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Evaluating Fitness Functions for Automated Code
Transformations

NATASA SUKUR and DONI PRACNER, University of Novi Sad

FermaT is a program transformation system based on the WSL language, and has been used in software evolution applications,
mainly for legacy systems and conversions of low level code into high level structures. One option is to automate the process
of code transformation as much as possible by using fitness functions to evaluate the improvements made. This paper presents
some initial experiments with different fitness functions and tries to evaluate the correlation between using a software metric
as a guide and improvements made for that specific metric.

1. INTRODUCTION

Software engineering is a very broad field, where numerous disciplines focus on software maintenance
and evolution. They are important due to the problem of today’s need for constant changes in software.
In the early days of computer science and technology, the need for change was not so frequent, with
mostly major releases and significant improvements, but now it seems like the need for changing never
stops, and the deadlines are a matter of days and weeks, rather than months and years.

Software quality is the key element a piece of software should have. Nowadays, software is present
everywhere, new software is also being produced and it needs to be constantly maintained in order
to preserve its quality. Maintenance can emerge in perfective, adaptive and corrective form, based on
what kind of changes it focuses on. However, despite the effort to develop software that conforms to the
requirements, some errors show when the software goes into operation. It is possible that some errors
were not discovered in time and software has to evolve in the sense of functionalities, environment and
scale, in order to have a long life. These changes have to be performed quickly and because of tight
schedules, the cost can be quite high. Sometimes, when software systems need significant changes, or
have been changed too many times, they need to be reengineered. Software evolution is often defined as
repeated reengineering, or as a single cycle of a possibly infinite process of creating a better system. The
process of evolution in a dynamic system is never completely finished and every step of it has to be done
in as fast as possible. When a need for reengineering emerges, the main thing is to fully understand
the software and its functionalities, so that the modifications do not cause any new defects, but rather
cause improvement and that they are done in a logical manner [Yang and Ward 2003}; Tripathy and
Naik 2014].

This paper presents research based on the usage of FermaT program transformation system (started
in 1989, and developed, improved and reimplemented several times since then) and tools that extend
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existing functionalities and introduce some new ones. One of these tools is mjc2wsl [Pracner and Budi-
mac 2017]], whose main purpose is translating MicroJava bytecode to WSL (Wide Spectrum Language),
which is later transformed by FermaT. Another tool is based around the automated transformation pro-
cess of translated low level programs into much more understandable and high level structures. The
process is based around the idea of a fitness function that is used to evaluate the programs abstract
quality, and is then used as a guide when selecting software transformations. Fitness is a term from
evolutionary computing. As the name suggests, evolutionary computing draws inspiration from the
process of natural evolution. The evolutionary processes relate to computing problems in the following
way: if we defined fitness as a quality of individual to achieve its goals (to have a better survival and
multiplying chance) in the environment, that could apply to computing problems as the quality of a
candidate solution for actual solving of the problem at hand. The quality of these candidate solutions
determines the chance that they will be kept and used as seeds for constructing further candidate
solutions [Eiben et al. 2003]. The focus of this paper is on evaluating some possible fitness functions
and their impact on the end results, but also on the process itself.

The rest of the paper is organized as follows: Section [2| focuses on formal methods in reengineering,
and particularly on FermaT, WSL and code transformations. In Section [3] the translation tool mjc2wsl
is briefly described, as well as the software transformation process. Section |4] deals with the actual
experiments in improving the fitness function. Finally, Section [5| draws some conclusions based on
obtained results and some options for future work.

2. FORMAL METHODS AND WSL

Formal methods can be used in different stages of software life cycle. They can be applied to specifica-
tions, models or source code and influence the overall product reliability. Formal methods are widely
used in the process of software reengineering, which consists of three phases: reverse engineering,
functional restructuring and forward engineering. Various formal methods can be used for the purpose
of forward engineering (assertional methods, temporal logic, process algebra and automata), as well
as functional restructuring. They have also been used for reverse engineering in some processes, such
as formally specifying and verifying existing systems, introducing new functionalities and improving
the systems design techniques. The question of using formal methods in the development of systems
raised various questions and many different opinions. Some say that formal methods are vital to a
high quality process of software development. On the other hand, some say that it is impossible to
completely rely on usage of formal methods in (re)engineering and that it is very costly. Nevertheless,
systems and their complexity are constantly growing and it is necessary to have a reliable methodology
and approach to designing and developing them.

Different types of formal methods have their advantages, but also flaws. Some of the quality criteria
that is considered is whether it has supporting automated tools for its development, whether it is
reliable, concurrent, if there is any proof system and so on. The conclusion by [Yang and Ward 2003]|
is that the choice of formal methods depends on the nature of the problem we are trying to solve.
Some formal methods are better for large industrial applications (Z) [ISOZ 2002]], some are good for
reasoning about concurrency and communication (different process algebras) and some are good for
visual representation (net-based formalisms). As previously mentioned, formal methods are not used
often as a theoretical basis for reverse engineering. WSL [Ward and Bennett 1995] is a language based
on formal methods which is highly useful for reverse engineering of sequential systems. In fact, the
whole WSL/FermaT system was designed with the purpose of reverse and forward engineering.

Code transformations can be performed by using formal methods. The whole purpose and goal of code
transformation is cost reduction, which can be in terms of anything from performance and memory
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usage to portability. Apart from using transformations for evolving existing software, they can also be
useful when new software is being developed. A program transformation can be defined as an operation
which, when applied to a program, generates an equivalent program.

WSL gets its name from wide spectrum language, which means that it contains both abstract math-
ematical specifications and low-level programming constructs. Program transformations use this wide
spectrum language, in order to create programs from specifications, to perform the reverse engineering
of programs and get the specifications and to analyze properties of a program. Aside from traditional
language functionalities, such as commands and structures, it also contains operations that work on
WSL programs themselves, which are called MetaWSL. These are the base for a variety of transfor-
mations that are provided with the system and whose correctness can be automatically checked. For
these reasons, it is very useful for the activities performed in the process of restructuring [Yang and
Ward 2003]|. It has been used in several industrial projects of converting legacy assembly code to hu-
man understandable and maintainable C and COBOL [Ward 1999][Ward 2004]1[Ward et al. 2004]][Ward
2013]. Another tool that was made for assembly translation, with a slightly different focus is asm2wsl
[Pracner and Budimac 2011].

FermaT transformation system also contains a set of metrics, which can be applied to a certain
program or its parts. These metrics are McCabe Cyclomatic Complexity, Essential Complexity, Size
(the size of abstract syntax tree), Statements (the number of statements in a program), Control Flow
and Data Flow (the number of variable accesses and updates, combined with the number of procedure
calls and branches), and Structure metric (a custom WSL metric for representing the complexity of
program structures, gives different weights to various types of structures) [Yang and Ward 2003].
These metrics will be used later on in the paper in the experiments to improve the quality of the
transformation process.

3. TRANSLATION AND TRANSFORMATION

The first step in using FermaT to transform source code not originally written in WSL is to provide
the translators of this code to WSL. One such tool that was created was mjc2wsl, which works with
MicroJava [Mossenbock 2018], a subset of Java programming language. The tool itself works directly
with the compiled MicroJava bytecode obtained from the high level source codes. The low level struc-
tures and operations are translated at the same level of abstraction with the operational semantics
preserved through a “virtual” Microdava Virtual Machine. WSL has a built in structure called ac-
tion system that is made out of separate actions, which are essentially procedures without parameters
which are very efficient at representing the low level code that is filled with jumps. Translation tools
such as these do not need to prioritize the reduction of size and complexity of the outputs, since this
will be handled during the transformation part of the process.

Once the code is translated to WSL, FermaT can be used for manual or automated transformations
[Pracner and Budimac 2017]. The approach that this paper will be dealing with is using a hill climb-
ing algorithm with a fitness function that measures the quality (however defined as being a simpler
and/or more understandable) of the code. Hill climbing is a well-known search algorithm that con-
stantly moves “uphill” — in the direction of the increasing value and terminates once it reaches a peak,
which means that no neighbor has a higher value [Russell and Norvig 2016]. The function can be the
value of some simple metric, such as the length of the program, or an arbitrarily complex function.
The implemented hill climbing script tries one transformation at time, but if none of them shows an
improvement, it advances to combining two transformations before reevaluating the result. All the
successful intermediate steps are recorded in separate files, allowing for a more detailed analysis of
the process when needed. The existing automated script uses the Structure metric, which is built into
WSL and gives a weighted sum of the structures in the program, as the fitness function.
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Table I. Part of the generated comparison file, showing the improvement of
McCabe Cyclomatic Complexity in percentages

filename fit-cfdf  fit-mccabe fit-ol  fit-02 fit-size fit-stat fit-struct
ArrayTest.wsl 50 16 50 50 50 50 50
ArraysTest.wsl 37 12 37 37 50 50 37
InOutl.wsl 50 50 50 50 50 50 50
InOut2.wsl 50 50 50 50 50 50 50
InOut3.wsl 50 25 50 50 50 50 50
Rek1.wsl 25 25 25 25 25 25 25
RekFac.wsl 33 16 66 66 66 66 66
RekFib.wsl 66 16 66 66 66 66 66
chrtest.wsl 50 50 50 50 50 50 50
div0.wsl 66 66 66 66 66 66 66
div2.wsl 66 66 66 66 66 66 66
eratos.wsl 50 7 57 57 57 57 57
fields.wsl 50 12 50 50 50 50 50
linkedlist.wsl 38 5 27 38 55 50 38
pos-neg.wsl 56 6 62 62 62 62 62
while-print.wsl 50 25 50 50 50 50 50
Average 49.19 27.94 51.38 52.06 53.94 53.63 52.06

The question whether hill climbing is suitable and optimal for solving the problem of automatic
program repair was only discussed before [[Arcuri and Yao 2008]], and this paper is an attempt to get
empirical data. The idea of using fitness functions for code improvement is not a novelty. There has
been a lot of research on automated software repair which also relies on fitness functions and focused
at first on C programs [Forrest et al. 2009] and assembly programs [Schulte et al. 20101, but later
evolved to applicability to any kind of code in general [Le Goues et al. 2012]]. There is also research on
how to design these fitness functions in order to get the best results of the automated bug detection
[Fast et al. 2010;|de Souza et al. 2018]], which also shows that designing various fitness functions with
respect to the problem at hand can be greatly beneficial.

4. EXPERIMENTS AND RESULTS

The main goal of these experiments was to compare several fitness functions, and in order to do that,
different versions of the hill climbing script were generated and run with the same input sample sets.
Following that, a number of metrics were calculated on all of the results. The goal was to compare
whether changing the evaluation function made difference in the metric values and if scripts with
some specific evaluation functions were more suitable for specific kinds of programs. Comparison of a
part of these values of metrics is shown in Table [[, with the combined results of McCabe Cyclomatic
complexity measured on all transformed WSL, where each of the values represents the percentage of
improvement for this metric. In general most of the comparisons were done using percentages, due to
the differences in individual sample sizes.

Most fitness functions in this experiment are based on the value of one of the built in metrics in
WSL (described in Section [2), and these were named correspondingly: fit-cfdf, fit-mccabe, fit-size, fit-
struct and fit-stat. The remaining two fitness functions used in this experiment were more complex —
fit-ol and fit-02, which contain multiple checks, such as number of actions and number of calls. The
experiment was run on a sample set which consisted of 16 different programs, later referred to as the
alpha sample set.
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4.1 Overview and Analysis

In this section focus will be given to some results which were significantly different in comparison
to others and brief analysis of the possible reasons for these differences. One of the questions that
we wanted to answer with these experiments was if using a certain metric for the fitness function
would result in the best results for that specific metric in the final program (compared to other fitness
functions). The assumption was that it does not have to be the case, and that in a general case using
some other fitness function could give similar or even better results.

4.1.1 Simple fitness functions. The best improvement percentages were accomplished by using two
fitness functions which used only one metric for evaluation, fit-size and fit-stat. Very similar results
were also obtained with the originally used fit-struct fitness function. Other simple fitness functions
showed less improvement in the results. Following are some notes on other fitness functions that were
tested.

The results of the Control flow /Data flow fitness function show that changes of all metrics values
are usually slightly less than the ones measured on the results of other, more efficient fitness functions
mentioned above. Specifically, this also includes the values of Control flow/Data flow metrics measured
on all transformed WSL code, which confirms our assumption that the metric used for the progress of
the fitness function does not guarantee the best final result of the same metric. In general results of
all metrics will get better or remain the same in the final results, but there was also one result which
showed that the result can actually get worse than in the beginning. When using this fitness function
on the ArraysTest sample WSL code, the value of Essential complexity was increased from one in the
translated WSL to two in the transformed WSL. In general this could happen with other samples,
since an improvement in one metric can lead to an unintentional deterioration of another metric. For
the sample at hand there was an 85% improvement of the CFDF metric.

An obvious example that defies the initial hypothesis is applying McCabe Cyclomatic Complexity
metric in the fitness function. In fact, when using this metric to evaluate the programs, it was no-
ticeable that all the other fitness functions have lead to better results for McCabe, and in many cases
with a large margin (Table[l). Another important observation was that when this fitness function was
used it always gave the least percentage of change not just for itself, but also for all other metrics.
This leads to a conclusion that using McCabe Cyclomatic complexity is probably not suitable. Analysis
of the results indicates that the reason for this is the rare changes of cyclomatic complexity in the
transformation process, and therefore, the function can rarely make progress, and the whole process
will get stuck. It has only shown slightly better results on div0 and div2 examples, but that is still not
as good as other fitness functions. It also executes for a significantly longer period of time than other
fitness functions, mostly because of the large number of transformations performed with no apparent
improvements.

Not all available metrics were used for creating and comparing different fitness functions. Essential
Complexity was not used, for example. There were attempts at running it on the samples, but there
were some technical difficulties and the process was very long even for the simplest programs when
successful and the results were not very promising, and therefore the testing was left for future work.
The problem with essential complexity is similar to that already encountered with cyclomatic com-
plexity — it rarely changes and it is very difficult for the function to make progress with no changes in
value.

4.1.2 More Complex Fitness Functions. Comparing results of different fitness functions indicates
that more complex fitness functions, 01 and 02 usually give the same or similar values as some of the
simple fitness functions: the ones using size, structure and number of statements metrics. Perhaps
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the more complex evaluations cause longer transformation time, due to more checks. However, it is
possible that they would show better results in the analysis of more complex code. Therefore, the
question is whether more complex checks are necessary and if they are, how to implement them to get
better results. Otherwise, the cost of performing multiple checks does not make much sense.

4.1.3 Additional Observations of Metric Results. In most cases, very similar results were obtained
from a group of fitness functions that includes size, structure, number of statements and the two
complex ones. However, the results of McCabe Cyclomatic Complexity on two samples (ArraysTest and
LinkedList) are significantly better when using size and number of statements than the other ones.
Another exception was that the 01, 02 and structure gave better results in terms of Essential complexity
on the LinkedList example, with 80% improvement, while statements and size gave improvements
of 60% and 40%, respectively.

Almost all fitness functions gave excellent results in reducing Control flow / Data flow metric, usually
around 90%. In other words, the choice of fitness function is not that important for this metric. In
cases of very simple programs such as chrtest, divO and div2, the reduction of CFDF value was 100%.
This happens mostly when all values can be calculated and propagated from the starting state of the
program, which means the code will be simplified as much as theoretically possible and can lead to
these high reductions of CFDF of up to 100%.

4.1.4 Fitness Functions and Corresponding Metrics Values. Special focus was given to question
whether metrics when used as a fitness function lead to the best results for the corresponding metric.
The improvement of a certain metric while using the same metric as the fitness function is compared to
the values which represent the maximal average improvement of the same metric value. These results
are presented in Table [II} with the names of the appropriate “best” functions. Figure [1| additionally
shows the average improvements over all of the tested fitness functions. Based on these, conclusions
can be made that in most cases a metric used as the fitness function gives good results for the same
metric on the code that is transformed. Sometimes better results can be obtained with other fitness
functions, but usually the differences will not be great. The major exception to this statement is clearly
using McCabe Cyclomatic Complexity, which did not show good results not only for itself, but also for
any of the calculated metrics, as already stated earlier.

Table II. Metrics and improvements with the corresponding
fitness function, and with the best fitness function

Metric Name  Improved Best Fitness Best improvement

McCabe Cyclo 27.94% fit-size 53.94%
Statements 91.50% fit-stat 91.50%
CFDF 93.12% fit-struct 93.44%
Size 86.19% fit-struct 86.25%
Structure 90.12% fit-struct 90.12%

5. CONCLUSIONS AND FUTURE WORK

FermaT and WSL can be efficiently used to transform programs from low to higher levels of abstrac-
tion. It is possible to automate this process to a large extent, and one of the possible scripts that does
this is called Aill climbing. It relies on using a fitness function that will evaluate a program at hand
and uses it to determine whether a given transformation improves the program or does not. It uses a
predetermined set of transformations and tries to apply them as much as possible. This paper focuses
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Fig. 1. Comparison of the results of the fitness function which corresponds to the observed metric, maximal metric improvement
and average metric improvement.

on experiments with different fitness functions and their effects on the final result as well as the pro-
cess itself. Mainly the selected functions were simple and consist of built-in metrics, but a few more
complex ones were tested as well.

Results show that if some metric is used as the fitness function, the values of the same metric in
the final transformed program do not have to be better than with any other tested function. Mostly
the values will be similar to the best, but there were exceptions, most notably McCabe’s Cyclomatic
Complexity, which showed far worse results, but it gave poor results for all the other metrics as well.
Overall, this confirmed the assumptions made.

Size and Structure generally showed the best results across the board, as well as number of state-
ments. However, there is no single fitness function which always and absolutely had the best results.
On the other hand, Control flow/Data flow always had slightly worse results than the group of these
“better” fitness functions. McCabe’s Cyclomatic Complexity had the worst results as a fitness function
for all of the metrics. The more complex evaluation functions showed the best, or close to best results,
but not significantly better, therefore not justifying the additional computation time.

Analysis shows that the starting values of the better metrics on the translated WSL before transfor-
mation usually had significantly higher values than the weaker ones, and that their change during the
process was large as well. This is a big part of why they show better results — their values also change
much more easily with many transformations, and therefore the algorithm succeeds to perform more
steps and perform better code enhancements.

There is still a lot of room for analysis and improvement. These first steps only show some indications
for that, but after more analysis it would be more clear which way these improvements should go. The
process itself produces a lot of data that could be analyzed in more depth — specifically the intermediate
steps in the transformation process, which metrics change the most, when do they change, which
transformations are more often successful, what orders of application are best, etc.

While the more complex functions did not show excellent results, it is definitely worth experimenting
with new combinations for fitness functions used in the transformation process. Based on these results
it would be good to focus on using metrics whose values change more easily and in different situation
which would make the algorithm more capable of finding good transformations. Execution times of all
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fitness functions should also be considered — there are some that give similar results, while taking
very different amounts of time to get to them. Apart from combining existing components into a good
evaluation function, it is still an open question whether some new metrics should also be introduced
that would prove to be good as a fitness function.

The input program samples should be improved and expanded to enable more and different experi-
ments. Grouping samples with similar features could also give more insights into the quality of some
fitness functions and possibly lead to conclusions about the best functions for certain types of programs.

The basic outlines of these experiments could also be applied to other transformation systems to ob-
tain more data and to get a clearer picture of the applicability of fitness functions in different systems.
One such system is Rascal [Klint et al. 2011]l, with support for both source to source transformations,
as well as built-in metrics.
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