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Abstract—This paper presents a multi-layer software archi-
tecture to simulate, in a accurate and realistic way, a set of
unmanned aerial vehicles (UAVs) operating in a specific mission.
A set of tools are employed, each one to simulate a specific
part of the overall UAV hardware and software structure: a
3D visualization engine, a physical simulator, the flight stack
and a network simulator to handle interactions among UAVs.
A software architecture able to orchestrate and coordinate such
tools is proposed, based on multiple layers of processes divided
into two categories. The described approach is based on a
protocol system for exchanging messages to synchronize the
various simulation tools. The simulation of the unmanned aerial
vehicles can therefore be performed on a single machine or
distributed on several machines in order to create a distributed
simulation and spread the workload. In this way, it is possible
to simulate the behavior of the UAVs and also to reason about
the problems due to network communications.

I. INTRODUCTION

Recent research in the field of ummanned aerial vehicles
(UAVs) shows a trend to investigate approaches and algorithms
for autonomous flights in flocks [17], [19], [6], [8], [10], [14],
[5], [9], [11], [16], [20], [7], [22], [21], [3]. Such a research
area implies the integration of different technologies.

First of all, UAVs must be made able to fly more or less
autonomously; to achieve this objective, a proper CPU-based
flight control system must be employed, implementing all
the control algorithms to perform UAV stabilisation, position
control, path following, etc. In addition, since UAVs of a
flock should be able to communicate to each other in order to
perform coordination, a “inter-UAVs” wireless communication
system is mandatory, together with an adequate protocol
guaranteeing a communication which is reliable to a certain
extent. Often also an interaction with a base station is required,
in order to obtain telemetry data and let operators to have
a form a mission control; this requires obviously a wireless
communication channel that, however, could have different
characteristics with respect to the inter-UAV system. Flocking
not only implies the presence of communication channels but
also—and this is indeed more important—a flocking algorithm
able to drive UAVs in forming and maintaining the flock shape
and, altogether, perform the flight mission; in this sense the
literature reports many approaches that can be mainly subdi-
vided in centralised and distributed. Centralised approaches
adopt on a central entity that elaborates and sends flight or

path commands to UAVs; while these solutions can guarantee
optimality in UAVs distribution or area coverage, they have
the drawback of presenting a single point of failure, that is
the central entity itself. Distributed approaches are based on
algorithms that let UAVs (by interacting) self-organise and
self-maintain the flock, and usually exploit the classical sep-
aration, alignment and cohesion rules [17] that are proper of
flocking [10], [9]; these approaches, that indeed are preferred
to centralised ones, are surely more fault-tolerant but often are
not able to achieve optimality, since each UAV performs its
evaluation of flight path basing on the information, coming
from other UAVs, that could not be complete or updated.

As a result, UAV flocking integrates concepts, techniques
and solutions proper of control systems, wireless communica-
tion, coordination and agreement and self-organisation: the
natural consequence of this statement is that implementing
such kind of systems is quite far from a simple task. And
to make things yet more complicated, testing UAV-based
solutions is particularly hazardous: flying machines have the
bad characteristic, when a fault occurs (and during testing
this could be a common case), of falling into the ground,
thus provoking crashes and the need to repair or rebuild the
mechanical frame1. For this reason, the common approach is to
make extensive simulation campaigns before testing solutions
on real UAVs.

Simulators are thus key tools in this research field, but, in
order to be as realistic as possible, they must integrate all the
technology aspects cited above plus another not less important
one: the physical behaviour of the UAVs.

Indeed, UAVs are weird mechanical system with a dynamics
that tends to oscillation or instability, above all in presence of
specific environmental conditions (e.g. wind or turbulence).
Unfortunately, a simulator able to integrate all of this aspects
does not exist, but there are many simulators implementing
each one of the specific aspects described: an integration of
all of them is the simplest way, but it is not straightforward
and often requires hacks or instrumenting the code in order to
achieve the objective.

This paper goes in this last direction: it presents a technique
to integrate different simulation tools in a single large envi-

1When such crashes are not hazardous for people.
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ronment able to simulate: UAV physics, UAV control, wireless
communication, flocking algorithms. In particular, the tools
employed are Gazebo [12] (for physics), ArduPilot [1], as
flight control platform and ns-3 [18], for wireless network
simulation. All of them are integrated into a large system that
coordinates them and the simulation. The adopted solution
is also modular and distributed: while a 3D visualisation
environment is provided (by Gazebo), it can also be disabled
in order to perform batch simulations and gather specific
numerical results; moreover, since in the presence of a good
number of UAVs the CPU cost of simulation could become
very high, the various parts can be also split over several
interconnected computers.

The paper describes the software architecture we used in
implementing such an integrated simulator and is organised as
follows. Section II describes the single simulation tools used
in the integration. Section III presents the integrated simulator.
Section IV provides our conclusions.

II. TOOLS

A. Gazebo

Gazebo2 [12] is a 3D robotic simulator with a physical
engine capable of simulating, in efficient and accurate way,
a large number of robot types. Simulations can be performed
by simulating both an indoor or outdoor environment. Gazebo
also provides the support to simulate various types of sensors,
actuators and interfaces.

Robot models are designed by means of an XML file
that defines the structure in terms of fixed parts, joints with
their physical parameters (geometry and dynamics), driving
characteristics, and specific sensors. Robots in Gazebo can be
controlled externally by means of software plugins; the model
is based on a publisher-subscriber paradigm that lets plugins
obtain data from sensors and intervene on actuators by sending
proper commands or set-points.

The software structure of Gazebo is designed to keep
separated the 3D visualisation part (called gzclient) from the
physical engine (called gzserver). A simulation can be exe-
cuted without display (this is useful to run batch simulations)
and both parts can run in two different computers in order
to take advantage of a distributed environment (both parts are
CPU-intensive tasks thus the execution in different servers can
speed-up the simulation).

This simulator is widely used to test new algorithms in
virtual environments and to analyse robots’ behaviors. In
addition, Gazebo takes advantage of multiple physical engines
and provides an extensive library of ready-to-use robot models.
Of course, the simulator also allows one to build customised
models. Gazebo is also fully integrated with the ROS sys-
tem [15] thus allowing users to use the same code tested on
Gazebo directly on the physical robot.

A peculiar aspect of this type of simulations is that it
is possible to run them in non real-time (i.e. either faster

2http://gazebosim.org/

or slower than a wall-clock time source) without affecting
accuracy of the simulated system.

B. ArduPilot

ArduPilot [1] is a control stack for UAVs (with the Ar-
duCopter subproject) and UGVs. It is an open-source product
with a wide community of developers and, together with
PX4 [13], is one of the most widely used flight control stacks
for drones. It runs upon a variety of hardware platforms and
provides all the algorithms to control stability and flight of
a UAV, including the autonomous flight over a path of GPS
waypoints.

ArduPilot can be externally interfaced (via serial line or
TCP connection) by means of an ad-hoc protocol called
MAVLink [4] that is specifically designed to connect a Ground
Control Station (for telemetry or set-up operations) or an
external computer that implements high-level mission control.
In addition, ArduPilot provides support for Software In The
Loop (SITL) simulations through the Gazebo simulator; SITL
is a very useful tool because it enables to test the high-level
logic using the same interface a real UAV would offer (i.e.
MAVLink).

An interesting additional tool that is often integrated with
ArduPilot is DroneKit [2], a set of applications, libraries
and APIs, provided for various programming languages and
platforms, that implement the MAVLink protocol and allow
developers to easily write high-level applications for drones
that run the ArduPilot stack.

C. Network Simulator 3

Network Simulator 3 (ns-3) [18] is a network simulator
capable of simulating several types of infrastructures and their
network protocols.

Compared to the its previous version (ns-2), which was
written in C++ but required simulations to be written in object-
oriented Tcl (o-Tcl), the new version lets a programmer define
a simulation directly in C++ or Python, whereas ns-2’s mixture
of o-Tcl and C++ was hard to debug and unfamiliar to most
people. Ns-3 is designed to run “pure C++”-based models,
for greater performance, and it also provides a Python-based
scripting API that allows ns-3 to be integrated with other
Python-based environments or programming models. Users of
ns-3 can write their simulations as either C++ main() programs
or Python programs.

The new version has been developed to be as modular as
possible. Indeed, the structure of ns-3 makes it simple to
develop new models of simulations or customise existing ones.

The simulator supports most wired, wireless and mobile
network protocols as well as routing protocols. Furthermore,
ns-3 supports interactions with the “real world”, such as the
creation of a simulated network where nodes can actually ping
a server on the Internet.

III. THE INTEGRATED SIMULATION ENVIRONMENT

The tools briefly presented in Section II are the basic blocks
to build a complete simulation environment for a flock of
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Fig. 1: Software Architecture of the Integrated Simulator

UAVs interconnected through a wireless network; the main
issue with such tools is that they are not designed to work
together in an integrated manner. Other than the obvious
problems regarding the way in which these tools should
exchange data, there are important issues related to clock
synchronization: indeed, since all the tools are designed to
provide a simulation which is more realistic as possible, each
of them includes its own notion of time that is (i) rather
different than wall-clock time and (ii) tied to the events they
simulate. However, the overall integrated environment must
have a common notion of time, otherwise the simulation will
not proceed realistically. The aim of our integrated environ-
ment is thus a set of modules and a proper protocol that lets the
employed tools interact and proceed in a strictly synchronised
way.

A. Software Architecture

The overall software architecture of the simulator is depicted
in Figure 1 and described below. Each UAV is represented by
the following software modules:

1) Gazebo model
2) ArduCopterPluginSyncUDS
3) ArduCopter process
4) High-level Logic
5) UAV node

For each simulated UAV, an instance of all the software
modules above is created; each instance runs within its specific
environment (e.g. Gazebo or ns-3) or as a stand-alone process.
All modules are then coordinated by some GZUAVCHAN-
NEL processes according to a schema and protocol which is
described in Section III-B.

The first two models are related to the graphical and
physical simulation and run inside Gazebo. The Gazebo model
represents the definition of the frame and inertia of the UAV,
which, in our experiments, is a quadri-rotor VTOL aerial
vehicle. The ArduCopterPluginSyncUDS is a Gazebo plugin
that interacts with the simulated model by directly driving
the motors of the quadri-rotor and reading its pose (absolute
position, euler angles, angular rates, etc.).

The ArduCopter process is a stand-alone process running
an instance of the ArduPilot flight stack which is specifically
compiled to support the “software-in-the-loop” (SITL) mode.
In a similar way, the High-level Logic (HLL) is a process
implementing the mission control for the single UAV; in the
case of flocking, the HLL implements the specific flocking
algorithm and path planning, as well as the functionalities
related to UAV interaction and messaging, which are then
simulated by means of ns-3. The HLL interacts with the flight
stack through the MAVLink channel that, in the simulated
environment, is made of a TCP connection (this interface is
supported by means of the DroneKit library).

Finally, the UAV node represents the communication end-
point (i.e. the wireless interface) of the UAV; it is an object that
runs within ns-3, which enables the simulation of the wireless
communication channel.

B. Interaction and Synchronization

All the software modules cited so far are responsible to
simulate or implement specific parts of the overall behaviour
of each UAV; however they must be coordinated in such a way
as to let them proceed in a strictly synchronized way and with
a common notion of simulation time.

In our environment, this task is performed by
GZUAVCHANNEL, a software module which mainly
serves as a clock synchroniser in case of multiple UAVs.
GZUAVCHANNEL also defines a protocol for external
processes to connect, be notified of changes in the position
of UAVs, and synchronise their own clocks as well. Each
process intending to take part in the simulation performs a
subscription to the GZUAVCHANNEL, specifying its type;
in particular, we identified two classes of external processes:

• Type 0 subscribers: processes that logically run inside
the simulated environment, e.g. a DroneKit-based process
that connects to ArduPilot via MAVLink and implements
the high-level logic of an autonomous UAV;

• Type 1 subscribers: processes that implement part of the
simulation environment, e.g. the ns-3 network simulator.

Depending on its type, during the simulation each process

12



ENDTICK1

BEGINTICK1

BEGINTICK0

gzuavchannel Phase 1 subscriber 
(ns-3) 

ArduCopter
instance

Phase 0 subscriber 
(high-level logic) ArduCopterPluginSyncUDS

BEGINTICKAC

BEGINTICKAC

ENDTICKAC

ENDTICKAC

ENDTICK0

For each UAV (in parallel)

Fig. 2: Sequence diagram showing messages exchanged among processes for each simulation step

receives a specific notification from the GZUAVCHANNEL;
to this aim, GZUAVCHANNEL coordinates the overall sim-
ulation execution so that all Type 0 subscribers can proceed
in parallel while Type 1 subscribers are blocked and, vice
versa, when all Type 1 subscribers run in parallel, Type 0
subscribers are blocked, in an alternating fashion (Figure 2).
Type 1 subscribers also receive the position of all UAVs
at the beginning of each simulation step. Communication
between GZUAVCHANNEL and Type 0/1 subscribers uses a
TCP channel. In addition, the internal architecture lets several
GZUAVCHANNELs interact (also via TCP); this is useful
when, to reduce the computational load, a distributed system is
used to perform simulation. In this case, the various processes
taking part to the simulation can be split over different
machines of a distributed system and can be coordinated by
the various GZUAVCHANNELs running upon such machines.

Synchronisation of the activities of a simulation is initiated
by the physical engine of Gazebo (gzserver) which, since it
manages the physics of the agents, is the entity in charge
of governing the simulation clock. At the beginning of each
time step, the various instances of ArduCopterPluginSyncUDS
within Gazebo send a BEGIN-TICK-AC message to the
GZUAVCHANNEL that starts coordinating activities of the
simulation according to the protocol depicted in the sequence
diagram in Figure 2. The BEGIN-TICK-AC is first sent to
the relevant ArduCopter instance which performs a step of its
control activities3; in parallel, GZUAVCHANNEL announces
the start of Phase 0 by sending a BEGIN-TICK-0 message
to all subscribed Type 0 processes. Phase 0 is particularly
important since it is the moment in which all Type-0 processes
can execute their simulation step: it is in this phase that HLL
processes (for example) execute one step of their flocking (or
other) algorithm. This phase can also include an interaction
with the flight stack or the network; indeed, the algorithm
surely would include the computation of next speed or position
set-points for the UAV, as well as the transmission or reception

3See http://ardupilot.org/dev/docs/apmcopter-programming-attitude-control-2.
html for the details about the control loops of ArduCopter.

of messages; these operations are performed during this phase
by means of DroneKit, for the set-points or any other of
interaction with ArduCopter, and by interacting with ns-3 to
simulate message exchange through the network. In particular,
in this phase, HLL processes can send data over the network
by providing ns-3 a packet through the ENQUEUE-NS3
message, as detailed in Figure 3a; here the message is not
really processed but only placed in a queue: the simulated
transmission and delivery are not performed by ns-3 until
Phase 1.

When the HLL process completed its step, it replies to
GZUAVCHANNEL with an END-TICK-0 message. In the
same way, when ArduCopter processes have completed their
simulation steps, they reply to GZUAVCHANNEL with an
END-TICK-AC message. When all such replies have been
gathered, the Phase 0 is completed.

After that, the GZUAVCHANNEL starts the Phase 1 by
sending BEGIN-TICK-1 to all subscribed Type 1 processes
and waiting for END-TICK-1. As Figure 3b shows, during
Phase 1, ns-3 is asked to do its simulation step by processing
enqueued messages and delivering them (if necessary) to
HLL processes. Only when all END-TICK-1 messages have
been received, GZUAVCHANNEL delivers the END-TICK-
AC messages to Gazebo, allowing it to proceed to the next
simulation step.

C. Manging Simulations in a Distributed Environment

The way in which the GZUAVCHANNEL is designed
allows a user to distribute the simulation over different in-
terconnected servers, in order to take advantage of a multi-
node environment and reduce CPU load. In this way, the
computational workload can be spread over a network, by
e.g. partitioning the set of UAV into a number of groups, each
controlled by a different GZUAVCHANNEL instance on a
dedicated computational node. As it is reported in Figure 4,
in the most general form, a tree can be created, in which
the nodes are GZUAVCHANNEL instances and the edges are
TCP connections; in such a tree, the root is represented by
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Fig. 4: Architecture of the Integrated Simulator in a Distributed
Environment

the instance directly connected to Gazebo, while the leaves
are connected to ArduCopter processes.

In a distributed environment, the dynamics of interaction are
quite similar to the centralised case; coordination is performed
by using the messages BEGIN-TICK-AC and END-TICK-
AC that are exchanged by GZUAVCHANNELs. In detail,
when the first BEGIN-TICK-AC is received from the root
GZUAVCHANNEL, it is forwarded to children nodes, down
to the leaves of the tree. Each GZUAVCHANNEL thus
behaves according to the protocol in Figure 2, coordinating
the processes which it is has the responsibility for. Finally,
when Phases 0 are completed, the END-TICK-AC message
is generated by leaf nodes and forwarded along the tree until
the root is reached, thus signalling Gazebo the end of the
simulation tick.

D. Implementation Issues

The framework user can either directly interact with ArduPi-
lot, employing its built-in capability to take-off and follow
preprogrammed paths of GPS waypoints, or use an external
system (usually a companion computer) to send position/speed
targets in real-time according to a custom high-level logic. The
latter scenario offers greater flexibility and it is the only way
to program UAVs with complex behaviors. However, it is non-
trivial to integrate such external systems into the simulation,

because it is necessary to synchronise their clocks as well (so
that the timing of commands such as “take-off, then pause for
5 seconds, then go to a given GPS point” stays coherent to the
simulated environment). We developed a Python module that
subscribes to Phase 0 and overrides sleep() and time() with
versions that use the simulation clock. The Python language
was chosen because of the availability of the DroneKit library,
which greatly simplifies the tasks of connecting to ArduPilot,
sending and receiving MAVLink messages (offering the same
interface both for a real and a simulated UAV).

IV. CONCLUSIONS

The ability to manipulate and test algorithms in a simulated
physical environment greatly facilitates software development
and validation phases of autonomous UAVs. ArduPilot and
Gazebo are two software solutions that, if used together, offer
a solid and accurate UAV simulation toolkit.

In the context of UAV flocks, each UAV also needs to
be able communicate (either with a base station or a among
UAVs themselves), using wireless networking hardware and
protocols. However, wireless communications are often far
from ideal, and the need for accurate network modelling and
simulation tools arises.

The proposed multi-layered software structure combines
Gazebo, ArduPilot and the ns-3 network simulator, resulting
in a complete tool that enables not only to physically simulate
the flight of UAVs, but also to integrate, in a realistic way,
several wireless networking technologies that real UAVs are
usually equipped with.

The described architecture has been implemented and val-
idated (see Figure 5). The next steps will be the implemen-
tation of a full-fledged flocking and area coverage algorithm
(e.g. [9]), in order to test the solution in a complex and realistic
scenario, and the comparison of numerical results to those of
a real flock of UAVs.
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Fig. 5: Screenshot of a run of Gazebo, ArduCopter and ns-3 with several UAVs
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[11] J. Gonçalves and R. Henriques, “Uav photogrammetry for topographic
monitoring of coastal areas,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 104, pp. 101–111, 2015.

[12] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in International Conference on
Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 2149–2154.

[13] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on, may 2015.

[14] P. Pace, G. Aloi, G. Caliciuri, and G. Fortino, “A mission-oriented
coordination framework for teams of mobile aerial and terrestrial smart
objects,” Mobile Networks and Applications, vol. 21, no. 4, pp. 708–725,
2016.

[15] M. Quigley, K. Conley, B. P Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y Ng, “Ros: an open-source robot operating system,”
01 2009.

[16] S. A. Quintero, G. E. Collins, and J. P. Hespanha, “Flocking with
fixed-wing uavs for distributed sensing: A stochastic optimal control
approach,” in American Control Conference (ACC), 2013. IEEE, 2013,
pp. 2025–2031.

[17] C. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’87. New York,
NY, USA: ACM, 1987, pp. 25–34.

[18] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–34.

[19] G. Vásárhelyi et al., “Outdoor flocking and formation flight with
autonomous aerial robots,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, ser. IROS ’14, Chicago, IL, USA, 2014,
pp. 3866–3873.
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