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Abstract — This paper presents an actor-based software 

library, called Actomata, for the definition and simulation of 

cellular automata models. Using Actomata, each cell of a model is 

defined by an actor and the evolution of its state is built though 

the interaction with their neighbor cells via the exchange of 

messages. This kind of implementation simplifies the definition of 

the code driving the behavior of each cell and the distribution of 

simulations on a set of different computational nodes.  

Keywords — actor model, cellular automata modelling, 

distributed simulation. 

I.  INTRODUCTION 

Cellular automata are abstract and discrete computational 
systems that have proved suitable for modeling complex 
system representations in several scientific fields. Cellular 
automata models are composed of a grid of cells where each 
cell has a given “state” which can have a discrete time 
evolution defined through the interaction with their neighbor 
cells. This evolution is obtained through some simulation 
algorithms whose implementations are in general serial, since 
that is enough to represent many systems of interest; however, 
in some cases models involve a massive number of cells and 
complex algorithms to compute the next “state” of each cell 
and so the performance of simulations become very poor. 
Therefore, to cope with such a kind of problem, different 
researchers propose some parallel and distributed cellular 
automata simulation algorithms [1][2]. 

This paper presents a software library, called Actomata, 
that offers a set of features useful for simplifying the 
development of cellular automata models and for performing 
scalable and distributed simulations. Actomata has been 
implemented on the top of ActoDeS, an actor-based software 
framework aimed at both simplifying the development of large 
and distributed complex systems and guarantying an efficient 
execution of applications. Section 2 shortly introduces the 
ActoDeS software framework. Section 3 presents Actomata 
and, in particular, shows the features that make it suitable for 
developing cellular automata models and for performing their 
simulation. Section 4 discusses its experimentation in the 
modelling and simulation of evolution, epidemic and 
evacuation models. Finally, Section 5 summarizes the results 
and points out to future research. 

II. ACTODES 

ActoDeS is an actor-based software framework that has the 
goal of both simplifying the development of concurrent and 
distributed complex systems and guarantying an efficient 
execution of applications [3]. 

ActoDeS is implemented by using the Java language and 
takes advantage of preexistent Java software libraries and 
solutions for supporting concurrency and distribution. ActoDeS 
has a layered architecture composed of an application and a 
runtime layer. The application layer provides the software 
components that an application developer needs to extend or 
directly use for implementing the specific actors of an 
application. The runtime layer provides the software 
components that implement the ActoDeS middleware 
infrastructures to support the development of standalone and 
distributed applications. 

In ActoDeS an application is based on a set of interacting 
actors that perform tasks concurrently and interact with each 
other by exchanging asynchronous messages [4]. Moreover, it 
can create new actors, update its local state, change its behavior 
and kill itself. 

Depending on the complexity of the application and on the 
availability of computing and communication resources, one or 
more actor spaces can manage the actors of the application. An 
actor space acts as “container” for a set of actors and provides 
them the services necessary for their execution. An actor space 
contains a set of actors (application actors) that perform the 
specific tasks of the current application and two actors (runtime 
actors) that support the execution of the application actors. 
These two last actors are called executor and the service 
provider. The executor manages the concurrent execution of 
the actors of the actor space. The service provider enables the 
actors of an application to perform new kinds of action (e.g., to 
broadcast a message or to move from an actor space to another 
one). 

Communication between actors is buffered: incoming 
messages are stored in a mailbox until the actor is ready to 
process them; moreover, an actor can set a timeout for waiting 
for a new message and then can execute some actions if the 
timeout fires. Each actor has a system-wide unique identifier 
called reference that allows it to be reached in a location 
transparent way independently of the location of the sender 
(i.e., their location can be the same or different). An actor can 
send messages only to the actors of which it knows the 
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reference, that is, the actors it created and of which it received 
the references from other actors. After its creation, an actor can 
change several times its behavior until it kills itself. Each 
behavior has the main duty of processing a set of specific 
messages through a set of message handlers called cases. 
Therefore, if an unexpected message arrives, then the actor 
mailbox maintains it until a next behavior will be able to 
process it. 

An actor can be viewed as a logical thread that implements 
an event loop [5][6]. This event loop perpetually processes 
incoming messages. In fact, when an actor receives a message, 
then it looks for the suitable message handler for its processing 
and, if it exists, it processes the message. The execution of the 
message handler is also the means for changing its way of 
acting. In fact, the actor uses the return value of its message 
handlers for deciding to remain in the current behavior, to 
move to a new behavior or to kill itself. Moreover, an actor can 
set a timeout within receiving a new message and set a 
message handler for managing the firing of the timeout. This 
message handler is bound to the reception of the message 
notifying the firing of the timeout, and so the management of 
the timeout firing is automatically performed at the reception of 
such notification message. 

ActoDeS supports the configuration of applications with 
different actor, scheduler ad service provider implementations. 
The type of the implementation of an actor is one of the factors 
that mainly influence the attributes of the execution of an 
application. In particular, actor implementations can be divided 
in two classes that allow to an actor either to have its own 
thread (from here named active actors) or to share a single 
thread with the other actors of the actor space (from here 
named passive actors). Moreover, the duties of a scheduler 
depend on the type of the actor implementation. Of course, a 
scheduler for passive actors is different from a scheduler for 
active actors, but for the same kind of actor can be useful to 
have different scheduler implementations. For example, it can 
allow the implementation of “cooperative” schedulers in which 
actors can cyclically perform tasks whose duties vary from the 
processing of the first message in the buffer to the processing 
of all the messages in it. 

The most important decision that influences the quality of 
the execution of an application is the choice of the actor and 
scheduler implementations. In fact, the use of one or another 
couple of actor and scheduler causes large differences in the 
performance and in the scalability of the applications [7]. 

III. ACTOMATA 

The features of the actor model and the flexibility of its 
implementation make ActoDeS suitable for building agent-
based modelling and simulation (ABMS) applications and for 
analyzing the results of the related simulations [8]. In fact, the 
use of active and passive actors allows the development of 
applications involving large number of actors, and the 
availability of different schedulers and the possibility of their 
specialization allow an efficient execution of simulations in 
application domains that require different types of scheduling 
algorithms [9]. 

In particular, ActoDeS offers a very simple scheduler that 
may be used in a large set of application domains and, in 
particular, in ABMS applications. Such a scheduler manages 
agents implemented as passive actors and its execution repeats 
until the end of the simulation the following operations: 

1. Sends a “step” message to all the agents and increments 
the value of “step”; 

2. Performs an execution step of all the agents. 

In particular, the reception of a “step” message allows agents to 
understand that they have all the information (messages) for 
deciding their actions; therefore, they decide, perform some 
actions and, at the end, send (broadcast) the information about 
their new state to the interested agents. 

Automata is an actor-based software library that has been 
implemented on the top of ActoDeS with the goal of 
simplifying the definition of cellular automata models and to 
perform their simulation. Some of the features useful to 
achieve this goal are already provided by ActoDeS, but 
Automata makes easy the definition of neighborhoods and then 
exchange of messages among the cells of an automata (i.e., 
messages are directed to the cell neighborhood and not to its 
single members), and improves the performance of their 
simulations by providing a distributed simulator that makes 
transparent the partition of the cells and the communication 
between cells on different computational nodes. 

A. Cell Model 

The cells can be modelled as a finite state machine where 
each state is defined by an actor behavior that process the input 
messages through two message handlers: the first handler 
processes the messages informing about the state of the cells 
defining its neighborhood, and the second handler processes 
the “step” messages computing the new state of the cell and by 
sending the information about the new state to the cells in its 
neighborhood. 

B. Neighborhood and Communication 

Actomata provides a set of simple classes for the definition 
of different types of neighborhood. In particular, it provides a 
set of classes for the definition of the classical Von Neumann 
and Moore neighborhoods with different radius and a set of 
abstract classes for the definition of specialized neighborhoods. 
Moreover, each neighborhood can be defined by two different 
classes that allow to transparently receive all the messages sent 
by the cells through either point-to point messages or broadcast 
messages. In fact, when the neighborhood of the cells is very 
large, the overhead given to the exchange of messages becomes 
very high and then the use of broadcast messages becomes 
convenient. In this last case, a cell receives messages from all 
the other cells, and the object implementing its neighborhood 
acts as filter for the incoming messages. Finally, the number of 
messages can be reduced by eliminating the sending of 
messages when a cell is in a particular (default) state (e.g., the 
“dead” cells in the game of life simulation and the “empty” 
cells in the prey-predator simulation). 
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C. Distribution 

The modeling and simulation of complex problems can 
require the use of large number of actors that may determinate 
unacceptable simulation times, or the impossibility to run the 
simulation on a single computational node. In such cases, the 
availability of distributed algorithms and, of course, of an 
adequate number of computational nodes can help perform 
simulations. We are working on the definition and 
implementation of distributed simulation algorithms and, in 
particular, we defined a type of scheduler whose instances can 
cooperate for the execution of distributed cellular automata 
simulations. This kind of scheduler does not require 
modifications on the code of the actors used for the standalone 
simulations (because, as introduced above, messages are 
transparently sent to remote actors), but requires the partition 
of the actors among the different computational nodes of the 
simulation. In particular, to reduce the propagation of messages 
among the different computational nodes, the scheduler of each 
node manages the actors representing a rectangular area of the 
grid defining the cellular automata. 

A distributed simulation involves a set of schedulers that 
create the actors representing the cells in the rectangle of their 
competence, acquire the references of the actors, managed by 
other schedulers, but in the neighborhood of their cells (border 
cells), and then execute the simulation. One of such scheduler 
assumes the role of “master” and has the initial duty of 
partitioning the rectangle, that represent the global space, in a 
number of rectangles equal to the number of the actor spaces 
involved in the simulation. To do it, the master takes advantage 
of an algorithm that divides a rectangle in a set of “rectangles” 
with similar area and minimal perimeter [10]. 

In particular, the execution of a distributed simulation can 
be described by the following steps: 

1. Master scheduler partitions the global rectangle and sends 
a rectangle to each scheduler (including itself). 

2. Schedulers create all the actors representing the cells 
positioned in its rectangle. 

3. Schedulers build the neighborhoods: 

a. Define the neighborhoods and add the appropriate 
local actor references. 

b. Ask to the other schedulers the references of the actors 
necessary for completing the neighborhood of their 
cells (i.e., the border cells) and send the references to 
complete the neighborhoods of the cells managed by 
the other schedulers 

5. Schedulers repeat until the end of the simulation: 

a. Send a synchronization message to the other 
schedulers and wait for the corresponding messages 
from them. 

b. Send a “step” message to all their actors and 
increment the value of “step”. 

c. Perform an execution step of all their actors. 

One of advantages of this kind of distributed simulation 
system is the limited cost of the propagation of “border cell” 

messages and the fact that this propagation is not a duty of the 
schedulers. In fact, the schedulers exchange the references of 
the actors of the border cells for completing their neighborhood 
before the beginning of the simulation and then each actor can 
send messages to the neighbor actors without taking care if 
they are local or remote actors. Another important feature is the 
partition of the “space” of the cellular automata in “rectangles” 
with similar area and minimal perimeter. The definition of 
rectangles with similar area can help in guaranteeing a good 
load balancing. The definition of rectangles with minimal 
perimeter reduces the number of “border cells” and so the 
number of messages exchanged between the computational 
nodes of the distributed simulation system. 

IV. EXPERIMENTATION 

We experimented Actomata in the lab activities of a master 
course on distributed systems. The experimentation followed 
two phases. In the first phase, students modelled and simulated 
some very simple problems, i.e., an age-structured predator 
prey model and an epidemic diffusion model [11][12]. In the 
second phase, students tried to define and simulate a model for 
the evacuation from a simple room, starting from two articles 
that illustrated two solutions for such a kind of problem   
[13][14]. The result of the first phase of the experimentation 
was that all the students spent very few time for finding a good 
solution for the age-structured predator prey and epidemic 
diffusion models. However, the second phase of the 
experimentation provided a heterogeneous set of results 
because, of course, the problem is more complex respect to the 
ones proposed in the first phase and because some students 
found difficulties to “extract” the algorithms proposed by the 
authors of the selected articles. Therefore, all the students spent 
a long time, some found good or acceptable solutions, others 
proposed solutions with some problems (e.g., part of occupants 
did not exit from the room) and finally a small number of 
students do not complete the implementation of their solution. 

Figure 1. Graphical view of a step of the age-structured predator prey problem   

Another part of the experimentation was done to measure 
the advantages of a distributed simulation by using one of the 
solutions proposed by the student for modelling the age-
structured predator prey problem. Table 1 presents the 
execution times of the simulations with a length of a hundred 
of cycles and distributed on one, two and four computational 
nodes. These results were obtained on some laptops with an 
Intel Core 2 - 2.80GHz processor, 8 GB RAM, Windows 10 
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OS and Java 8 with 4 GB heap size. Figures 1 and 2 
respectively show a view of a step of the age-structured 
predator prey problem (involving sharks as predators and fishes 
as preys), and the code of the shark behavior. In this code, the 
“process” method is called when the shark received a message 
from a fish or from another shark, and the “update” method is 
called when it receives a step message from the scheduler. 

TABLE 1 

 Figure 2. Shark behavior code 

V. CONCLUSIONS 

This paper presented Actomata, a software library that tries 
to simplify the development of cellular automata models and to 
improve the performance of its simulations. Actomata is 
implemented on the top of ActoDeS, that is an actor-based 
software framework aimed at both simplifying the 

development of large and distributed complex systems and 
guarantying an efficient execution of applications [1]. 
Actomata has been experimented with success in the 
development of cellular automata models and simulations. This 
initial experimentation coped with modelling of simple and 
well-known problems.  

Several software tools can be used for cellular automata 
modelling and simulation; in particular, the most known 
ABMS platforms (i.e., NetLogo [15], Repast [16] and MASON 
[17]) support it. Actomata does not offer all the features of 
such platforms. Its main feature is the use of the actor model 
for the definition of cellular automata. It allows the definition 
of models where cells interact through the exchange of 
messages simplifying the development of non-trivial 
applications where the management of concurrent activities 
may be of primary importance. Moreover, the availability of 
techniques to reduce the overhead of the diffusion of broadcast 
and multicast messages and the use of a distributed simulation 
allow to maintain good performances even if the cellular 
automata involved large number of cells. Finally, the actor 
implementations offered by Actomata make transparent the 
communication between local and remote actors and it allows 
to use the same “cell code” both in standalone and distributed 
simulations. 

Current and future research activities are and will be 
dedicated to extend the experimentation to more complex 
problems. In particular, part of the experimentation was 
oriented to evaluate the performances of cellular automata 
where their cells have neighborhoods of different sizes and 
exchange either point-to point messages or broadcast messages. 
In fact, one of the main problems of the use of actors for the 
simulation of cellular automata is the huge number of messages 
that are exchanged during the simulation of models that 
involve a large number of actors and large neighborhoods. In 
this case is possible to use the broadcast of messages, but in 
some situations each actor needs to checks very long list of 
messages to find the ones belonging to its neighborhood.  
Therefore, an important part of the future research will be 
oriented to check if a localized broadcast based, for example, 
on a bin-lattice structure [18], or a multicast, associated with 
each neighborhood, could extend the advantage of the use of 
broadcast for very large neighborhoods also in distributed 
simulations. Moreover, some of the work will be dedicated to 
simplify the development of models; in particular, given that 
with Automata cells are modelled as a finite state machine 
where each state is defined by an actor behavior, then their 
structure can be defined by an UML state diagram that can be 
used for generating the code defining the structure of the model 
of the cells [19][20]. 
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