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Read-Copy-Update As A Possible Locking Strategy In
Scala
GERGELY NAGY and ZOLTÁN PORKOLÁB, Eötvös Loránd University

Concurrent programming with classical mutex/lock techniques does not scale well when reads are way more frequent than

writes. In such situations the read-copy-update (RCU) locking pattern guarantees minimal overhead for read operations and
allows them to occur concurrently with write operations thus may outperform classical mutexes or reader-writer locks. RCU

is well-known technique among C programmers implementing performance critical low level multithreaded applications, like

operating system kernels. Up to now, RCU pattern was rarely applied for high level programming languages. In this paper,
we argue in favor of applying RCU for higher level object-oriented constructions and present our experimental Scala RCU

class library. The library has been carefully designed to optimize performance in a heavily multithreaded environment, in the

same time providing high-level abstractions, applicable in the multiparadigm environment where Scala programming language
is typically utilized. We evaluated our library implementing a concurrent HashMap container.

1. MOTIVATION

Ever since we have started approaching the practical limits of single-threaded CPU performance, con-
current programming has been in the focus of researchers and industry parties. Concurrent program-
ming with shared mutable state is universally considered hard [Sutter and Larus 2005]. There are
many reasons for this, starting from the numerous abstractions designed to solve specific problems
that don’t work well together, the unpredictability of scheduling the concurrent modifications, to the
complexity of reasoning about temporality of concurrent software. New approaches and concurrent
programming models are being invented in hopes of reducing the complexity for software developers.

1.1 Amdahl’s law

Amdahl’s law [Amdahl 1967] is a formula describing the correlation bertween the theoretical speed
gain of a system under a specific work load and the improvement of said system’s resources. It is often
used to estimate performance gains of multiple processors in parallel computing. Amdahl’s law has
been formulated [Rodgers 1985] as seen on figure 1, where Slatency is the estimated speedup, s is the
speedup of the part that benefits from the resource improvements and p is the original proportion of
execution time without the improvements.

We also have to consider the parts of the system that don’t benefit from the improvements. A good
example is a software system whose task can be divided into two categories: one that does I/O opera-
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Slatency(s) =
1

(1−p)+ p
s

Fig. 1. Amdahl’s law formulated.

tions, the other runs computations. In this case, adding multiple processor cores will not benefit the
I/O parts, but will theoretically increase the performance of the concurrently ran computations.

1.2 Scalability

Amdahl’s law describes the theoretical maximum improvement in a system’s speed, but in typical real-
world usage, even the most sophistaced approaches will have worse scaling. The reasons are various
and arise from each concurrency model’s fundamental properties. If we consider the actor model [He-
witt et al. 1973], one of its main characteristics is supporting messaging-based communication between
actors that don’t share any data. This results in copying data when actors communicate and if the ac-
tors don’t share the same address space (because, for example they run on separate machines), we also
have to consider network overhead.

Looking at possibly the most frequently used concurrency model using shared mutable state between
concurrently executing parts of a program, we have to make sure that each thread has a consistent and
correct view of the shared mutable state. For this reason, we have to mutually exclude modifications. To
support this, we have several possible primitives, including locks, mutexes and semaphores, but using
these constructs correctly is a non-trivial problem. For this reason, we have to increase the abstraction
level of these for typical use-cases.

In this paper we evaluate the read-copy-update locking mechanism in Scala. The original implemen-
tations of RCU provide low-level APIs that require caution to avoid any concurrency issues, including
data races or deadlocks. Our proposed API matches Scala’s idioms by providing a higher-level abstrac-
tion while it doesn’t sacrifice performance.

This paper is organized as follows: In Section 1 we discuss the motivation for expanding concurrency
to answer the ever increasing need to solve problems by computers; Amdahl’s Law that gives an es-
timation on the maximum speed gain we can expect from concurrency and the scalability problems
with shared memory models. The read-copy-update locking pattern, that aims to help cases when the
number of readers of a given data structure greatly outnumber the writers, is introduced in Section
2. We suggest a high-level RCU interface for Scala and describe our prototype implementation in Sec-
tion 3. In Section 4 we evaluate our RCU library implementing a concurrent HashMap implementation
comparing it to the ConcurrentHashMap of the Java Standard Library. Our paper concludes in Section
5.

2. READ-COPY-UPDATE

A non-trivial synronization approach has been introduced to the Linux kernel in 2002 called read-copy-
update (RCU) [McKenney and Walpole 2007; McKenney 2010], although similar techniques have been
previously used for garbage collection algorithms [Kung and Lehman 1980], CPU TLB implementa-
tions [Rashid et al. 1988], concurrent systems with hard real-time requirements [John 1995] and many
others. RCU aims to alleviate synchronization overhead for situations when there are more read than
write operations. It allows this by not blocking reads; if a write happens while there are readers, the
write operation will be applied to a new memory address, keeping all readers with an intact state of
the underlying data structure. When the write operation finishes, new readers will be pointed to the
new memory address. After all readers of the stale data finish reading, its memory space can be freed
up.
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Fig. 2. RCU operations example.

On figure 2 we have displayed an example of RCU-backed concurrent reads and writes. At first we
have the initial version of the data (a). Later a reader (b) then another one start (c) reading the data.
While they are executing their reads, a writer starts updating the data by copying the initial version
(d) – but this doesn’t block the existing readers: a third one joins (e). In the meanwhile, the first two
readers finish their operations (f), but the third reader still refers to the old version. As the next step,
the writer finishes updating the memory contents(g), so when the next reader comes along, (h) it is
pointed to the new version of the data. The last reader of the old data then completes (i), meaning this
memory can be discarded (j).

RCU is an example of space-time trade-off where memory space is traded for performance gains:
neither readers will block writers, nor a writer will block readers until it finished a possibly expensive
operation. RCU does not provide conventional temporal mutual exclusion, but its handling of con-
current data access is based on spaciality: readers and writers are separated on the memory space,
henceforth they can operate even while overlapping in time.

Numerous implementations can be found in various operating systems and even a user-space library
is available [lib 2018]. The C-based implementation in the Linux kernel provides a fairly low-level API
that can be mapped to the following operations or methods:

—rcu read lock(). Marking the beginning of a read operation so we know when this data can be freed
up if it has been update by a write

—rcu read unlock(). Signaling that a read operation has been finished
—synchronize rcu(). Blocks until all pre-existing read operations finish. In some implementations

this method can be called with a callback that will be applied when the reads have finished instead
of blocking

—rcu assign pointer(). Writers use this method to update the underlying data managed by RCU
—rcu dereference(). Readers can access the RCU-guarded data via this method

Based on the short description of this API, it is easy to see that using a read-copy-update implemen-
tation is a non-trivial task and needs special attention from its users. To help developers avoid typical
pitfalls, an implementation with a higher-level API has been completed in C++ that uses some of the
new features of C++14 [Márton et al. 2017].
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1 t r a i t ReadCopyUpdate [A] {
2 def modify ( modifier : A => A) : A
3 def get ( ) : A
4 def map[B] ( f : A => B) : B
5 def set ( value : A) : Unit
6 }

Fig. 3. RCU Scala API

1 t r a i t ReadCopyUpdateNaive [A] extends ReadCopyUpdate [A] {
2 protected val data : AtomicReference [A]
3 private val modifierLock = new AnyRef
4
5 def modify ( modifier : A => A) : A = {
6 val newData = modifierLock . synchronized {
7 modifier ( data . get ( ) )
8 }
9 data . set (newData )

10 newData
11 }
12
13 def get ( ) : A = {
14 data . get ( )
15 }
16
17 def map[B] ( f : A => B) = f ( get ( ) )
18
19 def set ( value : A) : Unit = {
20 data . set ( value )
21 }
22 }

Fig. 4. RCU using basic locking logic

3. POSSIBLE READ-COPY-UPDATE IMPLEMENTATIONS IN SCALA

As Scala provides high levels of abstraction, one of the goals of our read-copy-update implementation
was to hide the low-level details from the users. This would require us to handle all logic related to the
internal locking mechanisms of RCU, but in the meanwhile support all use-cases without performance
penalties. We have also been trying to provide an idiomatic Scala API that borrows patterns from
similar holder objects in the standard library, such as Option[+A] [opt 2018]. This would allow users
to easily understand a familiar API and would prevent them from implementing concurrency-related
bugs.

3.1 The RCU API

Here we list the API of our generic read-copy-update trait: The methods listed here cover the operations
in other RCU implementations, but hide the low-level locking mechanisms needed for correctness. The
get() and set() methods cover the basic reference operations of getting and setting values of the
guarded memory location. To update the RCU data structure, users need to provide a modifier function
that receives the current state as its input and produces the new data. This passed-in function or
lambda represents the actual write operation and the modify() method handles all necessary logic
internally. map() is a simple convenience function that acts as a reader and transforms the data.

3.2 The naı̈ve implementation

The naı̈ve version uses an AtomicReference for the backing data since it provides lock-free reference
updates. Writes themselves need to be synchronized amongst each other since a new write operation
can be requested while another one is still working on modifying the underlying data. To prevent data
collisions or overwriting using an older version at a later time, the complete write operations need to
have a mutual exclusion. Setting the reference can happen outside of the write synchronization as the
atomicity is guaranteed by AtomicReference.
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1 t r a i t ReadCopyUpdateRWL[A] extends ReadCopyUpdate [A] {
2 protected var data : A
3 private val l = new ReentrantReadWriteLock ( fa l se )
4 private val r l = l . readLock ( )
5 private val wl = l . writeLock ( )
6 private val modifierLock = new AnyRef
7 def modify ( modifier : A => A) : A = {
8 modifierLock . synchronized {
9 val newValue = modifier ( data )

10 try {
11 wl . lock ( )
12 data = newValue
13 newValue
14 } f i n a l l y {
15 wl . unlock ( )
16 }
17 }
18 }
19
20 def get ( ) : A = {
21 try {
22 r l . lock ( )
23 data
24 } f i n a l l y {
25 r l . unlock ( )
26 }
27 }
28
29 def map[B] ( f : A => B) = f ( get ( ) )
30
31 def set ( value : A) : Unit = {
32 wl . lock ( )
33 data = value
34 wl . unlock ( )
35 }
36 }

Fig. 5. RCU using read-write locks

3.3 Using read-write locks

We have also implemented RCU using a more advanced, ReadWriteLock-based locking scheme. The
only difference compared to the naı̈ve version is that we use two different locks for reading the refer-
ence and setting it. Theoretically this should favor readers even more.

4. EVALUATION

To evaluate our read-copy-update class, we have implemented one the most fundamental data struc-
tures used in software, the HashMap in a thread-safe way. Both the Java and Scala standard libraries
provide a version of it, helping us compare both the ease-of-use and the performance of the proposed
solution. In this section we will analyze the implementations of the two basic operations of a HashMap –
get() and += – between the standard version and our RCU-based implementation. We will also discuss
the performance characteristics of these two different versions.

4.1 Concurrent HashMap in Scala

Scala’s concurrent HashMap is a wrapper around the Java java.util.concurrent.Concurrent-
HashMap<K, V> class, providing a Scala-like interface. Converting the Java implementation is fairly
simple based on the decorators found in scala.collection.convert.decorateAsScala: one can simply
call new ConcurrentHashMap[K, V]().asScala to get a scala.collection.concurrent.Map object.
ConcurrentHashMap [con 2018] provides a lock-free retrieval operation while writes never lock the

whole internal table. This is achieved by introducing segments to the entry array, where each segment
represents a range of the possible hash values. When write operations happen simultaneously, in ideal
cases they will only touch different segments, avoiding lock contention. This of course might not be
the case in real-world applications. The number of segments –or as the class documentation refers to
it, the level of supported concurrency– can be controlled from client code, providing the possibility of
fine-tuning performance characteristics of the class.
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1 protected val table : ReadCopyUpdate [ Array [ Entry [K, V ] ] ]
2
3 override def +=( kv : (K, V) ) : RcuHashMap. this . type = {
4 val ( key , value ) = kv
5 table . modify{ t =>
6 val index = indexFor ( hash ( key . hashCode ( ) ) , t . length )
7 val entry = t ( index )
8 i f ( entry ! = null ) {
9 entry . addNext ( key , value )

10 noOfElements += 1
11 t
12 } e lse {
13 val res = addEntryToTable ( t , key , value , index )
14 noOfElements += 1
15 res
16 }
17 }
18 this
19 }
20
21 private def addEntryToTable ( t : Array [ Entry [K, V] ] , key : K, value : V, index : Int ) : Array [ Entry

[K, V] ] = {
22 val tableLength = t . length
23 val array = i f ( ( tableLength ∗ loadFactor ) <= noOfElements ) {
24 val newArray = new Array [ Entry [K, V ] ] ( t . length ∗ 2)
25 Array . copy ( t , 0 , newArray , 0 , tableLength )
26 newArray
27 } e lse { t }
28 array ( index ) = new Entry [K, V] ( key , value )
29 array
30 }

Fig. 6. RCUHashMap += implementation

1 override def get ( key : K) : Option [V] = {
2 val entry = table .map{t => t ( indexFor ( hash ( key . hashCode ( ) ) , t . length ) )}
3 i f ( entry ! = null ) entry . get ( key )
4 e lse None
5 }

Fig. 7. RCUHashMap get() implementation

4.2 RCU-based Concurrent HashMap in Scala

Our concurrent.Map is based on the non-thread-safe Java HashMap class [map 2018]. Most of the con-
siderations put into the implementation details of that class are copied over to our version, including
bucket implementation and hash-distribution. The main difference is that our hash table is now a
ReadCopyUpdate instance, and both HashMap reads and writes will be delegated through the RCU API.
We have listed the code snippets for both of these methods for reference.

Comparing these methods to the original ones reveals how simply one can convert single-threaded
code to use RCU. Furthermore, since all locking-related logic is handled in the ReadCopyUpdate class,
the readability of the client code doesn’t decrease significantly, allowing developers to focus on the
domain problem.

4.3 Benchmarks

We have used JMH [jmh 2018] as our benchmark harness to reduce possible variability to the min-
imum. The test code concurrently reads and writes to the map object using multiple threads. Since
the goal was to benchmark RCU performance, we were focusing on cases where there is minimal hash
collision, resulting in a flat bucket structure. This allows us to test the characteristics of the RCU data
structure.

The test machine had 80 cores of Intel Xeon E5-2698 v4 2.20 GHz with 512 gigabytes of memory.
The benchmarked method creates 50000 Future instances, of which a given number will be writers,
the rest of the operations will be readers and it will block until all Futures complete.
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4.4 Results

On figures 8 and 9 we show how Java’s ConcurrentHashMap implementation compares to the RCU-
based one. We have run these benchmarks with a fixed number of threads and changed the ratio of
read to write operations. The Y-axis shows values of ms/op, while the X-axes show that every nth
operation is a write.

Fig. 8. Benchmark results using 64 (left) and 32 (right) threads.

As the charts show, the performance of our implementation is comparable to ConcurrentHashMap’s.
RCU proves to be usually faster when read operations dominate, and it usually keeps up pace even
when write operations become more frequent.

We have also tested how well RCU scales if we increase the worker threads. These results can be
found on figure 9. Here, on the X-axis we displayed the number of threads with every 8000th operation
being a write.

Fig. 9. Benchmark results using 4 threads (left) and scaling with 8000 writers (right).
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There is no realistic way of eliminating all variance of real-world benchmarks; as our data show,
we have observed some discrepancies in our measured values, even though we used JMH’s warm-up
capabilities as well as calculated average results over 15 iterations of the benchmarked method.

5. CONCLUSION

Concurrent programming with classical mutex/lock techniques does not scale well when reads are
more frequent than writes. For such situations programs working on low abstraction level successfully
apply the read-copy-update locking pattern. As the original implementations of RCU provide relatively
low level API, there is a growing need for creating a high level solution. In this paper we presented our
RCU library for the Scala programming language providing a higher-level abstraction while doesn’t
sacrifice performance.

We evaluated our library creating a concurrent HashMap that uses our RCU implementation to handle
concurrency on its internal hash table. We compared its performance to Java’s standard Concurrent-
HashMap and found that it is comparable, in some cases the RCU-based solution even proves to be
faster.

As future development, we can widen the number of investigated data structures, trying to find typ-
ical use-cases where RCU can benefit its users. We can also improve the RCU HashMap implementation
to leverage further benefits provided by the read-copy-update locking mechanism.
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