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Abstract— Assistive technology is playing a crucial role in
supporting caregivers and patients with neurological disorders
to carry out home care services. Nevertheless, the technological
advances allowing for the automation of such services often
lead to systems composed of several devices that make patients
not always comfortable when interacting with them, so limiting
their effective use. In order to improve the acceptance level
of an assistive system, a robotic system is proposed to act as
a smart sensor whose functionalities to control its behavior
as well as to provide meaningful observations from the input
data are modeled as services. The system is supported by a
middleware able to automatically schedule a set of home care
services that are personalized for each patient considering the
personal daily routine, the cognitive status, and the personality
profile. In addition, the proposed system is able to react to
dynamic changes in the patient’s state by modifying the robot
behavior and adapting on the fly the set of proposed home care
services.

I. INTRODUCTION

People with mild cognitive impairment, as well as many
old people, prefer to live in their own home, when pos-
sible. However, they are not always in the condition to
autonomously take care of themselves, since, for example,
they can eat in a not proper way, they can make mistakes
while following the medical prescriptions, or even not to
perform activities that could improve their physical state.
The possibility to monitor the proper handling of their
personal needs, referred to both the so-called Instrumental
Activities of Daily Living (IADL) and the Activities of Daily
Living (ADL), and to detect deviations from previous routine
patterns, is a primary challenge in supporting this type of
people and their caregivers. Even though assistive technology
is mature enough to theoretically provide an accurate moni-
toring of a patient, its use in a concrete scenario is still far
from being widely adopted because of the associated costs,
and the low acceptance level from people not used to it.

Usually, the human activities recognition and monitor
problem was tackled using environmental sensors (e.g.,
cameras and RFID), and “wearable” sensors (e.g., mobile
phones, wrist watches). In the first case, the devices are
positioned at certain points of interest distributed through-
out the space, so requiring structural environmental setup,
while the use of wearable sensors represents a more viable
approach from an economic point of view that does not
require a structural intervention in the environment. Both
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approaches have disadvantages. In particular, elderly patients
are reluctant to continually wear multiple sensors on the body
[1]. On the other hand, embedding sensors on a myriad of
daily living objects has challenging operational costs and
battery-life issues [2], and it requires an invasive and massive
intervention in the house. Finally, video sensors are often
viewed as too intrusive to be accepted in assisted living
homes due to privacy concerns.

In addition, assistive technology products do not take
into account the cognitive and personality characteristics of
their end-users, such as their specific deficit, emotional and
behavioral problems, the attitude towards technology, and
their physical and social environment, which could affect
their acceptance, use, and effectiveness. A valid assistive
system with a high degree of user acceptance must be
based on the knowledge of the potential users, as well as
on contextual information, that provides essential parts of
effective planning of the assistance process [3].

In this paper, we introduce the overall architecture of
an assistive technology system, composed of a low-cost
mobile robot, wearable sensors, and a middleware soft-
ware infrastructure responsible for automatically providing
a monitoring plan that is generated by considering patient’s
needs and preferences. The plan can be adapted according
to detected changes both in the patient’s conditions, and in
the environment. The proposed system is being developed
within the UPA4SAR project with the goal of providing an
affordable and well-accepted monitoring system. The mobile
robot is used as an active sensor for monitoring the user’s ac-
tivities, together with a wearable device, in order to minimize
structural interventions and therefore to increase the spread
and the acceptance of such applications. The robot, given its
physical presence, represents an added value for a monitoring
system since it can proactively provide additional services
to the user, such as to communicate with relatives and
caregivers in video-conferencing, and to provide cognitive
support with reminders and notifications. These services play
an important role to improve the system acceptance and
usefulness perceived by the user. The possibility to schedule
a set of personalized and adaptive monitoring tasks relies
on the possibility to profile the patient’s individual skills
related to IADL, the cognitive status, and the personality.
This collected information together with dynamic informa-
tion gathered from ambient sensors is used to customize
the monitoring tasks with respect to the current detected
situation. We present an example where state of the art
machine learning techniques are adopted for implementing
different monitoring activities that could be dynamically
selected considering the available contextual information and
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whose execution can be adapted to the specific user.

II. THE PROPOSED FRAMEWORK

The proposed framework for the generation and the execu-
tion of personalized assistive plans for home patients affected
by neurological disorders is composed of different modules
organized according to a layered architecture depicted in
Figure 1. The aim of the design is to decouple low-level
functions for managing devices, for data elaboration, and for
basic robotics behaviors, from high-level functions adopted
for reasoning on the assistive plans.

The lower layer is the Daily Assistive Workflow Gener-
ator (DAWG) [4], [5], a middleware responsible for the
generation of a personalized set of assistive tasks, named a
Daily Assistive Workflow (DAW), and for its reconfiguration
when changes are detected by the Smart Environment. A
DAW represents the flow of the activities that the robot,
or even other devices, must perform to monitor the patient,
and to interact with him/her. The DAWG is composed of
different modules: the first processes the daily routine of
the patient extracting the activities to be monitored, that
are considered as goals to be fulfilled. Starting from the
set of goals (according to the goal model), the encoded
user profile, and the high-level observations deriving from
the interaction of sensors with the environment and the
elaboration of such data, the DAWG selects the assistive
actions able to fulfill the goals, named an Abstract Assistive
Actions. They are represented as parametric actions that have
to be configured according to the patient’s cognitive and
personality profile. The configuration consists of selecting
a specific action to execute, named a Daily Assistive Action
(DAA) that is a concrete instance of an abstract assistive
action. The separation between abstract and concrete actions
is adopted to manage personalization and adaptation of
the DAW, decoupling the general description of a certain
action from its actual implementation concerning the way
it is performed. In details, an Abstract Assistive Action
specifies the high-level interface of a certain functionality,
including its input parameters, preconditions, and possible
outputs. Conversely, a Daily Assistive Action represents the
actual implementation of the action executed by using the
suitable Sensors and Actuators nodes provided by the Smart
Environment. For each Abstract Action, a list of several
Daily Assistive Actions may realize the same functionality.
Moreover, effective planning of the activities will also have
to consider contingent situations that may affect the patient’s
particular conditions, and so his/her possible habits, e.g. an
activity involving the control that the patient has taken his
medication may no longer be necessary if the patient had an
unexpected medical necessity.

The middle layer is composed of DAAs. The goal of such
actions is to effectively provide either different algorithms for
analyzing input data to monitor the user state and behaviors
(i.e., using different input data and modalities to obtain
such information), and so updating the observations and the
user profile, but also to implement different navigation and
interaction strategies to be used by the robot. This approach

is in the direction of integrating robot functionalities (DAAs)
as services that can be requested for the seamless integration
of robots, as well as other IoT devices, into a web or cloud
computing environment [6], or Robot as a Service (RaaS) [7].
In this Service Oriented Architecture view of the assistive
domain, RaaS are endowed with such functionalities, or
services, to control their behavior as well as to provide
meaningful observations from the input data [8]. Moreover,
a robot could use different services to provide the same
functionality, and a service could be shared and used by
different robots. Some of these services will be requested by
the execution of the Daily Assistive Workflow, while others
are autonomously running or activated by events.

To obtain a better adaptation to the user, the project pro-
poses to equip the user cognitive profile with a psychological
personality profile, and to adapt the robotic behavior not
only with respect to the choice of the single activity to be
undertaken (selected by the DAW), but also with respect to
the way in which the same activity is performed. Indeed, in
order to be effectively deployed, also the robot should be
able to regulate its social interaction parameters (e.g., the
interaction distances, proxemics, the speed of movements,
and the same modality of interaction) based on personality
factors as well as of the cognitive state of the user. Hence,
the user profiling plays a fundamental role both to generate
a DAW tailored for each patient, but also to modulate the
execution of Daily Assistive Actions. In fact, according to the
personality of a patient, some actions can be performed with
a different interaction modality, such as direct interaction
with the robot if the user is in a state of inactivity and
calm, or remote interaction with the robot staying at a certain
distance, if the user is in a state of agitation.

The upper layer is represented by the Smart Environment
composed of sensors and actuators that play the twofold
role of gathering information on the patient’s state, and
of performing assistive actions. Low-level functionalities
make direct use of sensors and actuators installed into the
Smart Environment, which are respectively managed by the
DAA. Figure 1 shows how low-level nodes are combined to
compose high-level functionalities.

III. A FIRST FRAMEWORK PROTOTYPE

In this section, we present some modules of the proposed
general frameworks that have been already developed in the
first phase of the UPA4SAR project. The Robot Operating
System (ROS) is employed to ensure modularity and scala-
bility of the architecture.

A. User Modeling

Problems related to functional limitations, behavioral and
cognitive limitations, reduced capabilities, etc., that are spe-
cific to each individual, could strongly influence the user
acceptance as well as the effectiveness of assistive technolo-
gies. Such knowledge is typically in the hands of clinicians
that are provided with a variety of cognitive and behavioral
evaluation instruments that aggregate a large amount of
information that, potentially, could be extremely important
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Fig. 1. The proposed architecture for a smart home assistive system

in order to provide personalized ICT technologies for a
large class of the population with psychiatric and cognitive
disabilities. Since the assessment of cognitive impairments
is typically carried out using of a wide range of clinical
tests, starting from the analysis of such tests, the project’s
goal is to develop such computational models of the user’s
profiles to provide the possibility of obtaining a personalized
interaction with the robot in the assistive context.

In details, in this project, we considered characteristics
that are related to the user personality since they affect the
way public spaces are shared and the perception of socially
acceptable movements [9]. The NEO Personality Inventory
[10] measures five dimensions of the personality according
to the Big Five Model: Neuroticism, Extraversion, Open-
ness, Agreeableness, and Conscientiousness. Cognitive and
functional characteristics that are related to the Alzheimer
disease are modeled by considering the ACE-R [11] and
Clinical Dementia Rating (CDR) [12]. The ACE-R is a
rapid screening battery assessing several cognitive domains
including attention/orientation, memory, fluency, language,
and visuospatial. Finally, CDR is used to characterize six
domains of cognitive and functional performance applicable
to Alzheimer disease such as Memory, Orientation, Judg-
ment and Problem Solving, Community Affairs, Home and
Hobbies, and Personal Care.

B. Sensors and Actuators

The smart environment relies on a series of sensors and
actuators. More specifically, we considered two types of

robots. A Pepper robot, developed by Softbank, that is able to
navigate using sonars, lasers and bumpers. It has two frontal
cameras and one RGB-D camera for object recognition, face
recognition and people recognition. It can interact with the
user using the speech recognition and speech synthesis by
4 directional microphones and two loudspeakers but also
using a tablet. It can also locate the user position and
identify the user emotions using microphones. The second
considered robot is Turtlebot 2, that is a low-cost mobile
base configured with a tablet on the top of it and a Microsoft
Kinect 2 (RGB-D camera). The base of the robot is a Kobuki,
endowed with bumpers and infrared sensors to navigate and
automatic docking for charging the battery pack. iBeacons
are used for the indoor positioning system. Such devices
are capable of transmitting a signal at low cost and energy,
using Bluetooth Low Energy (BLE) technology. We used
the strength of the signal, the RSSI (Receive Signal Strength
Indicator), to define proximity relations in order to pinpoint
the position of the door of the rooms. Therefore, iBeacons
are displaced near room doors, and the signals are captured
through an Android smartphone. Finally, we used a Polar
M-600 smartwatch that mounts accelerometer, gyroscope,
optical heart rate measurement with 6 LEDs. The optical
heart rate can alert us in dangerous situations, giving in real
time the heart condition and the state of health of the patients.

Specifically, each Sensor Node publishes collected infor-
mation over the time on its corresponding Sensor Topic,
whilst a generic Actuator Node subscribes to a specific
Actuator Topic to handle its parametric execution.
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Fig. 2. Example of an abstract workflow generated for the Wake-Up activity

C. Daily Assistive Workflow Generator

The Daily Assistive Workflow Generator (DAWG) is the
component responsible for the generation of monitoring
assistive plans. In order to perform this task, the DAWG
takes into account the user’s profile described in Sec. III-A
along with the daily routine, the current observations and the
entire set of Abstract Assistive Actions, and Daily Assistive
Actions. The daily routine is represented by a set of activities
that the user has to perform throughout the day, each of
them labeled with a time constraint. The daily routine is then
encoded into a set of goals, one for each activity, that the
system has to achieve with respect to the time constraints.
The workflow generation process consists of two main steps.
The first step is responsible for the generation of the abstract
daily assistive workflow, representing the set of actions to
be scheduled to monitor the daily routine of the patient,
organized as a set of goals to be fulfilled. Figure 2 shows an
example of an abstract workflow for the Wake-Up activity,
representing the set of abstract actions necessary to monitor
the Wake-Up activity. Each Abstract Assistive Action has to
be instantiated by a concrete Daily Assistive Action in order
to be executed. Therefore, an abstract workflow represents a
high-level template for the sequence of actions required to
achieve a certain goal.

The second step is responsible for the instantiation of a
specific Abstract Assistive Workflow. This process starts as
soon as a certain time constraint triggers a new goal. For
instance, with respect to the workflow shown in Figure 2,
the instantiation process will be activated at 9:00 am by
triggering the corresponding goal Wake Up at that time.
When a goal is triggered, the system retrieves the abstract
workflow associated with the current activity to be monitored
and turns it into a concrete workflow. The instantiation
process follows the structure of the corresponding abstract
workflow. Its general structure is represented as a graph
G(V,E) in which each vertex v ∈ V represents an abstract
action to be instantiated and each edge e ∈ E represents
a transition labeled with a condition. Starting from the
first vertex, each abstract action is instantiated by selecting
the most suitable one among the available concrete Daily
Assistive Actions. For instance, in Figure 2, the abstract
assistive action Check Wake Up may be implemented by
different concrete actions offering the same functionality

Fig. 3. Monitoring the user activity by indirect observation (left), or by
making a request (right)

with different modalities. If we consider the environmental
setting depicted in Figure 1, Check Wake Up can be actually
realized by the Activity Recognition module provided by the
Smartwatch, as well as by the Robot via Camera. Moreover,
even the Robot’s Dialogue System can be suitable for this
task. The main characteristics we consider to differentiate
a concrete action from each other are its reliability and
the interaction modality. These non-functional parameters
are then matched against the user profile to determine a
ranking over possible concrete implementations to select
the one that represents the best trade-off between user
needs and reliability. Once an abstract action is instantiated,
the selected concrete implementation can be executed by
the corresponding device, e.g., the robot. In addition, the
concrete action can be executed in different modes (e.g.,
interaction modes), i.e. with different values of some non-
functional parameters. Here, the execution of a certain action
produces as output new observations deriving from sensors
installed into the environment. These observations are used
to determine whether a certain state is reached. Hence, the
system is able to determine the transition to the next vertex
in the graph after the execution of each concrete assistive
action. When a final condition is reached, the workflow
execution is completed and the system waits until a new
goal is triggered.

D. Daily Assistive Actions

The set of Daily Assistive Actions considered in the
project includes, for example, the IADL recognition [13],
emotion recognition, disengagement recognition [14], human
search, approach and interaction with the user, speech recog-
nition and speech synthesis. Between these tasks, we already
implemented some instances of the IADL recognition that is
activity recognition via wearable data and activity recogni-
tion via camera using pose/skeleton recognition. Moreover,
the robot Dialogue System could be used to directly ask
confirmations to the user or the caregiver. Here, we briefly
introduce these three implementations of the abstract action
monitoring.

1) Dialogue System: For the robot to approach the user
and to perform a user-tailored interaction, it has to find
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him/her, and subsequently position itself properly with re-
spect to the activity requirement. When the robot is instructed
to approach or start monitoring the subject, the wander
module - implemented with a ROS node - executes a walking
routine in order to find the person in the room: it will move
forward for a few seconds, then it will steer the robot first
to its right and then to its left, for a number of seconds each
turn, that has to differ to avoid getting stuck in a dead end.
The obstacle avoidance relies respectively on the Softbank
NAOqi-API for the Pepper robot and on bumpers placed at
the base of the Turtlebot2, and if an impediment is found, the
robot will turn to direct elsewhere. The robot will navigate
in the room until the user is found.

Once the user has been detected, it is necessary to recog-
nize his/her pose so that the robot can move to the correct
approach/monitoring position. Pepper and the Turtlebot2
recognize the human skeleton with an RGB-D camera. The
pose/skeleton recognition algorithm considers only the single
depth image of each frame to predict the human skeleton
joints. The predicted joints are translated on the average point
between the points of the torso, left and right shoulder, left
and right hand. Then they are normalized with the standard
score, computing the mean and the standard deviation on the
entire sequence of the instance. The normalization reduces
the dependencies with the length of the limb and the height
of the person.

Thanks to these skills, the robot can search a human
by wandering in the rooms, considering the user position
given by the iBeacons to narrow down the search area. Once
the user position and his/her pose are recognized, the robot
approaches the person with a direction and a speed that
depends on the user profile. The robot will then ask directly
the user a confirmation for the hypothesized activity by using
the tablet, speech interaction or both (see Figure 3 (right)).

This action is considered to have a strong reliability since
it directly asks for a confirmation to the user, but, conversely,
it is considered invasive since it implies a direct interaction
with the user and consequently a distraction from his/her
current activity.

2) Activity Recognition via camera: Differently from the
previous action, the robot could also try to recognize the
user activity by observing directly the user behavior. In
this case, the robot will stop at a longer distance from the
user (that again depends on the user preferences). Once the
robot approaches the user a ROS node, that implements the
Activity Recognition algorithm proposed in [13], detects the
activity performed sampling a window of 140 frames of
human skeleton data with 30 fps. This algorithm is based
on a deep learning model trained on a dataset. It has two
deep layers, a CNN layer [15] that considers the spatial
dependencies of the skeleton joints and an LSTM layer [16]
that extracts the temporal dependencies of the frames in the
video sequence. The model predicts the activity taking in
input the skeleton data (see Figure 3 (left)). The activity
recognized are brushing teeth, chopping, drinking water,
opening pill container, relaxing on the couch, rising mouth
with water, stirring, talking on the couch, talking on the

phone, wearing contact lenses, working on the computer,
writing on a whiteboard.

The Activity Recognition via camera action is less reliable
than the previous one, but also less invasive, since it would
not distract the user from his/her current activity. However,
also the use of the camera is sometimes considered invasive.

3) Activity Recognition via wearable: Finally, another
possibility is to monitor the user behavior by directly con-
sidering data coming from a wearable device. The Activity
Recognition via wearable service is a ROS node which is
in charge of gathering data from an accelerometer to predict
low-level activities. The recognized activities are standing
up, getting up, walking, running, going up, jumping, going
down, lying down, sitting down. Each instance contains the
accelerations along each of the three Cartesian axes with a
frequency of 50 Hz. The accelerometer information is given
in input to a deep learning model formed by two LSTM
layers.

With respect to the direct observation, Activity Recogni-
tion via wearable action is considered less invasive, since it
does not use a camera or interrupt the user. However, the
recognition ability is related only to human posture, so in
order to recognize different high-level behaviors, such for
example, watching tv, this information has to be integrated
with other information, such as the location of the user.
Hence, it is not as reliable as the direct observation.

IV. CONCLUSIONS

Adaptation and user modeling play a key role when it
comes to design smart assistive systems to help elderly
people live a longer and more independent life at home. A
recent survey on self-adaptation for cyber-physical systems
[17] highlights that robotics and health-care systems consti-
tute about 10% of domains application requiring adaptation.
Static and dynamic user’s profiles have been already consid-
ered for Ambient Assisted Living and Robotics systems to
provide adaptive reminders and modulate robotic behaviors
accordingly.

Several systems have been designed for home-care assis-
tance providing a different degree of personalization, but
no adaptation on the fly that has been a major research
issues in ambient intelligence scenarios [18]. For example,
GiraffPlus [19] is an Ambient Assisted Living (AAL) system
which deploys a network of sensors to collect elderly daily
behavioral and physiological measurements. The system uses
both static and a dynamic user profile to provide adaptive
reminders through a telepresence robot. Other works encode
the daily routine as a set of temporal constraints to determine
the user’s plan throughout the day [20].

An effective assistive robotic system for home care assis-
tance should be affordable and well accepted by end users.
In order to meet these requirements, our aim is to further
explore user’s adaptation by considering a dynamic envi-
ronmental setting where each functionality can be realized
in several ways and concrete implementations are selected
according to the user’s profile.
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In this paper, we present a framework, under development
within the project UPA4SAR, that allows generating person-
alized and adaptive assistive plans for home patients affected
by neurological disorders, that are executed by the smart
environment devices that are part of the framework. Hence,
the framework integrates business processes with real-world
objects, humans and digital services [21]. The generated
plans are executed by the set of sensors and actuators that
equip the environment the patient is located in.

The proposed framework is designed according to a lay-
ered architecture that allows decoupling the actual execution
of an assistive plan, from its planning and adaptation. The
planning and adaptation depend on the cognitive and person-
ality profile of the patient, in addition to dynamic information
on his/her state as detected by the smart environment. This
separation allows to guarantee the system functioning ac-
cording to both the available information about the patient’s
profile and the specific assistive actions available in a specific
setting of the Smart Environment. The rationale of this choice
is to provide a modular and extensible framework where
assistive actions to be performed can be added, removed and
customized according to the specific setting of the Smart
Environment, and the high-level reasoning that allows for
the personalization and the adaptation of the daily assistive
plan that is performed according to the collected profiling
information [22]. The proposed framework is in line with
the view of RaaS business models, especially in the field of
health-care whereas different applications and services for
managing the user data are required for decoupling robots
from the available functionalities and taking advantages of
cloud-based computing platforms to provide computational
power.
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