
A Python-based Assistant Agent able to Interact
with Natural Language

Fabio Longo, Corrado Santoro
University of Catania

Department of Mathematics and Informatics
Viale Andrea Doria, 6

95125 - Catania, ITALY
EMail: flongo@policlinico.unict.it, santoro@dmi.unict.it

Abstract—This paper describes the software architecture and
functionalities of an assistant agent, developed by the authors,
able to interact with the user through the natural language.
The agent is implemented by means of PROFETA, a Python-
based BDI engine developed within the author’s research group.
The agent is composed of two parts: (i) the speech-to-text and
text-to-speech services, and (ii) the reasoning engine. As for the
former part, the agent exploits Clould services (in particular
those provided by Microsoft Bing and IBM Watson); to this
aim, a flexible software architecture is designed in order to
connect first-class entities of PROFETA (i.e. sensors and actions)
to the cloud world. The reasoning engine is instead designed
by means of the declarative language provided by PROFETA:
utterances said by the user become PROFETA beliefs that can,
in turn, trigger reasoning rules. In order to show effectiveness of
the solution, a case-study of speech-based interaction to browse
Wikipedia is presented.

I. INTRODUCTION

With the advent of smartphones, the technological advances
in artificial intelligence made it possible the implementation
of speech-based assistant agents, like Siri or the Google
Assistant. Being predicted in many science fiction movies,
speech assistants are kind of personal agents that represent
the natural evolution of assistant agents introduced in the ’90
in application software to help the user in her/his day-to-day
activities [7], [18], [17], [6], [16]. But while such kind of
assistants were strongly specialised for the activities proper
of the associated application, the aim of speech assistants is
more ambitious: to help the user in any kind of day-to-day
activities. We indeed expect that such entities should be able
to interpret—and execute the associated tasks—utterances like
“Play some jazz”, “Order coffee pods”, “Book me a flight to
London”, etc.

All of the exemplified activities however are not simple
“commands”, but, in general, could require a form of—more
or less complex—interaction; as an example, at the first phrase
above the assistant could answer something like “I’ve found
some tracks by Chet Baker, are they ok for you?”, and the
user could reply “No, I prefer Thelonious Monk”; placing
an order could imply to know the price and delivery time
of some offers, and the user (always by means of speed-based
interaction) could be asked to make a selection. The concept
is that we, as users, expect that speech-based assistants can
establish a meaningful dialogue with us, even if we know that

the peer is not a human being but an artificial system with
obvious limited capabilities and intelligence.

The technological aspects behind such a form of assistance
are multiple: not only a good Natural Language Processing
(NLP) engine is needed, but also a reasoner tool is mandatory,
that should be able to understand the context of discussion
and interpret the meaning of sentences accordingly. The NLP
engine has the task of performing speech-to-text processing
and, having obtained the text part, applying a syntax analyser,
in order to extract the meaningful parts of the phrase and
classify the lemmas. Once the lemmas have been extracted,
they have to be interpreted in order to catch the meaning
and then execute the proper actions; this operation is usually
performed by using tools that implement forms of—more or
less flexible—string pattern matching. But pattern matching
usually does not suffice for a powerful natural language
interaction; indeed meaning of utterances is also strongly
based on the evolution of dialogues, therefore what happened
in the previous interactions of the dialogue is strongly im-
portant for a correct interpretation: in other words, pattern
matching must be integrated with state- or knowledge-data.
In this sense, what is needed is a tool that is able to support
logic-/knwoledge-based programming and, among such kind
of tools, the PROFETA [12], [13], [11], [10] programming
platform appears an interesting solution since it is able to
provide all the cited characteristics.

In this context, this paper presents the software architecture
of a personal assistant agent based on the PROFETA program-
ming platform and able to interact with a human by using
the speech and the natural language. The solution is based
on a software architecture that, by means of the integration
of cloud services with PROFETA, is able to perform speech-
to-text and text-to-speech operations. Interpreted phrases then
become beliefs and can thus be used to trigger production
rules that drive actions of the agent. As a case-study, the
paper reports the application of the software architecture to
the implementation of agent able to query Wikipedia on the
basis of the questions provided by human user.

The paper is structured as follows. Section II provides an
overview of PROFETA. Section III describes the architecture
and functionalities of the speech-to-text/text-to-speech inter-
face. Section IV presents the case-study. Section V concludes

142

the paper.

II. OVERVIEW OF PROFETA

PROFETA1 [12] is a Python platform for programming the
behaviour of an autonomous system (agent or robot) based
on the Belief-Desire-Intention paradigm [8], [15]. It allows a
programmer to implement the behaviour of an agent by using
two basic concepts: beliefs and plans.

Beliefs represent the data part of an agent program, i.e. the
knowledge of the agent and are expressed by using logic
predicates, i.e. atomic formulae with ground terms; a belief
can be generated on the basis of data coming from the agent
reference environment or as a result of a reasoning process.

Plans represent the computational part of an agent program
and are expressed as production rules, triggered by a specific
event which can be the assertion/retract of a belief or the
request to achieve a specific goal; the result of a plan is a
sequence of actions that represent what the agent has to do
as a response to that event. Plans are written using Python
statements that however are interpreted, by the PROFETA
engine, as declarative production rules. The syntax is inspired
by AgentSpeak [9]. A plan includes a head and a body; the
head that is composed of the triggering event plus a condition,
i.e. a predicate on the knowledge that must be met for the
plan to be triggered; the body is the list of actions that must
be executed when the plan is triggered.

The interaction of a PROFETA agent with the environment
is performed by using two types of software entities. Actions,
already cited in the context of plans, are responsible of acting
onto the environment (as the name suggests), and are executed
as a result of the triggering of a plan. Sensors are instead
software entities with the task of polling or receiving data
from the environment or other external entities; a sensor
having gathered a useful information can generate a belief thus
transforming data in agent knowledge; as a result, a belief
generated by a sensor can enrich agent’s knowledge and/or
trigger a plan thus provoking the reaction of the agent.

PROFETA engine includes a scheduler that runs a loop
continuously executing the following activities:

1) Sensor Activation. All defined sensors are activated and
their polling code is executed; if a sensor generates a
belief, it is processed and placed into an event queue.

2) Event Handling. An event is extracted from the event
queue and all applicable plans are searched for.

3) Plan Selection. For each applicable plan, the condition
is tested and, if true, the plan is selected for execution.

4) Plan Execution. The actions of the selected plan are
executed sequentially.

For more details about PROFETA internals, working
scheme, syntax and semantics, the reader can consult the
relevant bibliography [12], [13], [11], [10].

1http://github.com/corradosantoro/profeta

III. THE STT/TTS INTERFACE

Implementing an agent able to interact with natural language
implies to include and use speech-to-text (STT) and text-to-
speech (TTS) services. Although many libraries exist (like
Sphinx [1], for example), Cloud-based services appear a more
interesting solution, mainly because they are continuously
improved and upgraded, and made always more precise.
Indeed, as for STT, we made some test using both the Sphinx
library and the Microsoft Bing Speech service, and, as a
result, we obtained a greater accuracy using the latter solution.
On the other hand, for the TTS, we experienced the IBM
Watson text-to-speech service [3], which gives a more natural
feeling of human voice, than others Python-based engines like
eSpeak [2], SAPI [4], etc.

In order to include STT and TTS services within PROFETA,
the proper abstractions provided by the tool must be used; the
STT is implemented as a PROFETA sensor that we called
hearer, while TTS is encapsulated inside an action called say.

hearer
sensor

"play some jazz"

heard("play some jazz")

say
action

say("en","hello","how are you?")
"hello, how are you?"

Fig. 1. The ”hearer” sensor and ”say” action

As Figure 1 show, the hearer has the task of sampling the
microphone, sending audio data to the STT cloud service,
and gathering the response as a string; as a consequence, a
heard() belief is asserted whose term is the interpreted
string. This assertion can, in turn, trigger the proper rules
according to the agent program implemented.

The say action is used to let the agent pronounce a sentence
(see Figure 1). The parameters of the action are strings:
the first string is the language, while the other parameters
represent the various parts of the sentence itself; action im-
plementation concatenates such parts and sends the resulting
string to the TTS cloud service; the reply will be the audio
samples of the recited phrase that are sent to the audio device
for playing.

From the implementation point of view, a sensor in PRO-
FETA is simply made of class that extends the Sensor
base class overriding the sense() method; this method must
implement to code for data sampling, returning the relevant
belief (or None if no data has been sampled). In a similar
way, a PROFETA action is implemented as a sub-class of the
Action base class and overriding the execute() method
with the proper code. Given this, implementing the STT
and TTS services appears a straightforward task, however
some aspects must be taken into account. The first aspect
regards the performances: the interaction with cloud services
could introduce latencies that can affect the performances of

143

the overall system; indeed, in PROFETA, the invocation of
sense() and execute() methods is made synchronously
within the main interpretation loop of the agent program: if
such methods experience delays (that are indeed unavoidable
when a network transaction is performed), the overall per-
formances are affected. The second aspect is related to the
generality of the solution: even if, in our implementation, we
decided to use Microsoft Bing for STT and IBM Watson
for TTS, other engines are available in the web, therefore
a software architecture able to let the programmer to easily
change the desired engine is really opportune. Such aspects
are dealt with in the next subsection.

A. The STT Interface

The STT interface is made by three basic classes and a
specialised class; the relevant UML diagram is reported in
Figure 2.

hearer
+ audiosource
+ stt

+ sense(): Belief

PROFETA.Sensor

STT

+ connect()
+ translate(audiodata) : string

BingSTTService

+ connect()
+ translate(audiodata) : string

AudioSource

+ open()
+ close()
+ read() : audiodata

Fig. 2. The STT Interface

The principal entity is hearer which is a subclass of
the basic PROFETA class Sensor. An instance of hearer
contains a reference to other two objects: AudioSource and
STT; the former has the objective of capturing audio data
from the microphone while the latter implements the network
transaction with a cloud STT services. STT is defined as an
abstract class: its methods are empty and their implementation
is left to a derived class that will include the code for the
specific cloud service to be used. In our implementation, we
subclassed STT as BingSTT, whose methods implement the
interaction with the Microsoft Bing service.

The task of hearer is coded in its sense() method. First
it invokes the read() method of AudioSource to retrieve
audio data samples; this sampling is performed by entering in a
loop which listens for incoming sounds from the microphone,
filtering ambient noises properly, until any source of sound
is perceived; then, the audio stream is caught until silence is
identified again and the relevant data are returned as a result
of read(). Subsequently, the hearer activates the STT by
invoking the translate() method; this method receives the
audio stream as input and is expected to return the translated
string or None if translation is impossible. Such a result (if
not None) is converted in lowercase2 and the heard() belief

2This is required because, for syntax reasons, in PROFETA string constants
must be in lowercase.

is generated as a result value of the sense() method.
For the performance reasons already cited, the task de-

scribed above must be executed in an asynchronous way with
respect to the main PROFETA loop. This objective is achieved
by encapsulating the hearer inside a AsyncSensorProxy, a
library class provided by PROFETA which has the specific
task of making a sensor asynchronous [14].

B. The TTS Interface

Text-to-speech is performed by a specific PROFETA action.
Also in this case, it is preferable to have an asynchronous
execution of the cloud interaction with respect to the main
PROFETA loop. This is performed by exploiting the Asyn-
cAction base class provided by the PROFETA library which
is, in turn, derived from Action.

PROFETA.action

+ execute()
PROFETA.AsyncAction

+ create_service()

say
+ service: STT

+ create_service()
+ execute()

TTS
+ audioplayer

+ connect()
+ translate(string)

WatsonTTS

+ connect()
+ translate(string)

AudioPlayer

+ open()
+ play(audiodata)

Fig. 3. The TTS Interface

The TTS interface, whose class diagram is reported in
Figure 3, is composed of the following classes: say, TTS,
AudioPlayer and WatsonTTS. Class say is the async-action
which is directly invoked by the PROFETA program and
coordinates all the text-to-speech activities. TTS is an abstract
class that represents the cloud service and (in a way similar
as to STT) must be subclassed with the implementation of
the code for interaction with a specific TTS service; in our
case, this is performed by the class WatsonTTS that includes
the code for interaction with IBM Watson. Class TTS contains
also a reference to AudioPlayer, which has the task of playing
to the audio device the audio stream returned by the TTS
service.

The working scheme of the TTS interface is based on a
specific usage protocol that the programmer has to respect; in
particular, in the say class, two methods must be overridden:
create_service() and execute(). The former method
is called when the class is instantiated and has the specific
task of creating the TTS object and performing, in turn, the
initial connection to the cloud service. The latter method is
called when the action is explicitly invoked within a PROFETA
program and contains the code that retrieves parameters,
composes the string to say and invokes the translate()
method of TTS that concretely executes text-to-speech and
plays the resulting audio stream.

144

�
1 stage("main")
2 +start() >> [+language("en"), show("starting...")]
3 +heard("laura") >> [random_greetings("GreetMessage"), say("en", "GreetMessage"), set_stage("wiki")]
4
5 stage("wiki")
6 +heard("X") >> [terms_to_belief("X")]
7 +generic_phrase("change language") >> [set_stage("language")]
8 +generic_phrase("X") / language("L") >> [wiki_search("L", "X", "Y"),
9 say("L", " I have found the following options ", "Y")]

10 +search("X") / language("L") >> [wiki_say("L", "X")]
11 +timeout() >> [set_stage("main")]
12
13 stage("language")
14 +start() >> [say("en", "what language do you desire?")]
15 +heard("english") >> [+language("en"), say("en", " I’ve set english"), set_stage("wiki")]
16 +heard("italian") >> [+language("it"), say("en", " I’ve set italian"), set_stage("wiki")]
17 +heard("french") >> [+language("fr"), say("en", " I’ve set french"), set_stage("wiki")]
18 +heard("X") >> [say("it", " I’ve not understood the language that you desire or I’m not able to support it")]
� �

Fig. 4. The listing of Laura

IV. THE WIKIPEDIA AGENT

The agent we developed as a proof-of-concepts for our
STT/TTS interface is a simple assistant able to browse
Wikipedia by means of natural language. We called the
assistant Laura and this is the name the assistant itself respond
to in its behaviour.

init wiki
"laura"

timeout (30 secs)

language

"change
language"

language set

Fig. 5. The basic behaviour of Laura

Laura is implemented as a finite-state machine, sketched in
Figure 5, in which each state (which is indeed a macro-state)
represents a condition, in Laura’s behaviour, corresponding
to certain dialogue abilities. The basic working scheme is the
following: in the initial state, init, the agent waits for her name
in order to be “woken-up”; after that, Laura enters in the wiki
state in which she is able to hear the term to be searched for
in Wikipedia. In the wiki state Laura is able to respond to the
following phrases:

• “search terms”, the specific terms are sent to wikipedia
and, when the result page is returned, the summary data
is recited using text-to-speech;

• “change language”, it makes Laura enter in the language
state, letting the user to set a new language for both
Wikipedia search and text-to-speech;

• any other terms, the list of possible options for the said
terms is searched for in wikipedia and such a list is recited
by Laura; if the user wants a specific term, s/he can ask
it using the phrase “search terms”.

The wiki state is abandoned on the basis of two events: after
a timeout of 30 of inactivity (in this case the state reached is
once again init), or when the user says “change language”;
in th latter case, Laura enters in the language state asking the
user for the new language desired.

To support the cited activities, the following beliefs are used:

• heard(terms). The belief already described in Sec-
tion III used as output of the hearer sensor. It is defined
as a reactor i.e. a belief that can only trigger PROFETA
program plans but does not enters in the knowledge base3.

• search(terms). It is a reactor generated by a pro-
cessing of data heard by the hearer: if the sentence
said includes an explicit searching request, this reactor
is asserted.

• generic_phrase(terms). Like the previous one, it
is a reactor generated by a processing of data heard by
the hearer, but is generated if the sentence said does not
include a specific searching request.

• language(lang). It is a belief that stores, in the
knowledge base, the settings relevant to the current lan-
guage.

• timeout(). A reactor used to signal the 30 seconds of
inactivity.

The complete PROFETA program that controls Laura’s
behaviour is reported in Figure 4 (the code of actions is not
reported for brevity reasons, but their role is described in the
text below).

The macro-states of the finite-state machine of Figure 5 are
clearly identified since they are called stages in PROFETA and
are used to specify that certain plans are valid (i.e. triggerable)
in that state.

In stage main, the program waits for the assertion of
heard("laura") reactor (this happens if the user pro-
nounces “Laura”) and, on the occurrence of such an event (line
3), it enters into the wiki stage. In such a reaction, a greeting
message is recited: this message is generated by action ran-
dom greetings() that picks a random welcome string (from
a predefined set) and bounds it to variable GreetMessage;
the use of random greeting message is to avoid a repetitive
behaviour, from Laura, that, in the long term, could boring
the user.

In the wiki stage, the arrival of a heard() belief causes
plan in line 6 to be triggered: the consequence is the call of
action terms to belief() that has the basic task of interpreting

3See [12] for details about the kind of beliefs supported by PROFETA.

145

the command according to the cases listed above and depicted
in Figure 5. If “search terms” is pronounced (e.g. “search
Palermo”), the terms to belief() action asserts the search()
reactor, using terms as parameters; this causes plan in line 10
to be executed: first the current language is retrieved, then
action wiki say() is executes which will search the terms
inside Wikipedia reciting then the relevant summary text. If
“change language” is pronounced, plan in line 7 is triggered
and the agent enters into stage language, asking the user
the new language to switch to; when the new language is
successfully selected, the agent returns into the wiki stage
(lines 15—17). If other terms are said, the plan in line 8 is
executed that causes a generic search into Wikipedia for all
the pages that are related to the terms themselves: the list of
options is then recited by Laura.

V. CONCLUSIONS

This paper has described the software architecture and the
working scheme of an assistant agent able to interact with
the user with natural language. The basic aspects of the
desired solution are the use of the PROFETA BDI tool as the
execution platform and the organisation in a flexible software
architecture in order to exploit cloud computing for speech-
to-text and text-to-speech services.

The assistant implemented, called Laura, has the objective
of helping the user in browsing Wikipedia with speech-based
interaction. It served as a proof-of-concepts to understand the
validity of the software architecture and the applicability of
PROFETA to such kind of contexts.

Starting from such experience, we plan, in future work, to
improve understanding abilities of Laura, including a library to
parse natural language sentences (like NLTK [5]), also trans-
lating the parsed terms into a proper beliefs better representing
the predicates of a common knowledge; the objective is to have
an artificial system which can show a rational behaviour that
can also be adopted in all contexts needing a form of specific
user assistance.

REFERENCES

[1] Cmusphinx: Open-source speech recognition toolkit. [Online].
Available: http://cmusphinx.github.io/

[2] espeak speech synthesizer. [Online]. Available:
http://espeak.sourceforge.net/

[3] Microsoft speech application program interface. [Online]. Available:
http://www.ibm.com/watson/services/text-to-speech/

[4] Microsoft speech application program interface. [Online]. Available:
http://en.wikipedia.org/wiki/Microsoft Speech API

[5] Natural language toolkit. [Online]. Available: http://www.nltk.org/
[6] M. Bombara, D. Calı̀, and C. Santoro, “KORE: A multi-agent system to

assist museum visitors,” in WOA 2003: Dagli Oggetti agli Agenti. 4th
AI*IA/TABOO Joint Workshop ”From Objects to Agents”: Intelligent
Systems and Pervasive Computing, 10-11 September 2003, Villasimius,
CA, Italy, 2003, pp. 175–178.

[7] J. M. Bradshaw, Ed., Software Agents. AAAI Press/The MIT Press,
1997.

[8] M. E. Bratman, Intentions, Plans and Practical Reason. Harvard
University Press, 1987.

[9] M. d’Inverno and M. Luck, “Engineering agentspeak(l): A
formal computational model,” Journal of Logic and Computation,
vol. 8, no. 3, pp. 233–260, 1998. [Online]. Available:
http://eprints.ecs.soton.ac.uk/3846/

[10] L. Fichera, D. Marletta, V. Nicosia, and C. Santoro, “Flexible robot
strategy design using belief-desire-intention model,” in Research and
Education in Robotics - EUROBOT 2010 - International Conference,
Rapperswil-Jona, Switzerland, May 27-30, 2010, Revised Selected Pa-
pers, 2010, pp. 57–71.

[11] ——, “A methodology to extend imperative languages with agentspeak
declarative constructs,” in Proceedings of the 11th WOA 2010 Workshop,
Dagli Oggetti Agli Agenti, Rimini, Italy, September 5-7, 2010., 2010.

[12] L. Fichera, F. Messina, G. Pappalardo, and C. Santoro, “A python
framework for programming autonomous robots using a declarative
approach,” Sci. Comput. Program., vol. 139, pp. 36–55, 2017.

[13] G. Fortino, W. Russo, and C. Santoro, “Translating statecharts-based
into BDI agents: The DSC/PROFETA case,” in Multiagent System Tech-
nologies - 11th German Conference, MATES 2013, Koblenz, Germany,
September 16-20, 2013. Proceedings, 2013, pp. 264–277.

[14] F. Messina, G. Pappalardo, and C. Santoro, “Integrating cloud services
in behaviour programming for autonomous robots,” in Algorithms and
Architectures for Parallel Processing - 13th International Conference,
ICA3PP 2013, Vietri sul Mare, Italy, December 18-20, 2013, Proceed-
ings, Part II, pp. 295–302.

[15] A. Rao and M. Georgeff, “BDI agents: From theory to practice,” in
Proceedings of the first international conference on multi-agent systems
(ICMAS-95). San Francisco, CA, 1995, pp. 312–319.

[16] A. D. Stefano, G. Pappalardo, C. Santoro, and E. Tramontana, “A multi-
agent reflective architecture for user assistance and its application to
e-commerce,” in Cooperative Information Agents VI, 6th International
Workshop, CIA 2002, Madrid, Spain, September 18-20, 2002, Proceed-
ings, 2002, pp. 90–103.

[17] A. D. Stefano and C. Santoro, “Netchaser: Agent support for personal
mobility,” IEEE Internet Computing, vol. 4, no. 2, pp. 74–79, 2000.

[18] G. Weiss, Ed., Multiagent Systems. The MIT Press, April 1999.

146

