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Abstract— It is common practice for local authorities to 
create weather alerts even when there is no need, in order to 
protect themselves legally. However, this has a strong negative 
effect on the population, involving in a first phase fear and 
alarmism, and subsequently a drastic decrease of trust in the 
authority and therefore in what it reports. The catastrophic 
result is that in the long-term periods the alert itself loses its 
value, so the population will not respond effectively when it is 
time to do so. 

The purpose of this work is to provide an idea of the possible 
damage caused by this practice. Therefore, we realized a 
simulative scenario, in which a population faces a series of events 
over time, with the risk of a critical one, while the authority 
decides whether to communicate its forecast as it is or to 
overestimate it. Trust acts as glue in the close relationship 
between authorities and citizens, and then we start analyzing it 
and then showing how its decrease, due to the alarmism, 
increases the damage that the population suffers, providing also a 
quantitative evaluation. 
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I.  INTRODUCTION 
The interest in critical hydrogeological phenomena such as 
floods has always been high, because of the enormous damage 
they cause, both in terms of lives and in economic loss. 
Cunado & Ferreira [4] report that floods represented 40% of 
all natural disasters between 1985-2009. Guha-Sapir et al. [11] 
state that in 2013 hydrogeological disasters took the largest 
share in natural disaster occurrence (48.2%) and that the most 
expensive hydrogeological disaster ever registered happened 
in Thailand in 2011, causing US$ 41.4 billion of damages.  
This phenomenon is strongly influenced by urbanization: 
cities act as social hubs, attracting more and more people from 
rural areas. Suffice it to say that in 2016 54.5% of the 
population lived in urban settlements1 with more than 29,000 
citizens per km2 and these numbers are destined to increase. 

                                                             
1http://www.un.org/en/development/desa/population/publicati
ons/pdf/urbanization/the_worlds_cities_in_2016_data_booklet
.pdf 

So, people tend to create areas with a high concentration of 
inhabitants and structures. When these areas are affected by 
cataclysms, the damage suffered is enormous: it arises the 
need to identify strategies minimize this problem. 
In particular, it has been realized how critical the role of the 
authorities is in order to reduce damage, therefore not only in 
the interventional phase, but also in the preventive one, 
leading the population towards the appropriate behavior. 
The aim of the authority should therefore be to produce the 
most reliable prediction it can, communicating it to the 
population so that they make a correct decision. 
However, even if the quality of weather forecasting has 
improved over the years, using increasingly effective models, 
we are still dealing with forecasts and as such they may be 
wrong. 
In particular, as Stewart [22] underlines “actions that are based 
on predictions lead to two kinds of errors. One is when an 
event that is predicted does not occur, i.e., a false alarm. The 
second is when an event occurs but is not predicted, i.e., a 
surprise. There is an inevitable tradeoff between the two kinds 
of errors; steps taken to reduce one will increase the other.” 
This reasoning is now contextualized in the domain of alluvial 
disasters. When an event that has not been predicted occurs, 
the damage it entails is enormous. 
Since it is the duty of the local authorities to inform the 
population promptly and correctly about what will happen, the 
population will consider the local authority responsible for the 
damage that occurred, with consequent legal repercussions. 
 
All this naturally turns the authority away from what is its 
main task, resulting in the necessity to secure itself. The 
strategy that is implemented is to launch an alert even when 
there is no real need. This is how the tendency to false alarms 
arises, i.e. the choice to overestimate the actual risk. The point 
is that while a false negative involves enormous damage, this 
does not happen with the false positive: if the critical event 
that had been foreseen does not occur, there will be no 
obvious damage; there are no destructive consequences, nor 
direct repercussions. 
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However, even this phenomenon has negative effects on long 
periods. If the authority always launches false alerts, in the 
long run the population will no longer trust this and the value 
of the alert itself loses its value. In the presence of a true alert, 
the population will not respond appropriately and it will suffer 
a very high amount of damage. 
In this article, we are interested in estimating the quantitative 
effects of the damage caused by false alerts in the population. 
Through a simulative approach, we will analyze the behavior 
of a population [10] in this context and the long-term effect of 
false alarms. 
We will focus in particular on tangible and direct damages, as 
they are more immediately perceivable and economically 
quantifiable. Instead, we will not deal with indirect damage, 
which have an intangible impact and cannot be monetary 
quantified, such as loss of life or psychological trauma. 
 

II. STATE OF THE ART 
The literature has focused on assessing, as accurately as 
possible, the impact that the weather phenomena have or could 
have on the affected areas. 
The first point to clarify is which part of the damage produced 
by an event we want to estimate, thus providing a 
classification of the various types of damage that are present. 
However, the literature does not converge on a homogeneous 
classification. In this paper, we take into consideration the 
classification proposed by Gentle [8]. Here the damage due to 
natural disasters is divided into 4 types. The main distinction 
occurs between tangible, monetarily quantifiable, and 
intangible damage, which is more difficult to quantify (such as 
loss of life, psychological traumas, etc.). In turn, these are 
classified into direct, that is the damage caused directly by the 
event (damage to roads, buildings, houses...), and indirect, i.e. 
the secondary damage that the event causes, such as the 
closure of companies, the decline in tourism, etc. In general, 
researchers estimate flood damage mainly focusing on 
tangible direct damage, since this is the most practical 
dimension to estimate economically.  
In order to compute flood damage, it is first necessary to 
estimate the magnitude of the event and the value of the 
structures affected. The magnitude is influenced by many 
variables, however only the most important are taken into 
consideration, such as the flood water level or the duration of 
the event [9].  
In general, researchers estimate the damages that an event can 
cause by the means of the simulative approach [20]. For 
instance, in [13] the authors propose a model simulating 
critical scenarios and evaluating the expected economic loss. 
Here the flood water level is considered as the factor 
indicating the event magnitude.  
Olivieri and Santoro [16] express the damage as a product of 
a) the average value per unit of a zone, b) the actual extension 
of the territory affected by the disaster and c) the percentage of 
damages suffered. Although they provide a detailed estimation 
of the parameters they use in their calculations, they then use 
the average economic value of buildings to determine the 

value of the area affected by the event. This is an 
oversimplification, as cities are often heterogeneous from this 
point of view, especially if we consider very large areas. 

The authors of [25] propose a much more accurate 
approach. They want to realize a simulator able to compute 
flood damage on St Maarten Island, one of five island areas of 
the Netherlands Antilles. 

Thanks to a GIS software, they estimated the value of each 
area as the sum of the building that it contains. They consider 
many characteristics of the buildings, such as their dimension 
and the number of floors. Moreover, they classify buildings 
according to their use in residential, commercial and 
industrial. Then the authors define 7 damage curves to 
estimate the direct damage to the buildings. 

They also try to estimate tangible indirect damage, 
calculated as a fixed percentage of the direct damage, and the 
intangible damages, such as anxiety - computed as a function 
of flood depth and land use - and loss of productivity – 
computed as a function of anxiety and income. 

Although these tools are very accurate, they require an 
excellent knowledge of the territory and anyway the 
measurements are subject to large variability [15]. 
However, all these works limit their focus on estimating the 
damage that the event produces. These tools can be very 
helpful, allowing for the individuation of urban solutions that 
can reduce the flood damage. However, although direct 
intervention by the authorities is important to prevent damage, 
it can have very high costs and take a very long time. On the 
contrary, interventions by individuals are quicker and it seems 
that the citizens' choices can help to reduce the flood damage 
by up to 80%. What we want to do is precisely to link the 
damage suffered by citizens with their choices, which are in 
turn strongly influenced by authority. 
Our model allows us to study the complex relationship 
between the reaction of citizens with what the authority 
reports, and thanks to this approach we can study the effects of 
the authority's communications on the damages that occur. 
 

III. THE TRUST MODEL 
The trust model used is this work is that of [19], which is an 
adaptation of the cognitive model of trust of Castelfranchi and 
Falcone [3]. Trust seems in fact an excellent way to deal with 
information sources [1][2][14][17][24]. 
This model makes use of the Bayesian theory, one of the most 
used approaches in trust evaluation [18][26], so information is 
represented as a probability density function (PDF). 
Each information source S is represented by a trust degree 
called TrustOnSource [5][7], with 0 ≤TrustOnSource ≤1, plus 
a Bayesian PDF that represents the information reported by S. 
The TrustOnSource parameter is used to smooth the 
information referred by S: the more I trust the source, the 
more I consider the PDF; the less I trust it, the more the PDF 
is flattened. Once an agent gets the contribution from all its 
sources, it aggregates the information to produce the global 
evidence (GPDF), estimating the probability that each event is 
going to happen. 
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A. Feedback On Trust 
Trust is a dynamic value, changing with time depending on the 
situation. In this model, starting from a neutral trust level (that 
does not imply trust or distrust) the agents will try to 
understand each information source’s reliability 
(TrustOnSource), by the means of direct experience for trust 
evaluations [21][23]. Using the weighted mean, the will 
perform the feedback on trust. Given the two parameters α and 
β, the new trust value is computed as: 
 
𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡𝑂𝑛𝑆𝑜𝑢𝑟𝑐𝑒=α∗𝑇𝑟𝑢𝑠𝑡𝑂𝑛𝑆𝑜𝑢𝑟𝑐𝑒+β∗𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛         (1) 

α+β=1 

TrustOnSource is the previous trust degree and 
performanceEvaluation is the objective evaluation of the 
source performance. This last value is obtained comparing 
what the source said with what actually happened.  
The values of α and β have an impact on the trust evaluations. 
With high values of α/β, agents will need more time to get a 
precise evaluation, but a low value (below 1) will lead to an 
unstable evaluation, as it would depend too much on the last 
performance. We do not investigate these two parameters in 
this work, using respectively the values 0.9 and 0.1. In order to 
have good evaluations, we let agents make a lot of experience 
with their information sources. 

 

IV. THE FRAMEWORK 

The simulations were realized using NetLogo [27], an agent-
based framework. A population of citizens, modeled through 
cognitive agents and randomly distributed over a wide area, 
has to face the risk of a critical event. The citizens have the 
necessity to identify the future weather event on the basis of 
their information sources and of the trustworthiness they 
attribute to them. They possess an initial capital to administer, 
making the correct investments; thus, they need to understand 
which is the most convenient choice, according to the costs 
and damages related to each decision. The authority informs 
promptly the citizens about the weather phenomena, providing 
them with its own forecasts. Notice that, being just forecasts, it 
is not certain that what it reports is really going to happen. 
This depends on the authority’s reliability, its ability to make 
predictions. However, the authority can decide to overestimate 
its forecast, raising an alarm when it is not necessary.  
The citizens can also evaluate the situation on their own, but 
they cannot be as good as the authority in making predictions, 
since they do not possess the appropriate means. 
Then, according to the trust model proposed in Section 3, they 
estimate the probability that each event occurs, considering all 
the information they can access and aggregating each single 
contribute according to the corresponding trust value. After 
that, they will reason about this information and they will 
decide if to invest or not. 
The critical phenomena occur with a 10% probability; when 
they do, citizens will suffer 10 units of damage if they did not 
invest, and 2.5 units of damage if they invested. In the other 

90% of cases nothing happens, so that the citizens who have 
invested have wasted their money. 
After the event, the citizens adjust the trust values of their 
sources, on the basis of the corresponding performances. We 
repeat this phase 100 times, enough for them to properly 
evaluate the sources. After that, each citizen possesses a final 
capital and it has suffered a given amount of damage. These 
two dimensions are heavily influenced by the authority 
strategy on reporting information.  
 

A. Information sources 
In order to take a decision and to maximize the utility of their 
investments, the citizens need to gather information about 
what is going to happen[6]. In particular, the citizens can 
consult two different information sources, reporting some 
evidence about the incoming meteorological phenomenon:  

1. The authority, which distributes into the world 
weather forecast, trying to prepare citizens to what is 
going to happen. This is the most competent source, 
as it has the means to produce a correct evaluation of 
the phenomena, but it is not sure that the authority 
will faithfully report the forecast. 

2. Citizens’ personal judgment, or self-evaluation, 
based on the direct observation and evaluation of the 
phenomena. The point is that, usually, the citizens do 
not have the means to produce a proper forecast. 
 

B. Citizens’ description 
One of the parameters characterizing the citizens is the trust 
they have in their information sources. This is a dynamic 
value, changing because of direct experience (see Section 3.1). 
Each citizen is also characterized by its ability to see and to 
read the phenomena. We modeled this associating to the 
citizens a probability of success, used to produce the forecast 
for the meteorological events. In the simulation, we used the 
value 50%. Given that there are just two possible choices, it is 
the equivalent of a random choice.  
Further, citizens possess an initial monetary capital; they want 
to save it, but it could decrease in time. Each citizen decides if 
to invest its capital to make security modifications to its own 
property, reducing or the possible damage in case of an event. 
If it does not, it exposes itself to the risk of a possible high 
damage.  
 

C. The authority 
The authority’s duty is to inform promptly citizens about what 
is going to happen and to stimulate them to invest in order to 
reduce possible damages. We suppose that it is able to inform 
all the citizens. As for the citizens, its forecasts are produced 
using the probability of success, which may assume the values 
50%, 75% or 100%: the authority is at least as reliable as the 
citizens, but it could even produce perfect forecasts. 
The point is that, as already said, it is not given that its goal 
coincides with its duty. In order to protect itself legally, the 
authority could decide to overestimate a forecast, raising an 
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alarm of critical event when it is not necessary. We 
characterized it with a probability of overestimation, 
determining if it is going to report the truth or not. In the 
simulation, it will assume the values 0%, 25%, 50%, 75% and 
100%. 
 

D. How the citizens decide 
Once the citizens gathered information from their sources, the 
processed through trust values and then aggregated it, they are 
able to estimate with what probability there will be a critical 
event. Then they need to understand which choice is more 
convenient: to invest or not to invest.  
Each choice has a fixed cost, the investment, and a variable 
part, the damage, which depends on the event. The investment 
is equal to 1 unit, but they can decide not to invest (0 unit). In 
case of critical event, the damage is equal to 10 if they did not 
invest and to 2.5 if they invested, while it is 0 if there is no 
event. 
Table 1 and Table 2 report the cost and damage linked to each 
decision respectively when there is no event and when there is 
a critical event. 
 
Table 1: cost and damage linked to each decision in case of no 
event 
 To ignore the 

problem 
To take measures 

Cost 0 1 
Damage 0 0 
 
Table 2: cost and damage linked to each decision in case of 
critical event 
 To ignore the 

problem 
To take measures 

Cost 0 1 
Damage 10 2.5 
 
 
The citizens compute the probabilistic cost of each choice and 
they will make the decision that minimizes the cost: 
 
CostOfInvestment = Investment + (MaxDamage/4)*P(event) (1) 
CostOfNotToInvest = 0 + MaxDamage*P(event) (2) 
 
Notice that if we consider the a priori decision, without any 
information about what is going to happen, the choice of 
making an investment has a cost equal to 1.25 (Equation 3), 
while the choice of not investing is 1 (Equation 4). 
 
CostOfInvestment = 1 * 1 + 2.5 * 0.1 = 1.25 (3) 
CostOfNotToInvest = 0 * 1 + 10 * 0.1 = 1 (4) 
 
From Equations (3) and (4), we deduce that without 
information the best choice is not to invest. The citizens need 
to use their information to maximize the utility of their choice. 
 

E. Platform inputs 
The first thing that can be customized is the number of 
citizens and their probability of success, i.e. their ability in 
making predictions, and their initial monetary capital. Then, 
one can set the value of the two parameters α and β, used for 
updating the sources’ trust evaluation.  
Concerning the authority, it is possible to change its reliability, 
probability of success, and its probability of 
overestimation. One can also set the critical event’s 
probability.  

 

V. THE SIMULATION 
The purpose of this simulation is to quantify the damage that 
the authority’s overestimation effect of events produces in 
citizens. 
Therefore, in the experiment we change the correctness of the 
authority in making forecasts and its probability to 
overestimate the risk. 
Each simulation has a fixed duration of 100 events, in which 
the citizens make experience with their information source and 
calibrate the parameters of the model, i.e. the trust that they 
place in their sources of information.  
At the end of these 100 events, we measure the damage the 
citizens suffered and we test their ability to make the correct 
choice. 
 

 
Fig. 1. The citizens’ trust on the authority, depending on the authority’s 
probability of success and probability of overestimation.        

The most immediate consequence of alarmism is the 
diminution of trust in authority (Figure 1), at least for this kind 
of tasks. When the authority does not overestimate its 
forecasts, the trust values are very similar to the authority’s 
probability of success. When the probability of overestimation 
increases, the trust values decrease: the citizens will ignore 
what the authority says, since they consider it an unreliable 
source 
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Fig. 2. Percentage of citizens’ correct decisions, depending on the authority’s 
probability of success and probability of overestimation.        

   

 
Fig. 3. Quantification of the damage the citizens suffer in the simulation, 
depending on the authority’s probability of success and probability of 
overestimation.  

 
Figure 2 shows the percentage of citizens’ correct decisions, 
depending on the authority’s probability of success and 
probability of overestimation. The probability of success 
assumes the values 50%, 75% and 100%, represented 
respectively in blue, red and green. The probability of 
overestimation assumes the value 0%, 25%, 50%, 75%, 100%, 
represented in the axis of the abscissas. 
As expected, a more skilled authority allows citizens to get a 
better performance. The ideal case is when we have a very 
skilled authority (probability of success=100%) that faithfully 
reports its forecast (probability of overestimation = 0%). 
However it is an impossible case in the real world: even 
assuming that the authority faithfully reports its prediction, 
every prediction always carries with a degree of uncertainty.                                                                                                                                                                                                                                                                                                                                                                          
 Increasing the effect of overestimation, the citizens’ 
performance decreases to the lower value, which is 50% since 
the other source (personal judgment) has 50% reliability, 
equal to a random choice. 
Figure 3 represents the quantification of the damage the 
citizens suffer in the simulation, again depending on the 
authority’s probability of success and probability of 
overestimation. 

The best performance, i.e. the one that guarantees lower levels 
of damage, is obtained when the authority is 100% correct. 
Increasing the probability of overestimation, the quantity of 
damage increases: it can even reach 2 and a half times the 
value of the ideal case.  
This huge difference is indicative of the impact of the 
authority's communication in preventing damage to the 
population. 

 

VI. CONCLUSIONS 
The purpose of this article is to provide a quantitative 
estimation of the alarmism effects on the population, in case of 
hydrogeological risk. 
Although it is now common practice for local authorities to 
overestimate events to protect themselves on a legal aspect, it 
is also true that this practice has many negative effects on the 
population. 
The first effect is that of a decrease of trust in the authority (at 
least in this context): since this always reports untrustworthy 
information, the population will not trust anymore what it 
says, so when there really will be a critical event, the 
population will underestimate the alarm. 
This therefore leads to the second effect: the decrease in the 
performance of citizens. Unable to rely on a reliable source, 
their performance inevitably decreases. 
The third effect concerns the quantification of the damage. In 
fact, agents suffer losses related to their wrong decisions. The 
more they are wrong and the higher the damage will be. As we 
have seen, the damage could even become 2 and a half times 
with respect to the ideal case (100% reliable authority, with 
0% probability of overestimation). 
In short, although not alarming in case of a critical event may 
have immediate catastrophic effects, even the alarmism should 
not be underestimated: even if its damage cannot be 
immediately estimate, it can be dangerous for the population 
in the future through secondary effects. This phenomenon 
should be studied more in depth, in order to identifying 
solutions that stop it from arising, allowing local authorities to 
focus on more important goals. 
The results of this study do not want to be exhaustive, but they 
provide quantitative estimates that highlight the critical nature 
of the phenomenon and the need for further studies in this 
regard. 
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