agents used to implement the ping-pong
example. Note that the example also uses a ReplyToPongs
behaviour, not shown in the figure, to ensure that ping agents
would iteratively send messages to pong agents.

1 agent Pong
2 on create
3 activate behaviour ReplyToPings
4

5 agent Ping
6 counter = 1
7

8 on create with args as list of text do
9 activate behaviour ReplyToPongs

10

11 for t in args do
12 activate behaviour SendToPong with
13 pong = aid(t)

Fig. 6. Jadescript ping and pong agents.

III. CONCLUSION

This paper presented a brief overview of the Jadescript
programming language. Jadescript is a language for event-
driven programming which supports the implementation of
agents and multi-agent systems by means of specific syntax
and semantics. The adopted syntax is designed to reduce the
gap between a Jadescript agent and a semantically equivalent
pseudocode, and it uses the common features of a modern
scripting language. The long-term vision of this project is
to allow programmers to easily adopt agents and multi-agent
systems to benefit from their relevant features in terms of
reusability and composability, and interoperability (e.g., [14]).

One of the major planned developments of the discussed
work regards the possibility of managing events different from
the reception of messages. This would require the definition

61



of a framework to let event provider feed events to agents,
and it would require syntactic enhancements to the language
to allow reacting to events in the environment and proactively
sensing the environment. Such a possibility would allow the
use of Jadescript in situations where agents are immersed
in complex and dynamic environments, e.g., the industrial
environments discussed in [15]–[18] or the highly dynamic
environments discussed in [19]. Furthermore, the results of
previous projects suggest that accommodating generic events
as first-class citizens of the language would make Jadescript
a valid tool for applications related to e-health (e.g., [20]),
next-generation enterprise collaboration (e.g., [21], [22]), and
indoor navigation (e.g., [23]–[30]).

Jadescript is currently supported by a set of tools packed
as an Eclipse plug-in to ease the adoption from programmers
with no specific background on agent technology. The current
version of tools and related documentation is available upon
request for authors, and an open-source distribution is planned
for the near future.

REFERENCES

[1] Y. Shoham, “An overview of agent-oriented programming,” in Software
Agents, J. Bradshaw, Ed., vol. 4. MIT Press, 1997, pp. 271–290.

[2] Y. Shoham, “AGENT-0: A simple agent language and its interpreter,” in
Proc. 9th Nat. Conf. Artificial Intelligence (AAAI 1991), vol. 91, 1991,
pp. 704–709.

[3] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, “JADE – A
Java agent development framework,” in Multi-Agent Programming:
Languages, Platforms and Applications, R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, Eds. Springer International
Publishing, 2005, pp. 125–147.

[4] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Agent-oriented model-
driven development for JADE with the JADEL programming language,”
Computer Languages, Systems & Structures, vol. 50, pp. 142–158, 2017.

[5] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Interaction protocols in
the JADEL programming language,” in Proc. 6th Int’l Workshop Pro-
gramming Based on Actors, Agents, and Decentralized Control (AGERE
2016) at ACM SIGPLAN Conf. Systems, Programming, Languages and
Applications: Software for Humanity (SPLASH 2016). ACM Press,
2016, pp. 11–20.

[6] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “A case study of the
JADEL programming language,” in Proc. 17th Workshop “From Objects
to Agents”, ser. CEUR Workshop Proceedings, vol. 1664. RWTH
Aachen, 2016, pp. 85–90.

[7] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “A comparison between
asynchronous backtracking pseudocode and its JADEL implementation,”
in Proc. 9th International Conference on Agents and Artificial Intelli-
gence (ICAART 2017), vol. 2. SciTePress, 2017, pp. 250–258.

[8] S. Rodriguez, N. Gaud, and S. Galland, “SARL: A general-purpose
agent-oriented programming language,” in 2014 IEEE/WIC/ACM Int.
Conf. Intelligent Agent Technology. Warsaw, Poland: IEEE Computer
Society Press, 2014.

[9] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Overview of a formal
semantics for the JADEL programming language,” in Proc. 18th Work-
shop “From Objects to Agents”, ser. CEUR Workshop Proceedings, vol.
1867. RWTH Aachen, 2017, pp. 55–60.

[10] M. Eysholdt and H. Behrens, “Xtext: Implement your language faster
than the quick and dirty way,” in Proc. ACM Int. Conf. Object Oriented
Programming Systems Languages and Applications (OOPSLA 2010).
ACM, 2010, pp. 307–309.

[11] F. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE, ser. Wiley Series in Agent Technology. John Wiley
& Sons, 2007.

[12] Foundation for Intelligent Physical Agents, “FIPA specifications,” 2002,
available at http://www.fipa.org/specifications.

[13] M. Tomaiuolo, P. Turci, F. Bergenti, and A. Poggi, “An ontology support
for semantic aware agents,” in Proc. 7th Int. Bi-Conf. Workshop Agent-
Oriented Information Systems III (AOIS 2005), ser. LNAI, vol. 3529.
Springer International Publishing, 2006, pp. 140–153.

[14] F. Bergenti, “A discussion of two major benefits of using agents in
software development,” in Engineering Societies in the Agents World III:
3rd Int. Workshop ESAW 2002, P. Petta, R. Tolksdorf, and F. Zambonelli,
Eds. Springer International Publishing, 2003, pp. 1–12.

[15] S. Monica and G. Ferrari, “Optimized anchors placement: An analytical
approach in UWB-based TDOA localization,” in Proc. 9th International
Wireless Communications & Mobile Computing Conference (IWCMC
2013). Cagliari, Italy: IEEE, 2013, pp. 982–987.

[16] S. Monica and G. Ferrari, “Impact of the number of beacons in PSO-
based auto-localization in UWB networks,” in Proc. European Confer-
ence on the Applications of Evolutionary Computation (EvoApplications
2013), ser. LNCS, vol. 7835. Springer, 2013, pp. 42–51.

[17] S. Monica and F. Bergenti, “A comparison of accurate indoor localization
of static targets via WiFi and UWB ranging,” in PAAMS 2016: Trends
in Practical Applications of Scalable Multi-Agent Systems, ser. AISC,
vol. 473. Springer, 2016, pp. 111–123.

[18] S. Monica and G. Ferrari, “Low-complexity UWB-based collision avoid-
ance system for automated guided vehicles,” ICT Express, vol. 2, pp.
53–56, 2016.

[19] F. Bergenti and S. Monica, “Location-aware social gaming with
AMUSE,” in Advances in Practical Applications of Scalable Multi-
agent Systems. The PAAMS Collection: 14th Int. Conf. PAAMS 2016,
Y. Demazeau, T. Ito, J. Bajo, and M. J. Escalona, Eds. Springer
International Publishing, 2016, pp. 36–47.

[20] A. Poggi and F. Bergenti, “Developing smart emergency applications
with multi-agent systems,” Int. J. E-Health and Medical Communica-
tions, vol. 1, no. 4, pp. 1–13, 2010.

[21] F. Bergenti, E. Franchi, and A. Poggi, “Agent-based social networks
for enterprise collaboration,” in Proc. 20th IEEE Int. Conf. Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE
2011). IEEE Press, 2011, pp. 25–28.

[22] F. Bergenti, G. Caire, and D. Gotta, “An overview of the AMUSE social
gaming platform,” in Proc. Workshop “From Objects to Agents”, ser.
CEUR Workshop Proceedings, vol. 1099. RWTH Aachen, 2013.

[23] S. Monica and G. Ferrari, “Particle swarm optimization for auto-
localization of nodes in wireless sensor networks,” in Proc. 11th Int.
Conf. Adaptive and Natural Computing Algorithms (ICANNGA 2013),
ser. LNCS, vol. 7824. Springer International Publishing, 2013, pp.
456–465.

[24] S. Monica and G. Ferrari, “Accurate indoor localization with UWB
wireless sensor networks,” in Proc. 23rd IEEE Int. Conf. Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE
2014). IEEE Press, 2014, pp. 287–289.

[25] S. Monica and F. Bergenti, “Location-aware JADE agents in indoor
scenarios,” in Proc. 16th Workshop “From Objects to Agents”, ser.
CEUR Workshop Proceedings, vol. 1382. RWTH Aachen, 2015, pp.
103–108.

[26] S. Monica and F. Bergenti, “Optimization based robust localization of
JADE agents in indoor environments,” in Proc. 3rd Italian Workshop
on Artificial Intelligence for Ambient Assisted Living (AI*AAL.IT 2017),
ser. CEUR Workshop Proceedings, vol. 2061. RWTH Aachen, 2017,
pp. 58–73.

[27] S. Monica and F. Bergenti, “Experimental evaluation of agent-based
localization of smart appliances,” in EUMAS 2016, AT 2016: Multi-
Agent Systems and Agreement Technologies, ser. LNCS, vol. 10207.
Springer, 2017, pp. 293–304.

[28] S. Monica and F. Bergenti, “Indoor localization of JADE agents without
a dedicated infrastructure,” in MATES 2017: Multiagent System Tech-
nologies, ser. LNCS, vol. 10413. Springer, 2017, pp. 256–271.

[29] S. Monica and F. Bergenti, “An experimental evaluation of agent-based
indoor localization,” in Proc. Computing Conference 2017. IEEE, 2018,
pp. 638–646.

[30] S. Monica and F. Bergenti, “An optimization-based algorithm for indoor
localization of JADE agents,” in Proc. 18th Workshop “From Objects to
Agents”, ser. CEUR Workshop Proceedings, vol. 1867. RWTH Aachen,
2017, pp. 65–70.

62


