

Agent based Cellular Automata Simulation

P. Fornacciari, G. Lombardo, M. Mordonini, A. Poggi and M. Tomaiuolo

Dipartimento di Ingegneria e Architettura

Università degli Studi di Parma

Parma, Italy

{paolo.fornacciari,gianfranco.lombardo,monica.mordonini,agostino.poggi,michele.tomaiuolo}@unipr.it

Abstract — This paper presents an actor-based software

library, called Actomata, for the definition and simulation of

cellular automata models. Using Actomata, each cell of a model is

defined by an actor and the evolution of its state is built though

the interaction with their neighbor cells via the exchange of

messages. This kind of implementation simplifies the definition of

the code driving the behavior of each cell and the distribution of

simulations on a set of different computational nodes.

Keywords — actor model, cellular automata modelling,

distributed simulation.

I. INTRODUCTION

Cellular automata are abstract and discrete computational
systems that have proved suitable for modeling complex
system representations in several scientific fields. Cellular
automata models are composed of a grid of cells where each
cell has a given “state” which can have a discrete time
evolution defined through the interaction with their neighbor
cells. This evolution is obtained through some simulation
algorithms whose implementations are in general serial, since
that is enough to represent many systems of interest; however,
in some cases models involve a massive number of cells and
complex algorithms to compute the next “state” of each cell
and so the performance of simulations become very poor.
Therefore, to cope with such a kind of problem, different
researchers propose some parallel and distributed cellular
automata simulation algorithms [1][2].

This paper presents a software library, called Actomata,
that offers a set of features useful for simplifying the
development of cellular automata models and for performing
scalable and distributed simulations. Actomata has been
implemented on the top of ActoDeS, an actor-based software
framework aimed at both simplifying the development of large
and distributed complex systems and guarantying an efficient
execution of applications. Section 2 shortly introduces the
ActoDeS software framework. Section 3 presents Actomata
and, in particular, shows the features that make it suitable for
developing cellular automata models and for performing their
simulation. Section 4 discusses its experimentation in the
modelling and simulation of evolution, epidemic and
evacuation models. Finally, Section 5 summarizes the results
and points out to future research.

II. ACTODES

ActoDeS is an actor-based software framework that has the
goal of both simplifying the development of concurrent and
distributed complex systems and guarantying an efficient
execution of applications [3].

ActoDeS is implemented by using the Java language and
takes advantage of preexistent Java software libraries and
solutions for supporting concurrency and distribution. ActoDeS
has a layered architecture composed of an application and a
runtime layer. The application layer provides the software
components that an application developer needs to extend or
directly use for implementing the specific actors of an
application. The runtime layer provides the software
components that implement the ActoDeS middleware
infrastructures to support the development of standalone and
distributed applications.

In ActoDeS an application is based on a set of interacting
actors that perform tasks concurrently and interact with each
other by exchanging asynchronous messages [4]. Moreover, it
can create new actors, update its local state, change its behavior
and kill itself.

Depending on the complexity of the application and on the
availability of computing and communication resources, one or
more actor spaces can manage the actors of the application. An
actor space acts as “container” for a set of actors and provides
them the services necessary for their execution. An actor space
contains a set of actors (application actors) that perform the
specific tasks of the current application and two actors (runtime
actors) that support the execution of the application actors.
These two last actors are called executor and the service
provider. The executor manages the concurrent execution of
the actors of the actor space. The service provider enables the
actors of an application to perform new kinds of action (e.g., to
broadcast a message or to move from an actor space to another
one).

Communication between actors is buffered: incoming
messages are stored in a mailbox until the actor is ready to
process them; moreover, an actor can set a timeout for waiting
for a new message and then can execute some actions if the
timeout fires. Each actor has a system-wide unique identifier
called reference that allows it to be reached in a location
transparent way independently of the location of the sender
(i.e., their location can be the same or different). An actor can
send messages only to the actors of which it knows the

16

reference, that is, the actors it created and of which it received
the references from other actors. After its creation, an actor can
change several times its behavior until it kills itself. Each
behavior has the main duty of processing a set of specific
messages through a set of message handlers called cases.
Therefore, if an unexpected message arrives, then the actor
mailbox maintains it until a next behavior will be able to
process it.

An actor can be viewed as a logical thread that implements
an event loop [5][6]. This event loop perpetually processes
incoming messages. In fact, when an actor receives a message,
then it looks for the suitable message handler for its processing
and, if it exists, it processes the message. The execution of the
message handler is also the means for changing its way of
acting. In fact, the actor uses the return value of its message
handlers for deciding to remain in the current behavior, to
move to a new behavior or to kill itself. Moreover, an actor can
set a timeout within receiving a new message and set a
message handler for managing the firing of the timeout. This
message handler is bound to the reception of the message
notifying the firing of the timeout, and so the management of
the timeout firing is automatically performed at the reception of
such notification message.

ActoDeS supports the configuration of applications with
different actor, scheduler ad service provider implementations.
The type of the implementation of an actor is one of the factors
that mainly influence the attributes of the execution of an
application. In particular, actor implementations can be divided
in two classes that allow to an actor either to have its own
thread (from here named active actors) or to share a single
thread with the other actors of the actor space (from here
named passive actors). Moreover, the duties of a scheduler
depend on the type of the actor implementation. Of course, a
scheduler for passive actors is different from a scheduler for
active actors, but for the same kind of actor can be useful to
have different scheduler implementations. For example, it can
allow the implementation of “cooperative” schedulers in which
actors can cyclically perform tasks whose duties vary from the
processing of the first message in the buffer to the processing
of all the messages in it.

The most important decision that influences the quality of
the execution of an application is the choice of the actor and
scheduler implementations. In fact, the use of one or another
couple of actor and scheduler causes large differences in the
performance and in the scalability of the applications [7].

III. ACTOMATA

The features of the actor model and the flexibility of its
implementation make ActoDeS suitable for building agent-
based modelling and simulation (ABMS) applications and for
analyzing the results of the related simulations [8]. In fact, the
use of active and passive actors allows the development of
applications involving large number of actors, and the
availability of different schedulers and the possibility of their
specialization allow an efficient execution of simulations in
application domains that require different types of scheduling
algorithms [9].

In particular, ActoDeS offers a very simple scheduler that
may be used in a large set of application domains and, in
particular, in ABMS applications. Such a scheduler manages
agents implemented as passive actors and its execution repeats
until the end of the simulation the following operations:

1. Sends a “step” message to all the agents and increments
the value of “step”;

2. Performs an execution step of all the agents.

In particular, the reception of a “step” message allows agents to
understand that they have all the information (messages) for
deciding their actions; therefore, they decide, perform some
actions and, at the end, send (broadcast) the information about
their new state to the interested agents.

Automata is an actor-based software library that has been
implemented on the top of ActoDeS with the goal of
simplifying the definition of cellular automata models and to
perform their simulation. Some of the features useful to
achieve this goal are already provided by ActoDeS, but
Automata makes easy the definition of neighborhoods and then
exchange of messages among the cells of an automata (i.e.,
messages are directed to the cell neighborhood and not to its
single members), and improves the performance of their
simulations by providing a distributed simulator that makes
transparent the partition of the cells and the communication
between cells on different computational nodes.

A. Cell Model

The cells can be modelled as a finite state machine where
each state is defined by an actor behavior that process the input
messages through two message handlers: the first handler
processes the messages informing about the state of the cells
defining its neighborhood, and the second handler processes
the “step” messages computing the new state of the cell and by
sending the information about the new state to the cells in its
neighborhood.

B. Neighborhood and Communication

Actomata provides a set of simple classes for the definition
of different types of neighborhood. In particular, it provides a
set of classes for the definition of the classical Von Neumann
and Moore neighborhoods with different radius and a set of
abstract classes for the definition of specialized neighborhoods.
Moreover, each neighborhood can be defined by two different
classes that allow to transparently receive all the messages sent
by the cells through either point-to point messages or broadcast
messages. In fact, when the neighborhood of the cells is very
large, the overhead given to the exchange of messages becomes
very high and then the use of broadcast messages becomes
convenient. In this last case, a cell receives messages from all
the other cells, and the object implementing its neighborhood
acts as filter for the incoming messages. Finally, the number of
messages can be reduced by eliminating the sending of
messages when a cell is in a particular (default) state (e.g., the
“dead” cells in the game of life simulation and the “empty”
cells in the prey-predator simulation).

17

C. Distribution

The modeling and simulation of complex problems can
require the use of large number of actors that may determinate
unacceptable simulation times, or the impossibility to run the
simulation on a single computational node. In such cases, the
availability of distributed algorithms and, of course, of an
adequate number of computational nodes can help perform
simulations. We are working on the definition and
implementation of distributed simulation algorithms and, in
particular, we defined a type of scheduler whose instances can
cooperate for the execution of distributed cellular automata
simulations. This kind of scheduler does not require
modifications on the code of the actors used for the standalone
simulations (because, as introduced above, messages are
transparently sent to remote actors), but requires the partition
of the actors among the different computational nodes of the
simulation. In particular, to reduce the propagation of messages
among the different computational nodes, the scheduler of each
node manages the actors representing a rectangular area of the
grid defining the cellular automata.

A distributed simulation involves a set of schedulers that
create the actors representing the cells in the rectangle of their
competence, acquire the references of the actors, managed by
other schedulers, but in the neighborhood of their cells (border
cells), and then execute the simulation. One of such scheduler
assumes the role of “master” and has the initial duty of
partitioning the rectangle, that represent the global space, in a
number of rectangles equal to the number of the actor spaces
involved in the simulation. To do it, the master takes advantage
of an algorithm that divides a rectangle in a set of “rectangles”
with similar area and minimal perimeter [10].

In particular, the execution of a distributed simulation can
be described by the following steps:

1. Master scheduler partitions the global rectangle and sends
a rectangle to each scheduler (including itself).

2. Schedulers create all the actors representing the cells
positioned in its rectangle.

3. Schedulers build the neighborhoods:

a. Define the neighborhoods and add the appropriate
local actor references.

b. Ask to the other schedulers the references of the actors
necessary for completing the neighborhood of their
cells (i.e., the border cells) and send the references to
complete the neighborhoods of the cells managed by
the other schedulers

5. Schedulers repeat until the end of the simulation:

a. Send a synchronization message to the other
schedulers and wait for the corresponding messages
from them.

b. Send a “step” message to all their actors and
increment the value of “step”.

c. Perform an execution step of all their actors.

One of advantages of this kind of distributed simulation
system is the limited cost of the propagation of “border cell”

messages and the fact that this propagation is not a duty of the
schedulers. In fact, the schedulers exchange the references of
the actors of the border cells for completing their neighborhood
before the beginning of the simulation and then each actor can
send messages to the neighbor actors without taking care if
they are local or remote actors. Another important feature is the
partition of the “space” of the cellular automata in “rectangles”
with similar area and minimal perimeter. The definition of
rectangles with similar area can help in guaranteeing a good
load balancing. The definition of rectangles with minimal
perimeter reduces the number of “border cells” and so the
number of messages exchanged between the computational
nodes of the distributed simulation system.

IV. EXPERIMENTATION

We experimented Actomata in the lab activities of a master
course on distributed systems. The experimentation followed
two phases. In the first phase, students modelled and simulated
some very simple problems, i.e., an age-structured predator
prey model and an epidemic diffusion model [11][12]. In the
second phase, students tried to define and simulate a model for
the evacuation from a simple room, starting from two articles
that illustrated two solutions for such a kind of problem
[13][14]. The result of the first phase of the experimentation
was that all the students spent very few time for finding a good
solution for the age-structured predator prey and epidemic
diffusion models. However, the second phase of the
experimentation provided a heterogeneous set of results
because, of course, the problem is more complex respect to the
ones proposed in the first phase and because some students
found difficulties to “extract” the algorithms proposed by the
authors of the selected articles. Therefore, all the students spent
a long time, some found good or acceptable solutions, others
proposed solutions with some problems (e.g., part of occupants
did not exit from the room) and finally a small number of
students do not complete the implementation of their solution.

Figure 1. Graphical view of a step of the age-structured predator prey problem

Another part of the experimentation was done to measure
the advantages of a distributed simulation by using one of the
solutions proposed by the student for modelling the age-
structured predator prey problem. Table 1 presents the
execution times of the simulations with a length of a hundred
of cycles and distributed on one, two and four computational
nodes. These results were obtained on some laptops with an
Intel Core 2 - 2.80GHz processor, 8 GB RAM, Windows 10

18

OS and Java 8 with 4 GB heap size. Figures 1 and 2
respectively show a view of a step of the age-structured
predator prey problem (involving sharks as predators and fishes
as preys), and the code of the shark behavior. In this code, the
“process” method is called when the shark received a message
from a fish or from another shark, and the “update” method is
called when it receives a step message from the scheduler.

TABLE 1

 Figure 2. Shark behavior code

V. CONCLUSIONS

This paper presented Actomata, a software library that tries
to simplify the development of cellular automata models and to
improve the performance of its simulations. Actomata is
implemented on the top of ActoDeS, that is an actor-based
software framework aimed at both simplifying the

development of large and distributed complex systems and
guarantying an efficient execution of applications [1].
Actomata has been experimented with success in the
development of cellular automata models and simulations. This
initial experimentation coped with modelling of simple and
well-known problems.

Several software tools can be used for cellular automata
modelling and simulation; in particular, the most known
ABMS platforms (i.e., NetLogo [15], Repast [16] and MASON
[17]) support it. Actomata does not offer all the features of
such platforms. Its main feature is the use of the actor model
for the definition of cellular automata. It allows the definition
of models where cells interact through the exchange of
messages simplifying the development of non-trivial
applications where the management of concurrent activities
may be of primary importance. Moreover, the availability of
techniques to reduce the overhead of the diffusion of broadcast
and multicast messages and the use of a distributed simulation
allow to maintain good performances even if the cellular
automata involved large number of cells. Finally, the actor
implementations offered by Actomata make transparent the
communication between local and remote actors and it allows
to use the same “cell code” both in standalone and distributed
simulations.

Current and future research activities are and will be
dedicated to extend the experimentation to more complex
problems. In particular, part of the experimentation was
oriented to evaluate the performances of cellular automata
where their cells have neighborhoods of different sizes and
exchange either point-to point messages or broadcast messages.
In fact, one of the main problems of the use of actors for the
simulation of cellular automata is the huge number of messages
that are exchanged during the simulation of models that
involve a large number of actors and large neighborhoods. In
this case is possible to use the broadcast of messages, but in
some situations each actor needs to checks very long list of
messages to find the ones belonging to its neighborhood.
Therefore, an important part of the future research will be
oriented to check if a localized broadcast based, for example,
on a bin-lattice structure [18], or a multicast, associated with
each neighborhood, could extend the advantage of the use of
broadcast for very large neighborhoods also in distributed
simulations. Moreover, some of the work will be dedicated to
simplify the development of models; in particular, given that
with Automata cells are modelled as a finite state machine
where each state is defined by an actor behavior, then their
structure can be defined by an UML state diagram that can be
used for generating the code defining the structure of the model
of the cells [19][20].

REFERENCES

[1] P. Richmond, D. Walker, S. Coakley, and D. Romano. "High
performance cellular level agent-based simulation with FLAME for the
GPU," Briefings in Bioinformatics, Vol. 11, No. 3, pp. 334-347, 2010.

[2] P.M.A. Sloot, J.A. Kaandorp, A.G. Hoekstra, and B.J. Overeinder.
"Distributed cellular automata: Large scale simulation of natural
phenomena," Solutions to Parallel and Distributed Computing Problems,
Lessons from Biological Sciences, 2001, pp. 1-46.

19

[3] F. Bergenti, E. Iotti, A. Poggi, and M. Tomaiuolo, “Concurrent and
Distributed Applications with ActoDeS,” in MATEC Web of
Conferences, Vol. 76, pp 1-8, 2016.

[4] G.A. Agha, “Actors: A Model of Concurrent Computation in Distributed
Systems,” Cambridge, MA, USA: MIT Press, 1986.

[5] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt and W. De
Meuter, “Ambient-oriented programming in ambienttalk,” in ECOOP
2006 – Object-Oriented Programming, Berlin, Germany: Springer, 2006,
pp. 230-254.

[6] M. S. Miller, E. D. Tribble, and J. Shapiro, “Concurrency among
strangers,” in Trustworthy Global Computing, Berlin, Germany:
Springer, 2005, pp. 195-229.

[7] F. Bergenti, A. Poggi, and M. Tomaiuolo, "An Actor Based Software
Framework for Scalable Applications," in Internet and Distributed
Computing Systems, Berlin, Germany: Springer, 2014, pp. 26-35.

[8] A. Poggi, “Agent based modeling and simulation with ActoMoS,” in
Proc. 16th Workshop on From Object to Agents (WOA 2015), Naples;
Italy, 2015, pp. 91-96.

[9] P. Mathieu, and Y. Secq, “Environment Updating and Agent Scheduling
Policies in Agent-based Simulators,” in Proc. 4th Int. Conf. on Agents
and Artificial Intelligence, Algarve, Portugal, 2012, pp. 170-175.

[10] N. Alon, and D. J., Kleitman, “Partitioning a rectangle into small
perimeter rectangles,” Discrete mathematics, Vol. 103, No. 2, pp. 111-
119, 1992.

[11] G.B. Ermentrout, and L. Edelstein-Keshet. "Cellular automata
approaches to biological modeling," Journal of theoretical Biology, Vol.
160, No. 1, pp. 97-133, 1993.

[12] S.H. White, A.M. Del Rey, and G.R. Sánchez. "Modeling epidemics
using cellular automata," Applied Mathematics and Computation, Vol.
186, No. 1, pp. 193-202, 2007.

[13] A.Varas, M.D. Cornejo, D. Mainemer, B. Toledo, José Rogan, V.
Munoz, and J. A. Valdivia. "Cellular automaton model for evacuation
process with obstacles," Physica A: Statistical Mechanics and its
Applications, Vol. 382, No. 2, pp. 631-642, 2007.

[14] R. Alizadeh. "A dynamic cellular automaton model for evacuation
process with obstacles," Safety Science, Vol. 49, No. 2, pp. 315-323,
2011.

[15] S. Tisue, and U. Wilensky, “Netlogo: A simple environment for
modeling complexity,” in Proc. of Int. Conf. on Complex Systems
(ICCS 2004), 16-21, Boston, MA, USA, 2004, pp. 16-21.

[16] M. J. North, N. Collier, and J. Vos, “Experiences in creating three
implementations of the repast agent modeling toolkit,” ACM
Transactions on Modeling and Computer Simulation, vol. 16, no. 1, pp.
1-25, 2006.

[17] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan,
“MASON: A multiagent simulation environment,” Simulation, vol. 81,
no. 7, pp. 517-527, 2005.

[18] C.W. Reynolds, ”Interaction with groups of autonomous characters,” in
Game Developers Conference, Vol. 2000, p. 83, 2000.

[19] F.Bergenti, and A. Poggi, “A development toolkit to realize autonomous
and interoperable agents,” in Proceedings of the fifth international
conference on Autonomous Agents, 2001, pp. 632-639.

[20] F. Bergenti, A. Poggi, “Exploiting UML in the design of multi-agent
systems,” in International Workshop on Engineering Societies in the
Agents World, Berlin, Germany: Springer, 2000, pp. 106-113.

20

