
Representing and Developing Knowledge
using Jason, CArtAgO and OWL

Antonio Chella∗, Francesco Lanza∗, Valeria Seidita∗
∗Dipartimento dell’Innovazione Industriale e Digitale
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Abstract—Contexts where agents and humans are required
to collaborate and cooperate in a human-like fashion are
complex systems where a high degree of self-adaptability of
every component is demanding. A fundamental ingredient when
developing and implementing this kind of systems is the knowl-
edge representation. Knowledge of the goals, the environment,
other agents’ capabilities and task and of itself, is crucial in
deciding which action to perform to reach an objective and
to behave in a self-adaptive way. The problem of knowledge
modeling and representation becomes more and more urgent if
the agents’ operation domain changes at runtime. Knowledge
has to be updated and handled while the system is in execution.
In this paper, we present a way for implementing a controlled
semantic system to manage the belief base of a multi-agent
system at runtime. Our work is based on the development of
a specific approach for interfacing Jason, CArtAgO and Jena;
the knowledge base representation employs OWL Ontology.

I. INTRODUCTION

Today software systems are required to perform tasks not
often known at design time, they should be composed of
increasingly autonomous and self-adaptive entities acting in
a continually changing environment. This is the case when
human and agents interact as they were in a team to collaborate
and cooperate towards a common and shared objective. Co-
operation and collaboration should imply sharing knowledge
about elements in the environment, actions, tasks, capabilities;
deciding whether to perform an action by itself, delegating to
the other or not performing an action as well; communicating
basing on the same elements of the world; monitoring and
anticipating how, and whether, each single action may change
the state of the world. Also considering, in so doing, that
the acting agent itself is an element of the environment. The
latest consideration includes some inclusive point of view
on the environment in contrast to the egocentric one, more
used in the systems of a few years ago. The agent is part
of the environment and it perceives itself in the same way it
perceives all the other objects or elements. This assumption
affects developing and implementing the part of the system
devoted to the decision process.

Purposeful interactions in human-agent interaction entail
concepts like autonomy, self-organization and self-adaptation.
Agents possess features allowing to manage the before said
concepts. For instance, the BDI agent paradigm implements a
decision-making process based on practical reasoning that is
very similar to the human reasoning process. Indeed, through
deliberation and means-ends reasoning, agents may act as a

human. A human decides how to act to realize his intentions
based on the state of affairs around him. The state of affairs
may concern the objects of the world, the internal state of the
human in self and what the human infers from the observation
of other human beings’ behavior.

Having a way of handling knowledge is of fundamental
importance in the decision process. Currently, the known the-
oretical and technological means allow us easily and efficiently
managing systems that self-adapt to changing situations. The
BDI theory and the related programming language such as
AgentSpeak and Jason along with its reasoning cycle (Fig.
1) allow a runtime mapping of intentions and events. Also,
plans selection from the plan library1 to reach a goal even in
a situation not entirely known at design time.

However, situations or domains where new stimuli from the
outside cause changes in the state of the environment and
new elements emerge during agents mutual interactions with
the environment imply several problems in the implementation
phase. Moreover, these elements have been taken into account
at runtime to convey the decision-making process of agents
operating in that environment. Normally, a common goal, as
well as a set of plans to achieve it, are identified at design
time, but the interaction of the agent with the environment
and with the human being makes sure that the operating
conditions change unpredictably. This fact happens when the
interaction with the environment itself brings out new terms
of operability that must be worked out to decide what action
to take. Generally, when a team is made up of only humans,
they choose actions from their experience, the knowledge they
have of the other team members, the trust they place in the
other team, their emotional state and the anticipation of the
actions of others.

Reporting these behaviors on agents is a challenging task
and the case of human-agent interactions is an excellent sce-
nario to investigate and analyze problems related to knowledge
management. We need a way to implement a reasoning cycle
on a knowledge base changing and updating at runtime.

Contribution and outline of the paper. In this paper, we pro-
pose a means for representing and handling agents’ knowledge
by employing BDI agents theory and OWL. In particular, we
create a Jason agent that acts as an interface towards OWL

1For a deep review on these concepts refer to BDI theory and Jason [4, 3,
2]
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using Jena through CArtAgO artifacts and Jason’s internal
actions. The rest of the paper is organized as follows: in section
II we better explain the motivation of our work; in section III
we illustrate the proposed approach and, finally, in section IV
we draw some conclusions.

II. NEED FOR KNOWLEDGE REPRESENTATION

Storing data, information and relevant acquisitions let hu-
mans learn, reason on facts and decide the right action to
pursue an objective. In the same way, to build agents able
to work in a specific environment, it is useful to give them
the required know-how for doing actions and getting the
jobs done. Implementing this feature on agents involves the
definition of a suitable data structure that can emulate a
memory architecture. For instance, developing multi-agent
systems requires the development of a memory system for
agents that allows them understanding and reasoning about
the surrounding world.

A promising approach might be to implement agents using
the BDI model. This approach descends by the philosopher
Bratman [4]; he applied theories that govern human practical
reasoning. Several programming languages implement the
BDI model; in particular, AgentSpeak(L) is the most famous
language that lets us implement a cognitive cycle that emulates
the practical reasoning.

The Jason language extends AgentSpeak(L). A BDI agent
can sense the environment and at the same time update the
internal belief base accordingly. Jason has internal methods
to represent belief base, goals and plans to reach it. Other
information about Jason can be retrieved in [2][3]. Modeling
the environment in a way useful for Jason agents may be
done by the CArtAgO [14] framework. CArtAgO is a general
purpose framework based on Agents & Artifacts metamodel.
CArtAgO lets us develop a virtual environment based on
artifacts. Thus, BDI Agent-Oriented Programming claims its
place as the most useful paradigm to develop humanized
agents. This model lets us talk about computer programs as
cognitive agents owning a mental state. Therefore, beliefs,
desires and intentions characterize an agent.

In this paper, we focus on a specific characteristic of agents,
the belief. Beliefs are information that agents own about the
surrounding environment. In general, a belief could be out
of date or inaccurate. To define a good data structure with
the aim to emulate a belief base representation system, we
need to understand how a Jason belief base is organized.
Looking at the Fig. 1, we can observe the role of the belief
base in the reasoning cycle. All percepts are computed using
two important functions buf and brf. Each one contributes
to adding, removing or updating knowledge stored in the
Knowledge Base; Fig. 2 shows a UML representation of the
Belief Base interface and classes. This class presents several
predefined methods that are devoted to managing the belief
base; for instance, add and remove let add or remove literals
hence update the belief base.

In the following section, we detail how we developed a
multi-agent system able to create, add, remove, or better

manage knowledge, also including semantic and additional
properties, by a qualified agent realizing our approach.

What we claim in this paper is that representing knowledge
and implementing methods for managing the knowledge base
help developers to give life to entirely autonomous and self-
adaptive agents.

In order to understand this work, it is worth to note the
following definitions of the four different levels of adaptivity
by Qureshi et al. [12]:

• Type I - self-adaptive systems of the first type are able
to react to changes following the behavioral model given
by designers, well specific decision points trigger actions
on the basis of perceptions and available knowledge on
the environment;

• Type II - systems of this type own many strategies to face
changes, the best strategy is chosen at runtime and may
impact on non-functional requirements and is the result
of a compromise that considers perceptions and available
knowledge also on special requirements;

• Type III - is applied to systems operating in not totally
known environment, strategies are not established at
design time but assembled at runtime according to the
actual execution context;

• Type IV - is the most similar to biological systems,
these kind of systems are able of self-modifying their
specification and generating strategies from scratch to
respond to changes.

Each level implies how much adaptivity agents have to
acquire and learn from the surrounding world to operate their
intentions into the environment.

In [15] authors describe a meta-model containing the main
abstractions for designing these type of intelligent systems. In
[10][8][5] other approaches dealing with theoretical aspects
in developing self-adaptive systems are discussed. However,
to the best of our knowledge, this research context still lacks
proposals and solutions about implementation issues above all
with regards to knowledge representation.

As Tulving states in [17] about human memory, a complete
memory system equips two different type of memory system,
episodic memory and semantic memory.

The semantic memory allows retrieving information that has
not been directly stored in the global knowledge base system.
Semantic memory does not save percepts but instead cognitive
links to input signals. The semantic memory system is much
less susceptible to losing information concerning the episodic
one. Episodic memory stores temporal information about
occurring episodes or specific events and merges them, when
possible, to the temporal-spatial relation. The episodic memory
system may store perceptible event in terms of properties,
characteristics or attributes. Hence, to handle efficiently system
knowledge we need an architecture letting the agents storing
all the information about perceived data and at the same time,
create and/or maintain semantic mapping among them.

In this paper, we try to solve this problem with a memory
architecture realized by using an OWL Ontology. The OWL
Ontology is a semantic ontology based on a markup language
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Fig. 2. Jason Belief Base UML redrawn from [3].

generally used to publish and share ontologies on the web [1].
Using OWL allows representing means and semantic of terms
using vocabulary and relations between them. Apache Jena [9]
is used to query the OWL ontology.

In order to implement the memory system, therefore, we
propose a non-invasive method where, studying the mecha-
nisms that govern a belief base, we suggest an agent approach
to represent and develop knowledge with all its semantic
mechanism without modifying any internal classes.

III. MAKING RUNTIME KNOWLEDGE

In this section, we explain how to implement a semantic and
episodic memory architecture in a multi-agent system based on
the Jason interpreter [2] and the CArtAgO framework [13]. We
implement in CArtAgO a specific scheme where the memory
structure is based on OWL Ontology [1] to made runtime

knowledge. Fig. 3 shows a Jason agent system using CArtAgO
for handling knowledge. From an — implementation — point
of view, fundamental elements are the agent-types and the
workspaces. An agent-type, as the name suggests, is a user-
defined type, written in AgentSpeak Language; it contains the
agent’s definitions and a series of initial conditions. In Jason,
the agent-type corresponds to a file with the .asl extension. An
agent-type file presents a specific structure for the definition
of beliefs, desires/goals the agent has to achieve and the list of
plans/intentions the agent can use to reach all its desired goals.
The agent-type contains all methods that could be used from
the agent written by the developer; each plan is composed
of several parts, the most important are: (i) event-trigger, (ii)
context and (iii) the body of the plan. The event-trigger may
be considered as the name of a plan or well, the event that
triggers the plan after the context has been evaluated.

The process in charge of assessing the context is a unifying
process; it considers all the beliefs considered true to activate
the task. The body of the plan may contain internal actions,
other kinds of action (such as CArtAgO’s artifact) or other
plans; another essential factor to consider is the belief source.
During the reasoning cycle (Fig. 1), each belief has to be
evaluated within a specific context to activate a plan, hence it
is essential to know the information source (the agent itself,
any other agent or the environment through artifacts); this fact
becomes hard to handle at runtime in a changing environment.

The CArtAgO Framework realizes artifact-based working
environments in a multi-agent system (MAS)[14]. The entire
framework makes extensive use of artifacts as abstractions to
handle tools, objects and resources belonging to the surround-
ing environment. Tools, objects and resources may be used and
manipulated by agents to solve several tasks as cooperations,
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Fig. 3. Using an OWL Ontology inside a multi-agent system

actions or simply perceptions. Thus, during the definition of a
JaCa system, the developer has to write a configuration module
that contains all information about agents and workspaces. He
has to do that for each agent of the system thus losing the
possibility to coordinate data flow among agents at runtime.
This situation is illustrated in Fig. 3, here all the agents
can interface with OWL ontology using the Jena Framework
and to manage knowledge acquisition but, during the system
execution, each agent would activate the Jason reasoning cycle
with the consequence to not be able to implement self-adaptive
cognitive agents.

Fig. 3 shows a general approach; each agent takes part in
the system and has to implement and use the Jena framework
within itself, for example using Internal Actions. Agents
use Jena without centralized architecture and this affects the
efficiency of the system. For instance, in [16], the argonaut
prototype lets agents consult ontologies using Jena Framework
implementing for each some defined internal actions. This
specific distributed approach has been proven useful in a
scenario where fundamental characteristics of cognitive sys-
tems working in a runtime application are not evaluated. Our
intention is, instead, to realize a memory system for cognitive
architectures working in a dynamic and unknown domain and
where the real time is the most important characteristic.

We developed a knowledge system that can perfectly emu-
late the mechanism of a generic belief base such as the Jason
one; it works well at runtime and at the same time guarantees
inferring logical consequences from a set of axioms. Generally,
a multi-agent system organizes memory in specific structures
with the purpose to let agents gain information. A Jason multi-
agent system implements a cognitive agent that uses the BDI
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Fig. 4. Proposed approach to implement semantic and episodic memory
system using Jason-CArtAgO e Jena-OWL

model proposed in [4]. Here, designer handles the logic of
programming based on the goal, beliefs, desires, and intentions
of the agent. As already said, Jason beliefs are the core of
our approach; we structured the multi-agent system with a
centralized agent with the aim to connect the OWL ontology
with the rest of the system (Fig. 4).

In so doing we define, or declare, multiple workspaces
containing one on more agents; in each workspace, agents
use one or more artifact to realize itself. The artifact of a
workspace could be used only by the agents joined to the con-
sidered workspace. Thus all retrieved information perceived
by the related artifact, are seen only by the joined agent.
Employing workspaces allows developing security policies
on information in the multi-agent system. Furthermore, every
artifact can be used only by the agents belonging to the
workspace that contains it. The default implementation of
workspace contains predefined artifacts that provide functions
at a low level to the agents. Artifact represents tools and
functionalities letting the agent handle objects or in general
resources in the environment. An artifact is a .java file with the
aim to implements methods that could be used in AgentSpeak
plans by the Jason agent.

The system represented in Fig. 3 contains three different
workspaces. The workspace 1 contains tools and methods that
could be used from every agent in the system; this means that
the knowledge acquired using these tools could be accessible
by all or could be acquired from every agent that uses the
artifact in the plans defined in .asl file.
The proposed scheme implements, in each agent, the functions
interfacing with apache Jena; concerning its complexity, this
means that a connection through the ontology for each agent
will exist. The only form of communication is related to the
transmission and the execution of the regular plan.
In the workspace 2, such as in the workspace 3, agents
communicate with each other with communicative internal
action as
.broadcast and .send to catch or retrieve information
from and to the agent society. Sending or forwarding per-
ceptions, or in general beliefs, also increases the complexity
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of the plans an agent has to execute. Indeed, the developer
has to write plans handling messages from the senders (that
contains the knowledge) to the receivers. The work proposed
with the scheme in Fig. 4 uses a different method to implement
semantic technologies in multi-agent systems. We realized this
approach after having used the common model in Fig. 3 with
a toy ontology and having determined how much slow is.

A. Proof of Concepts

Let us suppose agents with the goal of understanding objects
not present in their knowledge base. As humans do, agents
start from whatever they know and through interactions with
humans. The agent system developed using the first approach
(Fig. 3) revealed to be slow and hard to implement cause
the need to handle all possible occurring cases. Also, agents’
connection latency and the delay on possible plans actuation,
entail a series of problems that could create inconsistency
in the decision process. Some errors propagated in some
functionalities of the semantic structure because of the high
latency that severely decreased performances and did not let
agents adapt to changing situations. Indeed, each agent that
got a deprecated belief could not know which version of
belief was correct. Moreover, using CArtAgO produced object
properties that Jason converted in beliefs erroneously affecting
the decision process.

The crucial difference between the two approaches is in
the memory management system. We introduced a specialized
agent called Jino. Jino has a specific agent-type that considers
a series of plans composed to handle the memory system.
Jino lets us manage the episodic and the semantic memory
but also all the information acquired by beliefs. Through the
communication system, Jino maintains the system synced with
all the members. The value of beliefs is updated at runtime
and when an external agent asks for a specific belief, Jino
knows whether this is reliable or it is better to check into the
ontology to retrieve a belief newer version.

Within the Jino’s workspace, the agent is equipped with
all tools necessary to manage the perceptions coming from
agents with the specific role of perceiving the environment.
The communication system always guarantees the direct con-
nection between Jino and each agent. In order to acquire
runtime knowledge, Jino gets started each time that a belief
changes or an event occurs; this fact lets Jino add, remove
or update some beliefs and manage others, at the same time.
Thus, Jino manages changing knowledge without employing
the ontology reasoner but only its working memory; this fact
lets the system use resources at runtime and having beliefs
updated and synchronized in the working memory without
waiting for the reasoner (Fig. 5).
Jino, across the communication system, informs all agent-
society about changes using the broadcast method. Whenever
Jino believes that a certain belief is necessary only for a spe-
cific agent or a group of agents, it takes over to communicate
only to the interested agent/group using the .send method.
Moreover, when new knowledge is acquired, Jino firstly saves
the result on the knowledge base with the aim to construct the

Short Term MemoryLong Term Memory

Agent
Jino

Agent 1

Agent 2

Agent 4

Agent 3
OWL

Ontology Working Memory

Fig. 5. How Jino works using its working memory.

long-term memory and then lets OWL’s reasoner infer new
concepts.

Only one connection with the ontology across Jena Frame-
work is present and the reasoner is launched only when it is
essential and not when a single agent desires a specific belief.
Jino takes advantage of an internal memory representation that
makes belief usable when someone asks.

IV. DISCUSSIONS AND CONCLUSIONS

Developing applications that make effective use of machine-
readable knowledge sources is an important research area.
In [11] several aspects regarding agent-oriented programming
with underlying ontological reasoning are illustrated.

In this paper, we discussed how to develop and represent
knowledge using Jason, CArtAgO, and OWL. The memory
architecture, we presented, is based on a semantic represen-
tation system commonly used to develop a semantic web
application. Semantic web makes extensive use of ontolo-
gies, cause they are explanatory about the logical connection
between concepts, relations, and properties. OWL could be
a good choice as information handler or rather as concept
descriptor, relationships between concepts but also specific
properties or constraints. We proposed a practical approach
to integrating a Jason-CArtAgO multi-agent system with the
Jena framework. In Fig. 4, we show a centralized system
for handling the knowledge base using a specialized agent;
this agent is built with the purpose to manage the system
beliefs, in so doing it produces beliefs using the semantic
connections retrieved from the Jena framework. To reduce the
system complexity and the time for perception processing, we
decided to adopt a centralized system. As it can be seen in
Fig. 5, we can handle the entire system subdividing it into
two parts, a long-term memory and a short-term memory,
commonly known as working memory. The long-term memory
has been endowed with all the information related to objects
and resources perceived using CArtAgO artifacts. Moreover,
it is possible to store relations and properties that we can
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associate for each prediction; this fact is possible thanks to the
logical axioms or better object properties that Jena lets define
and retrieve. In the working memory, we managed the current
situation model relates to the context in which the agents work.
With the use of CArtAgO, we handled the knowledge base
using artifacts. When a perception is perceived, the system
converts it into Jason’s belief and, once it is available, the
specialized agent manages and organizes it into a specific
form that let other agents ask resources without invoking the
reasoner or others complex algorithm to evaluate information.
This is the main contribution given by this work.

This specific approach has been proven useful in a sce-
nario where fundamental characteristics of cognitive systems
working in a run-time application are strictly evaluated. In
this method, we use the useful semantic memory system
inside a cognitive architecture where all relative constraints
are respected.

In future works, we are planning to extend this module
integrating it directly with a set of application that may help
the knowledge acquisition module to understand context and
catalog perceptions. Moreover, we will map the belief control
system of this paper with the Jason reasoning cycle extension
[7] for better handling the agent’s decision process and we will
fill the gap between the cognitive architecture for human-robot
interaction developed in [6] and the agents’ implementation
framework. In conclusion, this work is a part of a a more
significant project that focuses on the human-robot teaming
research. The approach could be used to do runtime planning
using several learning methods. We are going to develop the
complete model that also implies the ability of one entity
to understand what the other one is going to do. In this
way, we aim at implementing human-robot interactions where
each involved entity delegates or commits an action. The
advantages of combining a multi-agent language as Jason with
description logics lie in the reasoning cycle of the agent’s
expressiveness and consciousness indeed, queries to the belief
base are more expressive since this was inferred by ontology
and not explicitly written.
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