
A Comparison of the Basic Principles and
Behavioural Aspects of Akka, JaCaMo and Jade

Development Frameworks
Massimo Cossentino, Salvatore Lopes, Angelo Nuzzo, Giovanni Renda, Luca Sabatucci

National Research Council
ICAR Institute, Palermo, Italy
{name.surname}@icar.cnr.it

Abstract—Akka, JaCaMo, and Jade are three Java-based
frameworks for agent/actor system programming. They present
substantial differences both in the reference models and the
behavioural aspects of the main entities (actors vs agents). The
objective of this work is to compare the basic principles and
behavioural aspects of these three frameworks, also giving an
overview of other comparison categories in which we briefly
discuss other criteria like reasoning and knowledge, interac-
tion/communication model, sociality. In each sub-category, the
characteristics of the three frameworks will be analysed, and
finally, the relative differences will be discussed. The analysis
highlights a substantial difference between Akka actor-based sys-
tem and agent-based ones, such as JaCaMo and Jade. The results
of the analysis reveal that each framework has some competitive
advantages over the others. In particular, the orientation to the
reasoning and the pro-activity of the agents, the presence of native
tools for communication and ontology and the predisposition to
the widespread deployment of the code require a careful analysis
of the software requirements for the choice of the most suitable
framework.

I. INTRODUCTION

The computational characteristics of modern processors and
the nowadays available cloud network infrastructures have
paved the way for the development of languages and platforms
that respond to the need of creating concurrent e distributed
programming applications. This work will specifically discuss
two models that have developed within this road: actors and
agents. In particular, the focus will be on their foundational
principles and their behaviour models. Although the two con-
cepts come from different studies and have developed in differ-
ent periods, both share some principles and functionalities and
are useful for responding to common application needs. Both
have been used to create many applications, some for research
other for industrial/commercial uses, which are very different
from each other. Furthermore, each development framework
offers functionality whose usefulness must be evaluated by
the specific needs and requirements of the application to be
developed. The present work aims to partially fill the gap in the
literature by providing a comparative analysis of actor/agent
systems. In particular, a “panoramic” comparison of these
three systems has been not published yet, while a lot of articles
focus on more specific aspects. Among the projects developed
on the base of the two models, we choose to analyse those that
combine the needs of concurrent and distributed programming

with a Java-based development environment, namely: Akka,
JaCaMo, Jade. Their comparison has been carried out through
the consideration of two main categories, to which eight
sub-categories are associated. Due to space concerns, for
this paper, we limit ourselves to briefly present four further
comparison categories: nevertheless, the relative analysis will
be summarily outlined to give the reader a wider scenario.
The information reported for each platform is the result of
a comparison between the available scientific literature and,
where present, the official development documentation of each
framework. In the second section, the three platforms will
be presented, highlighting the main characteristics, fields of
application and reference models. Subsequently, in the third
section, we will proceed to describe the six main benchmark’s
categories, discussing why each category has been selected
and the criteria through which the three platforms will be
evaluated. In the fourth section, we will discuss the comparison
results for each platform, focusing only on the first two
categories, to highlight some final considerations at the end
of each category. In the fifth section, an overview of the other
categories will be presented. Finally, some conclusions will be
reported.

II. PLATFORMS/FRAMEWORKS OVERVIEW

In the next paragraphs, we will propose a general description
of the three platforms analysed in this paper. Although there
are several platforms that respond to the requirements needed
to develop concurrent and distributed applications (among
these we can also cite FIPA-OS, Jack, 2APL, PROFETA [1])
we choose to analyse these three platforms by their common
Java-based environment and their diffusion. The description
of the three platforms will also present the main Industrial-
strength applications as suggested by Mascardi et al. [2].

A. AKKA

Akka is a middleware for programming concurrent and
distributed actor systems. The platform is open source, and it
is distributed through libraries implemented with the SCALA
programming language. The middleware is based on the
concept of Actor Model developed by Hewitt in 1973 [3]:
as in the OOP, everything is an object, in the actor model,
every entity in the system is an actor. In this work, we

133



refer to version 2.5.12 of the platforms, released on April
2018. Actors interact with each other by exchanging messages,
and they are reactive concerning the linked communications
(differently from an agent, an actor acts only if stimulated by
the arrival of a message). The model is based on the prevalence
of asynchronous communications between actors to guarantee
the possibility of concurrent computational operations in the
absence of blocking and locks methods. The prevention of
computational conflicts is also guaranteed by the absence of
states of shared memory between actors. The structure of
Akka actors is hierarchical, and this allows the implementation
of powerful exception management strategies. This feature,
together with the ease of deployment of network distributed
actor systems, has allowed Akka to feed a large community
of developers and researchers and to be applied in a lot of
commercial and industrial applications.

B. JaCaMo

JaCaMo is a framework for multi-agent systems program-
ming, created by the combination of three technologies, each
having a specific scope: Jason, Cartago and Moise [4]. They
have been developed individually over the years. Therefore
they are theoretically well-founded, stable and robust. Jason
is an extension of AgentSpeak - a programming language
which the main scope is to develop programs in the form
of Plans and to exploit the BDI model (Belief - Desire -
Intention). The main objective of the Cartago platform is to
simulate the environment of the system. Such environment is
represented by means of resources, called artifacts. Artifacts
contain information that can be perceived or manipulated by
agents. For instance, in an IoT (Internet of things) applica-
tion, a temperature sensor and the heater are rendered as a
couple of artifacts. Moise is a framework whose purpose is to
model the organisation of entities, which are part of a multi-
agent system. Management takes place through rules, groups
and missions. Numerous papers propose possible multi-agent
systems programmed with JaCaMo, for the management of
industrial productions [5] [6].

C. JADE

Jade is a Java-based platform that simplifies the imple-
mentation of distributed applications by adopting the multi-
agent systems paradigm. One of the noteworthy features of
this platform is its complete compatibility with the FIPA
standard. JADE was born in 1998, from the need to validate the
FIPA specifications. Nowadays, updates to the development
framework are released on an annual basis. In this work, we
will refer to version 4.5.0 released on June 2017 [7]. A JADE
platform is made up of a series of agents, distributed in various
hosts. Each agent owns a container for the management of
all of its services. At least one of the hosts, the so-called
main container, will moreover keep a log containing all the
information from the other containers, thus allowing agents
to discover other ones on the network by using a white page
directory. In this directory, agents are identified by an AID and
yellow page discovery service where agents may be searched

according to the services they offer. Jade is one of the richest
frameworks in terms of literature, tools and extensions. We
mention just a couple of examples: JADEX for working with
goal-oriented agents, and JADEMX, a bean generator allowing
an agent to expose attributes, operations, and notifications in
a JMX-compliant manner [7].

III. COMPARISON CATEGORIES

The proposed comparison will be based on a set of criteria,
clustered in some main categories:

1) Principles of the agent model,
2) Behavioural model,
3) Reasoning and knowledge,
4) Interaction/communication model,
5) Social aspects.

The focus of this paper is on the first two categories, whereas
the last fours categories fall apart the scope of this paper
because of space concerns. Therefore, a detailed discussion
of the first two categories will be presented in the following
subsections. The other categories will be briefly presented in
order to provide a complete picture of the overall comparison
approach in subsect. III-C.

A. Principles

Our analysis will begin with the presentation of the theoret-
ical principles upon which the three examined platforms are
based. In particular, we will refer to:

• The reference paradigm adopted by the specific de-
velopment framework. This refers to the theoretical
model/architecture that characterizes the system.

• The main entity adopted by the specific development
platform; in particular the definition of agent or actor will
be presented in this section. This will help in identifying
the common characteristics and the differences, at the
conceptual level, among the three platforms.

B. Behavioural Model

The criteria contained in this category concern the approach
and the granularity the three platforms adopt to define: the be-
haviour of system’s entities, the job scheduling, the execution
flow and the errors handling. We will analyse these aspects
from two points of view: macroscopic (management of tasks)
and computational (management of threads). More in details,
the criteria in this category are defined as follows.

• The behavioural entity criterion describes the constructs,
the three platforms provide, to implement actions to be
performed by system’s entities.

• The scheduling management criterion presents the in-
struments each platform offers to customize the manage-
ment of the queue of tasks to be processed.

• The main entity loop criterion focuses on how the main
entities of the three platforms evaluate and execute the
active tasks in their runtime cycle.

• The behaviour control flow of the actors/agents will
describe the constructs with which agents/actors activate
their tasks.

134



• The errors handling criterion provides an overview of
the runtime instruments for the management of execution
errors and exceptions.

C. Other Categories

For the sake of brevity, this paper does not illustrate all the
categories with the same level of detail. However, in order
to provide the overall picture of the proposed comparison
approach, all the remaining categories (and their inner criteria)
are mentioned and briefly discussed in the following.

Reasoning and knowledge. The elements in this section
examine the three platforms from the point of view of knowl-
edge management and reasoning. This category clusters the
following comparison criteria: the knowledge model, ontology,
decision making and environment.

Interaction/communication model. This is one of the
pillars of distributed systems, it represents the facilities
provided by the development framework for the inter-
action among its entities. The interaction/communication
capabilities allow such entities: 1) to enable collabora-
tion/cooperation/competition, 2) to synchronise different ac-
tivities and also 3) to improve the awareness of the execution
context. This category includes the following elements: com-
munication support, synchronous vs asynchronous messages,
speech act support, protocol support and content language
support.

Social aspects. In the examined frameworks, social struc-
tures that can be created for the runtime organisation of the
entities play a fundamental role. This category includes the
following elements: 1) support for creating social structures
and 2) coordination/government of social structures.

IV. COMPARISON: BASIC PRINCIPLES AND BEHAVIOURAL
ASPECTS

The results of this comparative study are discussed in the
following with the support of Table I that is useful to highlight
the main characteristics of each framework.

A. Principles

In this subsection we will discuss the reference paradigm
and main entity rows of Table I. The discussion terminates
presenting the main differences among the three platforms.

a) Reference paradigm: In the Akka platform, the ref-
erence paradigm is the Actor model. The first theorization
of this concept was postulated by Carl Hewitt in 1973 [3].
Actors are the fundamental entity of this model: as well as in
the Object Oriented Programming everything is an object, with
respect to the actor model, everything is an actor [8]. Hewitt’s
work comes from the desire to postulate a model useful
for the development of concurrent applications, eliminating
the presence of blocks and semaphores for the management
of thread traffic (related to the simultaneous invocation of
methods) and instead entrusting the dynamism of the system
to the only exchange of (asynchronous) messages between
actors. This constraint, together with the absence of shared

states of memory between the actors, allows to evade some of
the typical obstacles of concurrent calculation.

In particular, the model requires that each actor is associated
to its own mailbox that acts as a queue for incoming messages.
Each actor processes only one message at a time while, in a
totally decoupled manner, the mailbox allows other parts of
the system to send messages without having to wait for the
actor to finish the current activity. The model foresees that the
behaviour of the actor is univocally determined immediately
before and immediately after that the same has processed a
message. In other words, the processing phase of a message
constitutes a possible transition from one behaviour to another.

Each actor has its own base of independent knowledge and
the model discourages the presence of states of shared memory
and the exchange of mutable objects among actors [9]. Even
if actors are conceived as single-threaded entities, they reserve
the ability to dynamically spawn additional actors during
runtime. This allows to balance the computational load by
accordingly resizing system resources [10]. Thanks to these
constraints, concurrency in actors is limited only by the avail-
ability of hardware resources and by the logical dependence
inherent in the computation [11]. The general concepts of the
model find specific application in some Akka features that we
will see in detail below.

The JaCaMo framework is based on the agent model, and
more specifically on the BDI agent model. The BDI model
was created [12] looking at the human behaviour. The BDI
model is based on the following concepts:

• Beliefs: the information the agent owns about the world.
• Desires: all the possible activities the agent can poten-

tially complete.
• Intentions: those activities the agent has decided to enact

for reaching some Goals.
One of the three JaCaMo components, namely JASON, is

an implementation of the AgentSpeak language. The purpose
of JASON is to develop programs in the form of plans by
using Beliefs-Desires-Intentions model [13].

It is possible to identify Jade as one of the first middleware
born to comprehensively support the FIPA Architecture. [14]
The Foundation for Intelligent Physical Agents has, in fact,
worked on the creation of schemes and standards that regulate
the interactions between agents in order to develop increas-
ingly scalable and open systems. In this direction, Jade is a
platform enabling the realization of concurrent applications
with agents that turns out to be fully FIPA compliant. The
model with which the platform is built refers to the FIPA
specification of an agent that is more focused on interaction
properties of the entity rather than its mental or reasoning
features. [14] The middleware consists of an environment in
which agents are instantiated and operate, providing reference
classes through which agents are implemented and a graphical
tool for displaying system status at runtime.

b) Main entity: Among the three platforms, Akka is the
only one that is not based on the concept of Agent but on that
of Actor. Actors are reactive entities that perform methods
and change their state according to messages reception. In

135



TABLE I
COMPARISON TABLE

Akka JaCaMo Jade
Principles

Reference Paradigm Actor Model BDI FIPA Architecture
Main Entity Actor Agent FIPA Agent

Behavioural model
Behavioural entity Agents are classes. Methods

contain actions.
Agent specified in ASL lan-
guage. Plans contain inter-
nal/external actions.

Agents are classes. Behaviours
(classes) contain actions
(methods).

Scheduling Dispatcher message schedul-
ing

Round-robin with priority
among active intentions

Cooperative

Main Entity Loop Incoming messages are trans-
lated into events.

Classical perceive-reason-act
loop.

Finite State Machine

Behaviour Control Flow Method invocation Plan activation via Goal/Plan
matching

Method Invocation

Errors Handling Internal support for
father/child error management

Plan failure produces events
for plan recovery

Standard JAVA exception han-
dling

particular, when an actor receives a message, it can: perform
one or more methods, change its behaviour/status, create other
actors or send messages [15]. Actors’ pro-activeness is limited
since they do not actually execute anything until they receive a
message. Each actor is composed of three distinct elements i)
a unique actor name (used as an address for communication);
ii) an expression which describes the actor’s behaviour; and
iii) a mailbox that stores received messages as a FIFO list
[10].

The Akka actor is basically a class with a single receive
method that will be called when a new message is available
to be processed in the mailbox [9].

The system supports a powerful hierarchy relationship be-
tween actors: each actor is the son of another one and its
parent is responsible for delegating some tasks and managing
the exceptions of its sons.

JaCaMo and Jade are both based on the Agent Model
but these frameworks follow a slightly different definition of
agents.

JaCaMo derives from AgentSpeak, which definition is
aligned with the classical vision of Wooldridge and Jennings
in 1995 [16] that identifies the following characteristics for an
agent:

• autonomy: agents acts without any human control.
• social ability: agents interact with other agents and other

through the agent-communication-language.
• reactivity: agents perceive information from the environ-

ment and respond in short time if it is possible.
• pro-activeness: agents not only react to perceptions but

take the initiative to achieve goals.

In JaCaMo, agents are mainly defined by their beliefs, plans,
and goals.

Jade derives from the FIPA specifications, for which
an agent is “a computational process that implements the
autonomous, communicating functionality of an applica-
tion” [14]. Agents are implemented as an instantiation of the
Agent class that contains some basic attributes and methods
needed to start and manage the agent. In particular, the setup()

method is responsible for the creation of the agent and for
its registration in the Agent Management Service (a kind of
white-page service).

A noteworthy feature of Jade systems is its Peer-to-Peer
architecture. In particular, the system is: fully distributed, it has
an efficient transport of asynchronous messages via a location-
transparent API, it implements the white pages and yellow
pages for the knowledge of the agents within the system, it
fully supports ontologies and many other features [7].

c) Discussion: The analysis conducted on the reference
principles of the three frameworks easily identifies two macro-
categories: actors and agents. The two models characterize
the analysed frameworks from the conceptual point of view
and this tendency can be found in the attention given by
the same towards the reasoning of the agent, the interaction
between agents and the management of events. In particular,
it is possible to note the attention given by the actor model
to the events management that influences the workflow of
the system: this approach exploits the reactivity of the agents
instead of their reasoning capacity. In Akka’s implementation,
the lightness of the actor model favours the mobility of the
code and therefore the flexibility of application deployment.
The agent model focuses on a completely different direction,
especially regarding its implementation in JaCaMo through
the BDI model: in this case, it is the agent’s reasoning that
is exploited and the internal actions play in this context a
fundamental role. As already highlighted, the model proposed
by Jade, and therefore the standard created by FIPA for agents
systems, stresses the concept of interaction between agents,
providing a functional architecture for communication between
agents.

B. Behavioural model

In this subsection we will discuss the Behavioural entity,
Scheduling, Loop, Control Flow and Errors Handling subcat-
egories of Table I. The section is organised as follows: the first
five paragraphs will detail the features of the selected platforms
as regards the five subcategories while the last paragraph will
discuss the main differences.

136



a) Behavioural entity: The behavioural entity of Akka
actors is linked to the invocation of methods contained within
the actor receive construct. The latter consists of a partial
function 1, supported by Scala, that is responsible for per-
forming a pattern matching with the messages received from
the actor [9]. The behaviour of the actor, and consequently
the set of methods associated with its receive construct, is
not static and can be modified by means of the become and
unbecome functions. These functions allow, depending on the
events recorded by the system, to characterize the abilities of
the actor based on the specific task it is called to perform [13].

Plan is the Behavioural entity in JaCaMo. Even if JaCaMo is
entirely implemented in JAVA, it provides a specific language
to support a logical programming paradigm. Plans are the main
elements in this programming approach. A plan is described
by a trigger event (an event to which the plan can respond), an
activation context (a logic condition that must be true in order
the plan can be activated) and a body. The body of the plan
contains instructions such as internal actions, operations on
the knowledge, expressions and events raising. For instance, a
plan can request the satisfaction of a goal, that will generate
a new event, and in turn, that will activate another plan.

In Jade, the agent behaviour may be specified by exploiting
the Behaviour abstract class. Each subclass defines an atomic
portion of the agent’s behaviour by overriding the action
method. The platform provides many ready to be used types of
behaviour classes [7]. Among them we mention the ‘Oneshot-
Behaviour’ in which the action method is executed only once.
The ‘CyclicBehaviour’ in which the action method is executed
in a loop until a condition is true. Another noteworthy class
is the CompositeBehaviour class which contains subclasses
useful for complex tasks. The subclasses are SequentialBe-
haviour, FSMBehaviour and the ParallelBehaviour, they will
be discussed in the Scheduling subcategory.

b) Scheduling: Akka actors are single-threaded. Compu-
tational concurrency is committed to their ability to create new
actors to which they delegate tasks to be processed. According
to the Scala programming language, each thread has its own
priority level that guarantees processing preemption with re-
spect to all the lower priority threads. The processing of equal
priority threads is delegated to the JVM [9]. In Akka, tasks
to be performed consist of messages to be processed and the
platform devotes a specific library for the implementation of
tools and methods for managing such workload. The Message
Dispatcher class handles how each request, received by the
actor, is processed. There are two executors available with
the default dispatcher. These are the fork-join-executor and
the thread-pool-executor. The first executor forks a separate
thread for each request to the Actor and then waits to rejoin
that thread before continuing. The thread pool executor uses a
pool of threads to process multiple requests in parallel across
multiple instances of an Actor [9]. The overhead of an actor

1Accordingly to mathematic definition, a partial function of type Partial-
Function[A, B] is a unary function where the domain does not necessarily
include all values of type A. The function isDefinedAt allows to test dynam-
ically if a value is in the domain of the function [17].

system is relatively low in terms of memory consumption.
Each actor consumes about 300 bytes of memory, which
allows for roughly 3 Million actors for GB of main memory
[18]. Router actors are another important feature of Akka
platform. This kind of actors is able to deliver messages
from one actor to another, choosing the recipient according to
specific strategies that respond to developer’s needs. A normal
actor can be used for routing messages, but a single-threaded
actor may become a bottleneck. Routers can achieve much
higher throughput with an optimization to the usual message-
processing pipeline that allows concurrent routing [19].

Scheduling in JaCaMo manages the Intention queue through
the so-called Intention Selection function (Si). There are two
types of intention: internal and external. Internal intentions
are created when a plan is executed, and a sub-plan must
be executed inside it. External intentions are created when
an event occurs, for example changes in the environment
are perceived or a goal is delegated from another agent.
The predefined Si function uses a Round-Robin strategy for
external intentions, giving priority, as if it was a stack, to
internal intentions. Therefore, the sub-plan obtains a higher
priority than the external intention. [20].

Scheduling in JADE is not-preemptive (cooperative). This
means that if an action() method of a behaviour is launched,
it will block the agent until it completes. When dealing
with complex tasks, it is not convenient to create a ‘unique’
action() method that would require long time to complete. The
suggested solution is to use the CompositeBehaviour class. An
instance of the CompositeBehaviour class is itself a Behaviour
composed of other child sub-behaviours. In particular, the plat-
form provides three different execution strategies for a Com-
positeBehaviour: the SequentialBehaviour, the FSMBehaviour
and the ParallelBehaviour [7]. The SequentialBehaviour class
allows performing sub-behaviour sequentially. The FSMBe-
haviour class allows the sub-behaviour to be performed ac-
cording to a finite state machine. The ParallelBehaviour class
schedules the sub-behaviour in parallel.

c) Main Entity Loop: The execution of an actor in Akka
takes place according to the event loop algorithm. According to
this scheme, the actor is at any moment in a well-defined state
within an infinite loop waiting for the arrival of an event at the
event queue. As soon as one event is available, it is fetched
and a corresponding event handler is executed, if available.
When the event handler execution is terminated, the control
flow goes back waiting for the next event [13]. Transitions in a
state are triggered by new messages and the atomic execution
of the message handler represents the effect of the transitions,
atomically changing the state. This type of main entity loop
is well suited to the implementation of entities modelled as
Finite State Machines [13].

In JaCaMo, the execution cycle is a control loop [13]. The
peculiarity of this architecture is the ability to join two fun-
damental aspects of the agents: pro-activity and reactivity. At
each loop cycle, the agent’s reasoning cycle, based on the BDI
model, is composed of three macro stages: perceive, reason,
act. In the perception phase, the agent acquires information

137



from the environment to update its beliefs, in the ‘belief
base’. Jason provides a series of classes for managing the
environment. In addition to acquiring information from the
environment, the agent receives messages from other agents.
For each reasoning cycle, only one message at a time is
processed by the interpreter. At this point, if the agent has
perceived changes in the environment or changes in its goals,
events are generated. For each reasoning cycle, only one event
will be selected, events are scheduled in a FIFO queue, but
that can be changed by the programmer [20]. To react to the
selected event, the agent must find a plan that matches the
event. If there are multiple plans it will create a list of ‘desires’.
This list will be filtered through the ”Check Context” which
will select only applicable plans. Finally, these ‘intentions’ will
be inserted in the queue of intentions where the scheduler will
appropriately select which one to execute at the next reasoning
cycle.

The Jade loop is managed through a Finite State Machine
(FSM) where each agent can be in different states during its
lifetime. The states are [21]:

• Initiated: the agent was created with the setup() method.
It can not go to the Active state until it is registered on
the AMS (Agent Management System).

• Active: the Agent has been registered in the AMS so it
can perform his behaviour.

• Waiting: the agent is blocked, wait until activation mes-
sages arrive.

• Suspended: the agent is stopped, so none of its methods
is performed.

• Transit: the agent stays in this state until he has completed
his migration.

• Unknown: the agent has terminated his life-cycle, so the
AMS cancels it.

d) Behaviour Control flow: The control flow in Akka is
essentially managed by the receive method. This construct,
as already said, is a partial function of Scala that has the
task of carrying out the pattern matching action between the
messages received from the actor and the types of tasks the
same is able to manage. The construct is implemented at the
syntax level like the switch case [18]. Each time the actor
receives a message, the receive method is invoked and the
system verifies the correspondence of the content with one of
the cases contained in the method. The execution of the task
by the actor is subordinated to the pattern matching phase.
When an actor has a nonempty mailbox and it is executed
within a thread, the first message is taken out of the mailbox,
processed by the actor’s code (maybe modifying some internal
state, creating actors, sending messages, etc.), and finally
the execution finishes [18]. As mentioned above, the receive
method could be replaced to modify the behaviour of an actor.
This modification is made possible by the become/unbecome
methods invocation [19].

The control flow in JaCaMo is implemented through plan
activation by goal/plan matching. A plan is formed by three
elements: the triggering event, the context and the body. More

in details [20]:

• triggering-event: the proactive behaviour of an agent is
determined by the fact that it has to achieve long-term
goals. While dealing with these goals, it must also be
concerned with both the changes in the environment
and the information coming from other agents because
they could change the objectives. This happens through
changes in beliefs and changes in goals to be achieved.
These changes cause events and agents are activated by
them. Plans are courses of actions that are executed as
a consequence of such events. If an event matches the
triggering-event, then it is said that the plan is ”relevant”
to that particular event.

• Context: there may be several ‘relevant’ plans, but the
agent can execute only one. To select the specific plan,
a ”filtering” is carried out, choosing the foreground that
respects the constraints defined in the context.

• Body: the body of the plan that will be executed.

The control Flow in Jade is implemented through method
invocation. In particular, when an agent is in the ”Active” state,
then it can execute its behaviour as specified in the action()
methods.

e) Errors handling: Akka has a specific feature for
runtime errors handling. This functionality is based on the
hierarchical structure of actors committing to each parent the
management of the error circumstances in which their children
incur. In particular, in case of an error, an actor suspends
its functioning and that of all its children actors, then it
sends a message to its parent actor where it specifies the
error type [9]. The error handling phase is managed through
a pattern matching procedure that is similar to that of the
receive method [19]. The default supervisor strategy requires
the parent actors to reboot their child when it incurs an error.
The restarting process restores the initial conditions of the
actor while keeping intact its mailbox (only the message that
led to the error may be lost). Overriding the supervisor strategy
it is possible to customize the action to be taken on the base
of the type of error [18].

JaCaMo does not contain specific tools like Akka for error
handling. The failure of a plan is one of the errors that can
be handled. Regardless of why a plan can fail, the Jason
interpreter generates a goal cancellation event. There are three
main reasons for a plan to fail [20]:

• Lack of the agent knowledge, usually due to the lack
of the sub-goal within a plan. This can happen either
because the programmer has not provided the required
plans, or because, even if there is the plan to the goal
associated, there are no beliefs that match with the
context.

• Failure of a test goal, because in the belief base there is
no information necessary to meet that goal. At this point,
the agent generates an event for a plan to be executed,
hoping for a positive answer for the goal test. If this is
not successful, then it will generate a failure for the plan.

• Action failure. In JaCaMo the actions can be internal, or

138



external. If an action fails, then the plan will appear to
have failed.

Errors Handling in Jade is managed through the classic Java
exception handling.

f) Discussion: The analysis of the behavioural model of
the three frameworks reveals already outlined differences. In
fact, each sub-category presents native tools and functions
specifically designed to support the agents’ reasoning and the
concurrent execution of the processes, according to the Actor
model, the BDI Paradigm and the FIPA standard. In particular,
the orientation towards communication and messages adopted
by Akka and Jade is evident, as opposed to the attention
dedicated by JaCaMo to internal actions and therefore to
perception of the environment and to the agent’s reasoning.
The same logic is clearly reported in the contribution of Ricci
where the difference between event loops and control loops
is clearly discussed, also differentiating agents and actors for
what concern their predisposition to reasoning and proactivity.
From this point of view, the FSM logic adopted by Jade
centralizes the communication in the behaviour model of the
agent, nevertheless leaving the latter a certain degree of au-
tonomy. Besides, at the programming level, there are relevant
differences in the approach between the pattern matching of
messages made by Akka and the JaCaMo agents’ continuous
search for a plan to be performed in order to achieve a goal.
All the three platforms, while primarily committing to the
JVM thread scheduling operations, offer specific tools for
controlling the workload at the computational level. Finally, it
is important to underline the specific functionality that Akka
offers in the dynamic management of errors at runtime.

V. COMPARISON: OVERVIEW OF OTHER CATEGORIES

In the following the features of the three platforms with
regard to the other categories of the proposed comparison
framework will be briefly summarized in order to provide
the reader with a comprehensive view on the results of the
comparison.

A. Reasoning and Knowledge

In this subsection we will briefly discuss the Knowledge
Model, Ontology Support, Decision Making, and the Environ-
ment subcategories.

a) Knowledge Model: From the point of view of the
programming paradigm, information available to each actor
consists of objects encapsulated within its own class and
methods contained within the receive construct. This structure
is compliant with the absence of shared memory between
actors [9].

One of the most important elements in JaCaMo is the
information that the agents store both external (environment)
and internal. This information is stored in a list called ”belief
base” [20].

In Jade, the agent’s knowledge is stored as attributes of the
agent class. It is relevant to note that agents do not have a
shared memory [7].

b) Ontology Support: Akka does not support any specific
language for the implementation of ontologies. Nevertheless,
there are some examples of libraries developed to facilitate
the integration of ontological languages within Akka. One of
these libraries is Scowl [22].

The JACAMO platform does not support any specific on-
tology language, but the user can optionally choose to set one
according to the system-to-be (ad hoc ontology) [23].

In Jade, it is fundamental to define a shared ontology
among the different agents in the same JVM therefore the
Jade platoform provides a great support for that [7].

c) Decision Making: As highlighted above, the be-
haviour of actors in Akka is not proactive. They have no
independence in taking decisions and each message activates
the invocation of methods that do not represent, in the actor
perspective, a part of a wider goal [13].

JaCaMo is an agent-based system, so agent behaviour is
both pro-active and reactive. So the agent achieves its goals not
only driven by events but also taking an initiative, recognizing
the opportunities it has in the environment [20].

With available extensions like Jadex, Jade can perform high-
performance goal-based reasoning in a BDI way.

d) Environment: In Akka both data control modules
and sensors may be modelled as actors that communicate
through messages. [19]. It is also appropriate to refer to the
already mentioned Event bus that is a kind of blackboard in
which actors can publish information and subscribe for news
published by other actors [19].

The environment plays a fundamental role in the design and
development of a multi-agent system. The environment is a
source of facilities and services that agents can adequately use
at runtime to support and improve their individual and social
activities. As already discussed, in JaCaMo the environment
is modelled with Cartago through an extension of the Java
Artifact class [24].

JADE does not offer a specific support for interaction with
the environment.

B. Interaction/Communication Model
In this subsection we will briefly discuss the Im-

plicit/Explicit Interactions, Synchronous/Asynchronous Inter-
actions, Speech Act Support, Communication Support, Agent
Interaction Protocol Support, Agent Content Language Sup-
port, and the Communication Channel subcategories.

a) Implicit/Explicit Interactions: Akka platform supports
both explicit and implicit communications. Explicit communi-
cation can be processed, for instance, through the Event Bus
tool that provides a kind of blackboard for actors’ implicit
interactions [19].

JaCaMo platform supports both explicit and implicit com-
munications.

JADE only supports explicit communications based on
FIPA-ACL.

b) Synchronous/Asynchronous Interactions: Messages in
Akka are natively asynchronous. Synchronous message ex-
change is implemented at the syntax level by the Ask operator
[18].

139



In JaCaMo, the asynchronous method is predominantly
used. The synchronous method could be used by adding
the “reply” parameter when sending messages, with the only
“askOne” and “askAll” speech acts. In this case, the sender
will wait for the message ACK [20].

JADE message exchange is asynchronous.
c) Speech Act Support: Actors can send messages

through two methods. The tell method sends a non-blocking
message to another actor, while the ask method sends a
message and returns a Future object. [19].

Speech acts in JaCaMo are limited. The list of available
performatives is [20]: tell, untell, achieve, unachieve, askOne,
askAll, tellHow, untellHow.

Jade fully supports FIPA-ACL and therefore it offers the
possibility to adopt every performative.

d) Communication Support: The communication support
between actors is implemented only through the Ask construct.
In other types of communication there is no link between
messages in a conversation [19].

The communication support in JaCaMo is implemented
exclusively through the synchronization of messages, in par-
ticular with the speech act ”askOne” and ”askAll” [20].

As already mentioned, Jade uses FIPA-ACL for communi-
cation. One of the parameters in this standard is ”conversation-
id” that permits to uniquely identify a conversation thread [7].

e) Agent Interaction Protocol Support: Interaction pro-
tocols are not natively implemented in Akka. Despite that,
some works tried and succeed to implement a DSL that can
make Akka compliant with the FIPA interactions protocol
specifications [8].

JaCaMo provides no specific support for agent interaction
protocols.

JADE has a package named “jade.proto” that contains all
the classes providing a full support for implementing standard
interaction protocols [7].

f) Agent Content Language Support: Akka provides an
agent management service through the hierarchical organiza-
tion of actors, and a message transport service allowing com-
munications across machines. However there is no directory
facilitator so there is no full Agent Content Language support
[8].

JaCaMo does not have any content language support but
its language is very similar to KQML. If the JADE extension
is used, JaCaMo acquires a full support for all the standard
languages used by JADE [20].

As mentioned before, the Jade framework is fully FIPA
compliant. This property is guaranteed by the presence of all
the infrastructure services prescribed by the standard (AMS,
DF and MT) [7], this ensures the best support for the agent
content language.

g) Communication Channel: Although Akka Routers are
mainly used to balance the workload of actors, they also act as
a communication channel between actors, allowing them to be
uniquely identified even across different nodes in a distributed
architecture [19].

JaCaMo uses messages for explicit communications, and
artifacts as an implicit communication channel. An artifact is
used as a sort of blackboard by agents thus allowing them to
acquire information from other agents and the environment.
[20].

JADE fully implements a FIPA compliant Message Trans-
port Service that is responsible for transporting FIPA-ACL
messages between agents within and outside the system.
According to the MTS each message contains an envelope
that comprises parameters representing information about the
communication [7].

C. Sociality

In this subsection we will briefly discuss two subcategories:
Support for Social Structures, and Coordination/Government
Models for Social Structures.

a) Support for Social Structures: In Akka each actor is
generated by another actor which is labelled as ‘parent’. Each
parent is interested in the execution of the tasks committed
to its children and it is responsible for the relative supervisor
strategy [9].

Moise is the framework that allows the definition of organi-
zations in JaCaMo. There are two main approaches for creating
an organizational structure within Moise: an agent-centred one
and an organization-centred one [25].

Jade natively does not offer any specific tool that supports
the definition of social structures.

b) Coordination/Government Models for Social Struc-
tures: When creating an entity, an actor assumes the role
of delegator towards the generated children: each actor can
delegates the tasks to be performed to actors specifically
generated in its own context. [19].

In Moise, coordination is managed through a set of rules
that constrain the behaviour of the agents. When an agent is
placed in an organisation, it becomes part of a network of
obligations, interdictions, and permissions [25].

Since in Jade there are no social structures, there are no
rules or models for agent coordination.

VI. CONCLUSIONS

In the article, we presented the main models’ characteristics
and the functionalities of the three frameworks analyzed.
For reasons of brevity, we have given ample space to the
description of the first two categories (Principles and Be-
havioral model), briefly summarizing the results obtained in
the other three categories of the comparison. The descriptions
are made using both the already existing scientific literature
and the official documentation and reference manuals of the
three frameworks. From the reported analysis clearly emerges
how the three frameworks adopt different perspectives to
reach the common objective of developing applications for
distributed and concurrent systems. In fact, they present signif-
icant differences. For instance, despite all the three platforms
adopt asynchronous communications to cope with the risk of
conflicts in the processing of threads, each one differs from
the others for particular functionalities. These functionalities

140



may be linked to the model of knowledge, to the reasoning
of agents, to agents’ reactions to events, to the scalability
of the system or to communication protocols. These features
are reflected in the reference models of the three frameworks
and enrich each platform with specific libraries and tools
for developers’ benefit. In the future we will deepen the
comparison by enriching the analysis of the categories reported
in sect. V and we will also compare the programming language
by applying them to a notable case study as already done for
the sole Akka and JaCaMo in [13].

REFERENCES

[1] L. Fichera, F. Messina, G. Pappalardo, and C. Santoro, “A python
framework for programming autonomous robots using a declarative
approach,” Science of Computer Programming, vol. 139, pp. 36–55,
2017.

[2] V. Mascardi, D. Demergasso, and D. Ancona, “Languages for program-
ming bdi-style agents: an overview.” in WOA, 2005, pp. 9–15.

[3] C. Hewitt, P. Bishop, and R. Steiger, “Session 8 formalisms for ar-
tificial intelligence a universal modular actor formalism for artificial
intelligence,” vol. 3. Stanford Research Institute, 1973, p. 235.

[4] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with jacamo,” Science of Computer
Programming, vol. 78, no. 6, pp. 747–761, 2013.

[5] M. L. Roloff, M. R. Stemmer, J. F. Hübner, R. Schmitt, T. Pfeifer,
and G. Hüttemann, “A multi-agent system for the production control of
printed circuit boards using jacamo and prometheus aeolus.” IEEE,
2014, pp. 236–241.

[6] R. Martins and F. Meneguzzi, “A smart home model using jacamo
framework.” IEEE, 2014, pp. 94–99.

[7] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE. John Wiley & Sons, 2007, vol. 7.

[8] G. Weichhart and C. Stary, “A domain specific language for organisa-
tional interoperability.” Springer, 2015, pp. 117–126.

[9] J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming. Springer, 2018.

[10] J. Masini and A. Francalanza, “Typing actors using behavioural types,”
2015.

[11] G. A. Agha, “Actors: A model of concurrent computation in distributed
systems.” Tech. Rep., 1985.

[12] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge, “The
belief-desire-intention model of agency,” in International Workshop on
Agent Theories, Architectures, and Languages. Springer, 1998, pp.
1–10.

[13] A. Ricci, “Programming with event loops and control loops–from actors
to agents,” Computer Languages, Systems & Structures, vol. 45, pp. 80–
104, 2016.

[14] “Fipa specification.” [Online]. Available:
http://www.fipa.org/specs/fipa00001/SC00001L.html

[15] A. Rosà, L. Y. Chen, and W. Binder, “Profiling actor utilization and
communication in akka.” ACM, 2016, pp. 24–32.

[16] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The knowledge engineering review, vol. 10, no. 2, pp. 115–
152, 1995.

[17] M. Odersky, “Scala documentation.” [Online]. Available:
https://www.scala-lang.org/api/2.12.1/index.html

[18] M. Thurau, “Akka framework,” University of Lübeck, 2012.
[19] J. Bonér, “Akka documentation.” [Online]. Available:

https://akka.io/docs/
[20] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-

agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007,
vol. 8.

[21] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa, “Jade programmer’s
guide,” Jade version, vol. 3, pp. 13–39, 2002.

[22] Balhoff, “Scowl: a scala dsl for programming with the owl api,” 2016.
[23] A. Freitas, D. Schmidt, A. Panisson, R. H. Bordini, F. Meneguzzi,

and R. Vieira, “Applying ontologies and agent technologies to generate
ambient intelligence applications,” in Agent Technology for Intelligent
Mobile Services and Smart Societies. Springer, 2015, pp. 22–33.

[24] A. Ricci, M. Viroli, and A. Omicini, “Cartago: A framework for proto-
typing artifact-based environments in mas,” in International Workshop
on Environments for Multi-Agent Systems. Springer, 2006, pp. 67–86.

[25] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat, “Moise: An
organizational model for multi-agent systems,” in Advances in Artificial
Intelligence. Springer, 2000, pp. 156–165.

141


