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Using Threshold Derivation of Software Metrics for
Building Classifiers in Defect Prediction

MARINO MOHOVIC, GORAN MAUSA and TTHANA GALINAC GRBAC, University of Rijeka

The knowledge about the software metrics, which serve as quality indicators, is vital for the efficient allocation of resources in
quality assurance activities. Recent studies showed that some software metrics exhibit threshold effects and can be used for
software defect prediction. Our goal was to analyze if the threshold derivation process could be used to improve a standard
classification models for software defect prediction, rather than to search for universal threshold values. We proposed two
classification models based on Bender method for threshold derivation to test this idea, named Threshold Naive Bayes and
Threshold Voting. Threshold Naive Bayes is a probabilistic classifier based on Naive Bayes and improved by threshold derivation.
Threshold Voting is a simple type of ensemble classifier which is based solely on threshold derivation. The proposed models
were tested in a case study based on datasets from subsequent releases of large open source projects and compared against the
standard Naive Bayes classifier in terms of geometric mean (GM) between true positive and true negative rate. The results of our
case study showed that the Threshold Naive Bayes classifier performs better than the other two when compared in terms of GM.
Hence, this study has shown that threshold derivation process for software metrics may be used to improve the performance of
standard classifiers in software defect prediction. Future research will analyze its effectiveness in general classification purposes
and test on other types of data.

1. INTRODUCTION

Software defect prediction (SDP) aids the process of software quality assurance by identifying the
fault prone code in an early stage, thus reducing the number of defects that need to be fixed after
the implementation phase [Mausa and Galinac Grbac, 2017]. Therefore, having a successful prediction
model can greatly reduce the cost of the product development cycle [Boucher and Badri, 2016]. Studies
carried out to analyze the distribution of defects in large and complex systems encourage this field of
research [Galinac Grbac et al., 2013; Galinac Grbac and Huljenic, 2015]. Software metrics are often
used for SDP and the defect prediction models built on the basis of product metrics are already well
known. Different types of classifiers have been used and analyzed for the purpose of SDP [Lessmann
et al., 2008]. Novel paradigms like the usage of multi-objective genetic algorithms empowered by the
concepts of colonization show that there is still more for progress [Mausa and Galinac Grbac, 2017].
However, some studies focused more on the software metrics and the calculation of metrics thresh-
olds for SDP purpose [Arar and Ayan, 2016]. It encouraged us to consider both the threshold calculation
and the known prediction models and combine these methods for SDP. Consequently, this paper con-
tinues our research conducted on the stability of software metrics threshold values for software defect
prediction [Mausa and Galinac Grbac, 2017]. The threshold values are generally not stable across dif-
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ferent projects and do not represent a reliable predictor for software defects when used alone. However,
within the same project and project release, a stable threshold level can be found. Thus, we concluded
that rather than searching for universal threshold values, threshold values should be used in a dif-
ferent way to aid software quality assurance. In this paper we investigate that idea and our main
research question (RQ) is:

—RQ: Does the threshold derivation process have the potential to improve a standard classifier for the
defect prediction purpose?

We proposed two novel algorithms based on the threshold derivation process, namely Threshold
Naive Bayes (TNB) and Threshold Voting (TV). The proposed TNB algorithm enhances the standard
naive Bayes classifier using the calculated levels of thresholds for SDP, while TV is based on the
percentage of metrics which exceeded the threshold level. We used the naive Bayes model as a base
for our TNB as it is one of the most common classification techniques successfully used in various
application domains [Zhang, 2004].

In this paper, we present a case study which compares our two proposed algorithms, TNB, TV with
the standard Naive Bayes (NB) in terms of geometric mean (GM) between true positive rate and true
negative rate. Our algorithms use the ensemble of many metrics predictions for prediction of the fault
prone code, rather than using single metric prediction, therefore they provide more accurate results
for SDP. The algorithms are tested on 10 different dataset versions using 10 fold cross-validation to
overcome the sampling bias [Alpaydin, 2004]. The results we have obtained show some improvement
when using the TV over NB (1-14%) and a much greater improvement when using the TNB over NB,
in range from 5% up to 22% in terms of GM. The TNB also performed better in most cases than the
TV algorithm (0.5-11%) and we concluded that the proposed TNB algorithm gives best results for SDP
overall.

The rest of the paper is organized in the following way: related work that motivated this study is
presented in Section 2; the research methodology is described in Section 3; the details of our case study
are given in Section 4; the results are presented and discussed in Section 5; and the paper is concluded
in Section 6.

2. BACKGROUND

Many different machine learning models have been used for fault proneness prediction. A study that
benchmarked different classification models for SDP showed that the logistical regression model and
naive Bayes based model acquired good results in SDP [Lessmann et al., 2008]. Some studies also
analyzed the threshold rate for naive Bayes classifier which is used for SDP [Blankenburg et al.,
2014; Tosun and Bener, 2009]. An algorithm for efficient computation of a rejection threshold was
proposed and its authors had come to conclusion that using such a model reduces the classification
errors [Blankenburg et al., 2014]. Another study that worked on ways to improve the Naive Bayes
classifier used the decision threshold optimization and analyzed the changes in prediction performance
measures [Tosun and Bener, 2009]. They managed to reduce the probability of false alarms by changing
the naive Bayes default threshold rate of 0.5. According to their work, naive Bayes classifier can be
used for software defect prediction but it needs some adjustments so that it can be more accurate.
Moreover, recent studies focused more on software metrics threshold levels using ROC curves and
Alaves ranking[Boucher and Badri, 2016] and the threshold derivation process [Arar and Ayan, 2016]
for the SDP purpose. They showed that for some metrics an efficient threshold level could be calculated
and used for SDP. It motivated us to continue our research on software threshold levels and analyze
whether they can be used to improve the performance of naive Bayes model for SDP. Unlike some
studies [Blankenburg et al., 2014; Tosun and Bener, 2009], our study focused on the calculation of
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metrics threshold levels rather than changing the default naive Bayes threshold decision rate for SDP.
These calculated metrics thresholds would be used for the fitting of the naive Bayes model for SDP
purpose without changing the NB decision threshold.

3. METHODOLOGY

The methodology for the construction of threshold derivation process based classifiers is schematically
presented in Fig. 1. The threshold derivation is presented in the upper part, while the lower part
presents our two proposed algorithms. The initial step of presented methodology is to divide the data
in 10 parts of equal size and class distribution for 10-fold cross-validation using stratified sampling
method. These parts are then used as follows: 7 parts are used for training, 2 for validation and 1 part
for testing purposes. Two classifiers based on the threshold derivation method are proposed by this
methodology, named Threshold Voting (TV) and Threshold naive Bayes (TNB). The confusion matrices
are calculated for each algorithm for performance comparison. Further details about the proposed
methodology are described in the next few subsections.

____________________________

Process repeated for every metric
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Fig. 1. Methodology of this case study
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3.1 Threshold Derivation

The threshold is derived by using the univariate binary logistic regression model, a classification tech-
nique in which one dependent variable can assume only one of two possible cases. The probability for
the occurrence of each case is defined by the logistical regression equation:

ebot+pf1X

P(X) = 1 4 ebot+f X

(@))
where P(X) is the case probability, X represents the metric value, and 3y and 3; are the logistic re-
gression coefficients. The coefficients are calculated for every metric separately. The logistic regression
coefficients along with the percentage of the majority class py are used by the Bender’s method for
threshold derivation [Bender, 1999]. Bender defined a method for calculation of the Value of an Accept-
able Risk Level (VARL) based on a logistic regression equation (1). The method computes the VARL
using the following equation:

_ 1 Do B
VARL = - (n(1 2 ) = o) @)

where 3y and ; are logistical regression coefficients and p is the base probability. The ratio of the
faulty modules is used as the base probability as in [Arar and Ayan, 2016], since it yields best results.
Threshold level is calculated only for the metrics which are statistically significant for univariate logis-
tic regression model. Therefore, a one-tailed significance test with a 95% confidence level (0.05) is used
to determine whether the corresponding coefficient is statistically significant or not. If the p-value is
greater than 0.05, the algorithm skips that metric and calculates threshold levels only for the signif-
icant ones. This process is the standard way of calculating the threshold levels [Mausa and Galinac
Grbac, 2017; Arar and Ayan, 2016].

Afterwards, the algorithm iterates through the validation data part and compares the calculated
threshold levels with real metric values. If the metric value exceeds the threshold level for a given
instance, the individual metric prediction classifies that instance as fault-prone and otherwise as non
fault-prone. This step is repeated for every metric and the results are many individual software defect
predictions based on metric values. Our proposed classification algorithms, TNB and TV, are trained
based on the mentioned individual metrics predictions.

3.2 Classification Algorithms

3.2.1 Standard naive Bayes Classifier . The Naive Bayes Classifier is a probabilistic multivariate
classifier based on the Bayes theorem. In our case, the multiple attributes correspond to different
software metrics and software modules, respectively. Using the conditional probability P(E|H), we can
calculate the probability of an event E using its prior knowledge P(H):

P(E |H) * P(H)
P(E)

Naive Bayes classifier calculates these probabilities for every attribute. This step trains the naive

Bayes model which is afterward used for prediction. The mentioned model is trained on the raw data

which is a combination of the training and validation data part. After the conditional probabilities are
calculated they are used in Naive Bayesian equation:

hpayes = argmaxzP(H)P(E|H)

= argmazP(H) H P(a;|H) @
i=1

P(H [E) = 3)
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to calculate the posterior probability (MAP estimation) for each class. The class with the highest pos-
terior probability is the outcome of prediction which in our case predicts the fault-prone code or non
fault-prone code. These predictions are being made on the testing data part which is also used for other
two algorithms.

3.2.2 Threshold naive Bayes. Our proposed classification algorithm TNB is based on the naive
Bayes Classifier described in the previous subsection. The difference is that it is being trained on
individual metric predictions mentioned in the subsection 3.1, rather than on the raw metrics data as
explained in previous subsection 3.2.1

The training of the TNB model is based on the individual predictions, i.e. calculated threshold levels
from the validation data part. These individual metric predictions are evaluated using the evidences
of the fault prone code in validation data part which derives 4 different conditional probabilities for
every metric (attribute):

—probability that the metric predicted that there will not be a defect in code under condition that the
defect actually did not happen P(X; =0|Y = 0),

—probability that the metric predicted that there will not be a defect in code under condition that the
defect actually happened P(X; =0|Y = 1),

—probability that the metric predicted that there will be a defect in code under condition that the
defect actually happened P(X; =1|Y =1) and

—probability that the metric predicted that there will be a defect in code under condition that the
defect actually did not happen P(X; =1|Y = 0),

where X; represents the individual metric prediction of a fault prone code and Y represents the
evidence of a fault prone code which is stored in the last column of the validation dataset. These prob-
abilities correspond to the number of cases in which a certain condition (eg. X;=1, Y=1) happened.
Therefore, by calculating the percentage for each of the four mentioned conditions and repeating this
step for every significant metric, a model similar to NB is trained. Consequently, the mentioned vali-
dation data part is actually used as the second training part for our model.

Finally, the TNB predicts every instance of testing data part using these calculated conditional prob-
abilities and the calculated threshold levels as fault-prone or non fault-prone. The prediction process
starts by comparing the real metric values with the calculated metrics threshold levels which gener-
ates the individual metric predictions for the testing data part. This step is similar to the step where
conditional probabilities are being calculated. The difference is that these individual metrics predic-
tions are now being used in next step along with calculated conditional probabilities to finally predict
the class of an instance. It is done by multiplying trained conditional probabilities for every metric
which correspond to the P(a;|H) from the naive Bayes equation (4), iteratively through metrics in one
row. The individual metrics predictions correspond to the «; and the percentage of a class correspond
to P(H). The result of these steps are two posterior probabilities (MAP estimations) for every file (pos-
terior probability that the instance is class 1 and posterior probability that the instance is class 2).
These probabilities are then compared mutually and the decision is made based on which of the two is
more likely.

3.2.3 Threshold voting. Our second proposed classification algorithm, named Threshold Voting also
relies on individual metrics predictions based on the calculated threshold levels. Threshold levels are
calculated based on training data part and the validation data part combined into one dataset as it
does not need the validation part. This step trains the TV classifier model. Afterwards, these calcu-
lated threshold levels are being compared with the real metric values from the testing data part which
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generates the individual metric predictions. Finally, it calculates the percentage of the individual met-
rics predictions which predicted class 1 and the percentage of the individual metrics predictions which
predicted class 2. The final classification is based on majority vote for these two percentages, i.e. the
higher percentage predicts the instance as fault-prone or non fault-prone.

4. CASE STUDY

Matlab 2016 environment was used to develop the algorithms and to perform this case study. The
details of the study will be explained in the next few subsections.

4.1 Datasets

The case study is based on empirical SDP datasets from 5 subsequent releases of two open source
projects of Eclipse community, JDT and PDE. The chosen datasets are carefully collected, structured
in a matrix form and formated as csv (comma-separated values) files and open to public use [Mausa et
al., 2016]. The matrix contains the description of software metrics and the paths of java files within a
project’s release. There are 48 product metrics, later used as independent attributes X for prediction,
and the number of defects in the last column, later transformed into binary dependent attribute Y.
Attribute Y is fault-prone (FP) if there the number of defects is greater than 0 and non-fault-prone
(NFP) otherwise. The defects are faults (bugs) that caused a loss of functionalities in software, i.e.
whose severity is classified as minor or above [Mausa et al., 2016]. To visualize the number and size of
datasets and the distribution of FP and NFP files, we presented Table 1.

The case study is based on 10 fold cross-validation, so the datasets are divided into 10 parts using
the stratified sampling technique. We combined 7 parts of the dataset as the training set, 2 parts as
the validation set, and 1 part as the testing part. This process is repeated in 10 iterations, changing
the order of parts used for training, validation and testing in every iteration.

Table I. Description of datasets

PROJECT RELEASE | NUMBER OF FILES | FP NFP
JDT R2.0 2397 45.97% | 54.03%
JDT R2.1 2743 31.94% | 68.06%
JDT R3.0 3420 38.6% 61.4%
JDT R3.1 3883 32.76% | 67.24%
JDT R3.2 2233 36.54% | 63.46%
PDE R2.0 576 19.27% | 80.73%
PDE R2.1 761 16.29% | 83.71%
PDE R3.0 881 31.21% | 68.79%
PDE R3.1 1108 32.22% | 67.78%
PDE R3.2 1351 46.19% | 53.81%

4.2 Evaluation

After the algorithms have been trained and tested, we evaluated their performance of defect prediction.
Since the stratified sampling has been used to divide the data, the percentage of the two classes is kept
within all the data parts, therefore all the classifiers are fairly compared with the base class probability
(p0) being provided for all three classifiers. Comparing the predicted class with actual class value for
each java file within the testing part, we computed the elements of confusion matrix. Confusion matrix
consists of four possible outcomes: true positive (TP) and true negative (TN) for correct classification
and false positive(FP) and false negative(FN) for incorrect classification.

Using the four possible outcomes, we computed evaluation measures standard for SDP: true positive
rate (TPR), true negative rate (TNR) and geometric mean (GM) using Equations 5, 6 and 7. TPR and
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TNR represent the accuracy of the positive and the negative class of data, respectively. GM represent
the geometric mean between TPR and TNR and it usually used to evaluate the performance of binary
classification in presence of unbalanced datasets [Japkowicz and Shah, 2011].

TP
TPR=ZpFN ®)
TN
GM =VTPRxTNR (7

5. RESULTS

We analyzed the software defect prediction performance of the three classifiers using the real data
and we computed the confusion matrices. The arithmetic mean of TPR, TNR and GM values for every
dataset release is presented in Table II. Boxplots of the GM results is given in Figure 2 for a more
thorough representation. TNB results are colored green, TV results are colored red and Standard NB
results are colored black and dataset releases are separated with the vertical line as every release was
tested separately.

Table II. Average values of GM results for TNB, TV and NB classifiers in JDT and PDE project releases

Classifier: | TNB SV NB TNB SV NB TNB SV NB TNB SV NB TNB SV NB
Release R2.0 R2.1 R3.0 R3.1 R3.2
JDT project
TPR 053 039 026 | 057 041 024 | 059 041 028 | 0.56 037 0.29 | 055 0.36 0.32
TNR 0.77 0.8 092 | 081 089 093 | 081 090 093 | 081 090 094 | 0.81 090 0.94
GM 0.64 058 048 | 068 060 047 | 069 061 0.51 | 0.67 0.58 052 | 0.67 056 0.55
PDE project
TPR 0.68 0.66 0.57 | 0.58 0.51 045 | 0.57 049 041 | 061 055 040 | 048 0.39 0.32
TNR 0.85 087 090|081 083 089|079 084 088|079 083 090 | 072 079 0.88
GM 0.76 0.75 0.70 | 0.68 0.64 062 | 0.67 064 060 | 0.69 0.67 060 | 059 055 0.53

The GM results have shown that the TNB classifier performs better than the NB classifier for all
dataset releases. For JDT project releases the prediction improvement over the NB is in range from
11% to 22%, while the improvement for PDE releases is in range from 5% to 10%. The TV also per-
formed better than the NB for most releases, between 1% - 14% for JDT and between 2% - 8% for
PDE. The overall improvement in terms of GM is the result of a higher TPR for our two proposed algo-
rithms, which is very important for the good SDP. The NB has very high TNR because it predicts most
instances as non fault prone but in the same time it gives very low prediction accuracy of the fault
prone instances, which is not very useful for the quality insurance. Our proposed algorithms have
slightly lower TNR than the NB but substantially higher TPR which gives better overall results. Fi-
nally, our TNB classifier also performs better than our second proposed algorithm, TV. When compared
mutually the improvement of TNB over TV is between 1% - 11%.

6. CONCLUSION

The goal of this study was to analyze if the threshold derivation process could be used to improve the
standard classification techniques for software defect prediction. We proposed two novel algorithms
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Fig. 2. Box and whisker plot for TNB, TV and NB classifiers

based on threshold derivation of software metrics, namely Threshold Naive Bayes - TNB and Threshold
Voting - TV. The proposed algorithms were compared against the standard naive Bayes classifier, which
inspired us to develop the TNB classifier.

The main contribution of this study is the new approach and methodology for improvement of the
standard classification techniques using the threshold derivation. We hope that our approach will serve
as guidelines for future related research in the SDP research area. The conclusions we obtained with
this study are:

—Threshold derivation method may be used for improving the performance of standard classification
models for SDP.

—The improvement of the proposed TNB classifier over the standard NB in terms of GM ranges from
3% to 22%, and it gives the best results for SDP overall.

—The improvement of the proposed TV classifier over the standard NB in terms of GM ranges from
1% to 14%.

—The standard, unmodified naive Bayes algorithm does not give very good result for SDP, because it
has a very low TPR.

Conclusion validity of this research is strong because we used standard techniques for sampling
and statistical analysis. The used methodology is explained in details and the case study is based on
publicly available datasets so the whole process is easy to replicate. However, our conclusions are based
on a small scale case study and this limits their external validity. This study should be extended on
a larger scale for more general conclusions and our future work will replicate it on additional SDP
datasets.
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