
20

Code Clone Benchmarks Overview
TIJANA VISLAVSKI and GORDANA RAKIĆ, University of Novi Sad

Traditionally, when a new code clone detection tool is developed, few well-known and popular benchmarks are being used to
evaluate the results that are achieved. These benchmarks have typically been created by cross-running several state-of-the-art

clone detection tools, in order to overcome the bias of using just one tool, and combining their result sets in some fashion. These

candidate clones, or more specifically their subsets, have then been manually examined by clone experts or other participants,
who would judge whether a candidate is a true clone or not. Many authors dealt with the problem of creating most objective

benchmarks, how the candidate sets should be created, who should judge them, whether the judgment of these participants

can be trusted or not. One of the main pitfalls, as with development of a clone detection tool, is the inherent lack of formal
definitions and standards when it comes to clones and their classification. Recently, some new approaches were presented which

do not depend on any clone tool, but utilize search heuristics in order to find specific functionalities, but these candidates are

also manually examined by judges to classify them as true or false clones. This paper has a goal of examining state-of-the-art
code clone benchmarks, as well as studies regarding clone judges reliability (and subsequently reliability of the benchmarks

themselves) and their possible usage in a cross-language clone detection context.

1. INTRODUCTION

Evaluation of the results is one of the most important parts of any research, and code clone detection
is no exception to that. Code clones are defined as similar source code fragments according to some
definition of similarity. A code fragment is a tuple which contains a file name, start and end line. Code
clones are usually categorized in four groups [Roy et al. 2009]:

(1) Type 1 clones: identical source code fragments except whitespaces, comments and layout,
(2) Type 2 clones: syntactically identical source code fragments except identifiers, types, literals, whites-

paces, comments and layout,
(3) Type 3 clones: code fragments with modifications such as added, removed or changed lines of code,

in addition to rules for Type 2,
(4) Type 4 clones: code fragments that perform same computation but are not syntactically similar.

Clone detection tools can use different techniques, such as text-based algorithms, token-based al-
gorithms, comparing of source code metrics, comparing of abstract syntax trees, program dependency
graphs etc. Overview of these techniques is outside of scope for this paper, but can be found in [Roy
et al. 2009] among others.

Several benchmarks [Bellon et al. 2007] [Krutz and Le 2014] [Svajlenko et al. 2014] [Wagner et al.
2016] have been proposed with the goal of evaluating two crucial indicators of clone detection tools’
quality: precision and recall. In the context of code clone detection, precision represents a ratio of real

Author’s address: T. Vislavski, Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad,
4 Dositej Obradović Square, Novi Sad 21000; email: tijana.vislavski@dmi.uns.ac.rs; Gordana Rakić, Department of Math-
ematics and Informatics, Faculty of Sciences, University of Novi Sad, 4 Dositej Obradović Square, Novi Sad 21000; email:
goca@dmi.uns.ac.rs

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.
In: Z. Budimac (ed.): Proceedings of the SQAMIA 2018: 7th Workshop of Software Quality, Analysis, Monitoring, Improvement,
and Applications, Novi Sad, Serbia, 27–30.8.2018. Also published online by CEUR Workshop Proceedings (http://ceur-ws.org,
ISSN 1613-0073)



20:2 • T. Vislavski and G. Rakić

clones among all the reported clone candidates:

precision =
reported real clones

all reported clone candidates
,

while recall represents a ratio of reported real clones among all clones in the analyzed source code:

recall =
reported real clones

all clones
.

Clone benchmark creation usually has following workflow:

(1) Source code is analyzed by one or more code detection tools and candidate clones are detected,
(2) Candidate clones (or a fraction of them) are evaluated by one or more human judges who decide

whether they are true clones or not.

Many methods have been applied to try to overcome the bias of subjectivity of judges and tools used
for creation of a benchmark, but the objectivity of such benchmarks still remains an open topic. This
paper aims to provide an overview of current state-of-the-art code clone benchmarks and papers that
investigate validity and objectivity of these benchmarks and their described creation process, among
them works presented in [Charpentier et al. 2017] [Kapser et al. 2007] [Walenstein et al. 2003]. Other
processes of creating clone benchmarks have also been proposed such as artificial mutation of arbitrary
code fragments [Svajlenko and Roy 2014], and these will also be described in subsequent chapters.

Final goal of this overview is to investigate to which extent, if any, could current benchmarks be
used (with some adjustments) for evaluating results of clone detection in a cross-language context.
LICCA [Vislavski et al. 2018] is a language independent tool for code clone detection with main focus
on detecting clones in such context. Even though finding similar code fragments between languages is
a challenging task, it is very important to have means to evaluate even a slightest progress.

Rest of the paper is organized as follows: In section 2 an industry standard benchmark is described,
followed by a critique of this benchmark. Section 3 introduces other proposed benchmarks, including
some new and different approaches. Section 4 gives an overview of works that deal with reliability of
judges included in benchmark creation. Finally, section 5 concludes this paper with authors’ findings.

2. BELLON’S CLONE BENCHMARK

Work presented in [Bellon et al. 2007] by Bellon et al. was first benchmark for code clones and has
since become an industry standard for evaluating code clone detection tools [Charpentier et al. 2015].
In this paper, authors presented results of the experiment in which they evaluated six clone detection
tools (Dup [Baker 2007], CloneDR [Baxter et al. 1998], CCFinder[Kamiya et al. 2002], Duplix [Krinke
2001], CLAN [Merlo 2007], Duploc [Ducasse et al. 1999]) using eight C and Java projects. These tools
use a variety of approaches, including metric comparison [Merlo 2007], comparison of abstract syntax
trees [Baxter et al. 1998], comparison of program dependency graphs [Krinke 2001] etc. Although tools
support detection of clones in different languages, none of them supports detection between different
languages.

2.1 Benchmark’s creation process

During the experiment that produced Bellon’s benchmark, authors of clone detection tools that par-
ticipated in this experiment, applied their tools to followwing C and Java projects and reported clone
candidates:

(1) weltab1

1No link for this project was found



Code Clone Benchmarks Overview • 20:3

(2) cook2

(3) snns3

(4) postgresql4

(5) netbeans-javadoc5

(6) eclipse-ant6

(7) eclipse-jdtcore7

(8) j2sdk1.4.0-javax-swing8

Candidate clones were then evaluated by first author of the paper, Stefan Bellon, as an independent
third-party. LOC (Lines of code) for these projects varied from 11K to 235K. Each project was analyzed
with tool’s default settings (mandatory part), and with tuned settings (voluntary part). Only clones of
six lines or longer were reported.

The reference corpus of ’real’ clones was created manually by Stefan Bellon. He looked at 2% of all
submitted candidates (approx. 6K) and chose real clones among them (sometimes he modified them
slightly). He did not know which candidates were found by which tool and 2% of candidates was
distributed equally among the six tools. Additionaly, some clones were injected back in each of the
analyzed programs in order to get a better information about the recall.

When evaluating whether a candidate matches a reference, authors did not insist on complete over-
lapping of candidate and reference clone, but rather on sufficiently large overlapping. In order to pre-
cisely and consistently measure this overlap, authors introduced some definitions and metrics. For two
code fragments CF1 and CF2 they define:

(1) overlap(CF1, CF2) =
|lines(CF1)∩lines(CF2)|
|lines(CF1)∪lines(CF2)| ,

(2) contained(CF1, CF2) =
|lines(CF1)∩lines(CF2)|

|lines(CF1)| ,

Clone pair CP is defined as a tuple CP = (CF1, CF2, t), i.e. a tuple containing two code fragments
and a clone type. For two clone pairs CP1 and CP2 authors define:

(1) good-value: good(CP1, CP2) = min(overlap(CP1.CF1, CP2.CF1), overlap(CP1.CF2, CP2.CF2)),
(2) ok-value: ok(CP1, CP2) = min(max(contained(CP1.CF1, CP2.CF1), contained(CP2.CF1, CP1.CF1)),

max(contained(CP1.CF2, CP2.CF2), contained(CP2.CF2, CP1.CF2)))

Obviously, ok-value is less strict than good-value (ok-value requires for one clone pair to be contained
in other for at least p×100% which can lead to one clone pair being much longer than the other, while in
good-value this cannot happen since it looks at the minimum of intersections in clone pair fragments).
For both metrics, a threshold of 0.7 was used. Since the minimum number of lines in a clone was set
to 6, this value allows for two six-line-long fragments to be shifted by one line. The same threshold
value was chosen for both metrics for uniformity: both are measures of overlap, the difference is in the
perspective (good-value from the perspective of both fragments, and ok-value from the perspective of
the smaller fragment).

2http://miller.emu.id.au/pmiller/software/cook/ (Accessed: October, 2017)
3http://www.ra.cs.uni-tuebingen.de/SNNS/ (Accessed: October, 2017)
4https://www.postgresql.org/ (Accessed: October, 2017)
5https://netbeans.org/ (Accessed: October, 2017)
6http://www.eclipse.org/eclipse/ant/ (Accessed: October, 2017)
7https://www.eclipse.org/jdt/core/ (Accessed: October, 2017)
8http://www.oracle.com/technetwork/java/index.html (Accessed: October, 2017)



20:4 • T. Vislavski and G. Rakić

From approximately 6 thousand investigated clone candidates, Bellon accepted around 4 thousand
(66%) as true clones. However, this is a percentage across all analyzed programs. For individual pro-
grams, percentage of accepted true clones varied from 35% to 90%. While analyzing specific tools, it
has been found that tools which have a higher number of reported candidates, have a higher recall and
also a higher number of rejected candidates. Additionally, number of CLAN’s candidates that hit the
reference corpus was the highest, although it reported the smallest number of candidates. Although
authors report some values for recall and precision for all tools, they have to be taken with caution
since only a portion of all candidates was examined. Nevertheless, since authors compared these num-
bers with results obtained after examination of first 1% of candidates, they concluded that numbers
are pretty much stable.

Authors also found that different tools yield different sizes of clone candidates, which can be ex-
plained by the fact they use different techniques. Only 24%-46% of injected clones was found.

Overall conclusions of the experiment were:

(1) Text and token based tools have higher recall, while metric and tree based tools have higher preci-
sion.

(2) The PDG (Program Dependency Graph) tool doesn’t perform well (except for type-3 clones).
(3) There were a large number of false positives. Type-1 and type-2 clones can be found reliably, while

type-3 clones are more problematic.
(4) Although Stefan Bellon was an independent party, the judgment was still biased by his opinion

and experience.

2.2 Critique of Bellon’s benchmark

Several years later, authors of [Charpentier et al. 2015] empirically examined Bellon’s benchmark
validity. Their main argument was that the benchmark has the probability of being biased, since it
was created by Bellon alone, who was not an expert for the systems being analyzed.

They seeked an opinion of 18 participants on a subset of reference clones determined by Bellon.
Conclusion is that some clones are debatable, as well as that the fact whether a candidate is considered
a clone or not is subjective: it largely depends on perspective and intent of a user, since the definition
of the clones itself is open to interpretation (similar conclusion was come up with by Yang et al. in their
paper [Yang et al. 2015]).

In more detail, experimental setup of this empirical assessment consisted of nine groups of two
participants, where each group analyzed randomly chosen subset of 120 reference clones defined by
Bellon (total of 1080 reference clones). All participants were students of undergraduate (last year)
and graduate studies with IT background (both for Java and C). Participants judged whether the
references were true clones or not in order to analyze whether there are some reference clones for
which participants had different opinion than Bellon.

After the collections of participants‘ answers, there were in total 3 answers for each examined refer-
ence clone (one positive from Bellon and two given by the students). Each clone was assigned a trust
level based on these answers:

(1) good for clones with 3 positive answers
(2) fair for clones with 2 positive and 1 negative answer,
(3) small for clones with 1 positive and 2 negative answers.

Using this data, authors calculated, with 95% confidence intervals, proportions of clones in each of
the trust levels. According to this calculation, about half of clones have trust level less than good, and
about 10-15% of clones have only trust level small, which are not negligible percentages.



Code Clone Benchmarks Overview • 20:5

Next, authors examined how do trust levels affect recall and precision values that are calculated by
the benchmark. Two scenarios were considered: one that took into account only clones with trust level
good as true clones, and other that took into account clones with both trust levels good and fair. Then
precision and recall were calculated by the Bellon’s formula with new reference set. Conclusion was
that both recall and precision decrease significantly (up to 0.49 for the first scenario, and up to 0.12 for
the second scenario).

In the end, authors investigated whether clones with trust level good have some common character-
istics that separate them from other clones. 3 features were taken into account: type, size and language.
They statistically tested hypotheses about correlation between these features and clone‘s trust level.
For size, only a loose correlation has been calculated in favor of bigger clones. For clone type, a mod-
erate negative correlation has been calculated, which means that only type 1 clones can be considered
as having good trust level after one opinion, while other types need more opinions. This makes sense
when we consider the definition of each type, where type 1 clones are identical code fragments, while
higher types are more loosely and less strictly defined. Regarding programming languages’ impact on
trust level, negligible correlation has been calculated.

The main threats to validity that authors report are mainly the fact that students were used for the
assessment (although they all had an IT background, none of them was an expert for the analyzed
systems, which is a thing that authors themselves reported as a Bellon’s disadvantage, and only half
of them knew about the concept of a code clone before the experiment), as well as the fact that only
a small portion of the Bellon’s benchmark was assessed. Furthermore, authors only considered clones
that were reported as true clones by Bellon. A large portion of clone candidates investigated by Bellon
were graded as false clones. In order to better investigate the effect of different opinions on calculated
precision and recall, these false clones should also be graded by multiple people.

3. OTHER BENCHMARKS

After Bellon et al., in the following years there were more efforts to create an unbiased and objective
code clone benchmark.

3.1 Intra-project, method-level clones

Krutz et al. [Krutz and Le 2014] constructed a set of intra-project, method-level clones from 3 open-
source projects: PostgreSQL, Apache9 and Python10, which are all C-based projects. Authors randomly
sampled 3-6 classes from each project, created all possible function pairs from these classes, evaluated
them by several clone detection tools and then given them to 7 raters for manual examination (4 clone
experts and 3 students). Experts examined clone pairs in collaboration and clones were confirmed
only after consensus was achieved, while students examined clone pairs independently. Idea behind
this setup was to improve the confidence of data, and also to check the difference from students’ and
experts’ answers. In total, 66 clone pairs were found by the expert group, none of which were type-1
clones, 43 were type-2, 14 were type-3 and 9 were type-4 clones. Authors reported only clones found by
the expert group, since they concluded that student answers differ largely with one another, and while
there is a certain number of clones that they agree on, overlap with clones reported by experts is not a
significant one.

9https://httpd.apache.org/ (Accessed: October, 2017)
10https://www.python.org/ (Accessed: October, 2017)



20:6 • T. Vislavski and G. Rakić

3.2 Mutation and Injection Framework

In 2014 Svajlenko and Roy [Svajlenko and Roy 2014] evaluated the recall of 11 clone detection tools
using the Bellon’s [Bellon et al. 2007] benchmark and their own Mutation and Injection Framework.
Their main goal was to evaluate the recall, since it was an inherently more difficult metric for calcu-
lation than precision. Their proposed framework uses a corpus of artificially created clones based on
a taxonomy suggested in the previous study [Roy et al. 2009]. The framework extracts random code
fragments from the system and makes several copies which are then changed by mutation operators
following the taxonomy. There were 15 operators in total, which create first 3 clone types. Original and
mutated fragments are inserted back in the system and the process is repeated thousands of times.
This creates a large corpus of mutant systems. When a clone detection tool is tested with the frame-
work, its recall is measured specifically for the injected clones.

Authors compared their calculated recall values for several tools with the ones reported by Bel-
lon and saw that values rarely agree (with threshold for agreement of 15% difference), with their
framework generally giving higher recall values. The validity of their measurement over Bellon’s was
backed up by previous expectations. Before running the experiment, authors made well thought-out
assessments of the recall for the analyzed tools based on documentation, publications and literature
discussions. The Mutation Framework agreed with these expectations in 90% cases for Java and 74%
cases for C, while Bellon’s benchmark agreed with expectations in only around 30% of cases. Authors’
conclusion was therefore that Bellon’s benchmark, while still a very popular benchmark for evaluating
clone detection tools, may not be accurate for modern tools, and that there is a need for an updated
corpus.

3.3 BigCloneBench

In [Svajlenko et al. 2014] authors state that the common approach for creating a benchmark, which is
by using clone detection tools to find clone candidates and manually evaluating them, gives an unfair
advantage to the tools that participated in creating the benchmark. As they have proven in the paper
described earlier, The Mutation Framework, which is a synthetic way to create clones and inject them
back in the system, is a better approach for modern clone detection tools. However, there is still a need
for a benchmark of real clones. The contribution of the paper is one such benchmark, one that authors
call BigCloneBench and which was built by mining the IJaDataset 2.0 11.

IJaDataset 2.0 is a big inter-project repository consisting of 25,000 project and more than 365MLOC.
Construction of the benchmark didn’t include any clone detection tools, which makes possible for the
benchmark not to be biased, but rather used a search heuristics to identify code snippets that might
implement a target functionality (such as Bubble Sort, Copy a File, SQL Update and Rollback etc).
These candidate snippets were than manually judged as true or false clones, and (if true) labeled
by their clone type. The benchmark includes 10 functionalities with 6 million true clone pairs and
260 thousand false clone pairs. Since the clones were mined by functionality, this benchmark is also
appropriate for detection of semantic clones, which was the first benchmark at that time for semantic
clones. One more contribution of this work was the scale of the benchmark. Previous benchmarks were
all significantly smaller in size, while the BigCloneBench is appropriate for big data clone detection
and scalabillity evaluation.

3.4 Benchmark from Google Code Jam submissions

Another benchmark for functionally similar clones, as opposed to copy&paste ones, was recently sug-
gested in [Wagner et al. 2016]. Authors intentionally use this term, instead of well-known Type 4

11https://sites.google.com/site/asegsecold/projects/seclone (Accessed: October, 2017)



Code Clone Benchmarks Overview • 20:7

clones, because they are interested in similar functionalities, not only identical ones. Since the tradi-
tional clone detection tools rely on syntactical similarity, they are hardly able to detect these clones.
This was evaluated and confirmed as a part of the study and a proposed benchmark is a useful help
for further research of this type of clones. The benchmark was constructed from a set of coding contest
submissions (Google Code Jam12) in two languages - Java and C. Since the submissions are aiming
for the solution of same problems, it is expected that they would contain a large number of function-
ally similar code snippets. The benchmark consists of 58 functionally similar clone pairs. Once again,
only clones between same language (either Java or C) were reported, without consideration of inter-
language clones.

4. RATERS RELIABILITY

When constructing a clone benchmark, authors traditionally involve clone oracles, people (code clone
experts or others) who judge whether clone candidates are true clones or not [Bellon et al. 2007] [Char-
pentier et al. 2015] [Yang et al. 2015] [Krutz and Le 2014] [Svajlenko et al. 2014]. However, as already
mentioned in previous sections, code clone definitions lack precision, they are open to interpretation,
it is highly subjective whether a clone candidate is a clone to an individual or not, it depends on a per-
son’s intent, on their expertise about the system under examination etc. Many authors investigated
this problem and tried to gain some insight about raters’ agreement in classifying clones, as well as
reliability of these judges. [Charpentier et al. 2017] [Kapser et al. 2007] [Walenstein et al. 2003]

One of the first of these works was done in [Walenstein et al. 2003]. Authors themselves acted as
judges and classified a selection of function clone candidates (clone candidates that span across whole
function bodies) as true or false clones. Their main hypotheses was that, as an educated and informed
researchers in the domain of code clone detection, their decisions would be much or less the same.
However, they found out that their answers highly differ. As an example, authors report a case where
for a set of 317 clone candidates, 3 judges had the same opinion only in 5 cases. Obviously, consensus
what is or is not a clone is not automatic, even among researchers that are clone experts. This is,
among others, a consequence of vagueness of the definitions for code clones. After this initial results,
authors defined classification criteria more precisely and agreed upon them. Then they repeated the
process. Although level of agreement increased, it was still considerably low for some systems (authors
report level of agreement of .489 for one system). After some in-depth analysis, they realized that their
perspective on some design criteria differs (for example, whether constructors should be refactored
or not). In the next iteration they introduced one more judge, unfamiliar with all consensuses and
criteria agreed upon until then (hours of debating and discussion), to test his responses. Surprisingly,
level of agreement improved, which was an indication that maybe choice of individual judges is more
important than the group experience. In the final run, authors decided to classify clones specifically
based on information from the source code itself, and disregard all context-based knowledge. This, as
expected, increased the level of agreement. In the end, authors conclude that inter-rater reliability is
potentially a serious issue, and one judge is definitely not enough. Furthermore, their experiment does
not support the idea that practice is any more important than set of well-defined guidelines. Finally,
specifics of each system can have a great impact on judge reliability.

Another similar experiment was performed at an international workshop (DRASIS [Koschke et al.
2007]) and the results are presented in [Kapser et al. 2007]. After the thorough discussion about funda-
mental theory behind code clones and lack of formal definitions, a question has arised: will researchers
in this area ever agree between themselves what is a code clone and what is not? Such a question has
serious consequences to the validity and reproducibility of previous results across literature. During

12https://code.google.com/codejam/ (Accessed: October, 2017)



20:8 • T. Vislavski and G. Rakić

a working session of the mentioned workshop, a 20 clone candidates reported by clone detection tool
CCFinder [Kamiya et al. 2002] for PostgreSQL system were chosen by session leader and 8 clone ex-
perts privately judged them. Only 50% of candidates were classified with the agreement level of at
least 80% (7 or more persons). This seriously puts in question reproducibility of previous studies. After
the judgment, results were discussed. It was concluded that attendants interpreted differently same
attributes of given candidates, their significance and meaning. For example: size of candidate, level of
change in types, possibility to refactor the code etc. This list lead the attendants to the following ques-
tions: Was the formulation of the question a problem? Should the question be changed to something
more appropriate, using terms such as duplicated code, redundant code, similar code? Would it affect
the results of evaluation? One additional point was that maybe forcing the binary answer, a simple
yes or no, is increasing the disagreement. Maybe if a multiple-point scale was used, answers would be
more agreeable? The session brought many still unanswered questions. But one of the most important
conclusions was made: there is little chance that a reviewer can be sure of the true meaning of the
results without clear documentation about criteria that were used.

One quite recent work [Charpentier et al. 2017] dealt with the question of non-expert reliability of
judgment whether a clone candidate is a true or false clone. The hypothesis is that one clone candidate
could be differently rated in different projects and contexts. The experiment was performed on a set
of 600 clones from 2 Java projects, with both experts and non-experts used for judgment (authors de-
fine term expert as a person with expertise in a particular project, all of the raters were familiar with
the notion of clones). Formally speaking, 3 research questions were asked: are the answers consistent
over time, do external raters agree with each other and with experts of a project, what are the char-
acteristics that influence the agreement between experts and external raters. Each randomly selected
set of clones was presented to 4 raters, including one expert for the underlying system. They were
asked to rate the clone pairs with yes/no/unknown answers and used statistical analysis to answer
the research questions. Based on the collected data, authors derived following conclusions based on
the presented questions: regarding first question (consistency of raters answers), authors noticed that
experts’ answers are very consistent, while inconsistencies in non-expert judgments vary from 5% to
20% of the rated duplicates. For the second question (inter-rater reliability), authors conclude that for
both investigated projects, there is no agreement between external raters, while the strongest agree-
ment is achieved when comparing majority of non-expert answers with the expert ones, and not when
comparing any particular non-expert with the expert. Final question (factors influencing agreement
between external raters and experts) lead the authors to the conclusion that some characteristics have
an impact on the agreement between the majority and the expert, such as size or project (latter one
suggesting that some projects are easier for non-experts to judge).

5. CONCLUSION

Although code clone detection is a well-researched area with years of work dedicated to it and few
extraordinary, production-quality tools, it is still not mature enough in terms of formal definitions and
standards. One of the main consequences of this is the lack of universal and reliable benchmarks.
Many attempts exist, and are still being worked on in this area, but the lack of definitions is causing
much confusion and disagreement even between code clone experts.

Benchmarks are partially created manually, involving human judges which have the final word
whether a clone candidate is a true or a false clone. However, as several experiments showed, some
of which were presented in this paper, there is a high level of disagreement between judges, non-
experts and experts alike. This seriously questions validity of current benchmarks. Furthermore, it
has been shown that different clones are considered interesting in different contexts and with different
objectives. This is also a problem in achieving some universal benchmark.



Code Clone Benchmarks Overview • 20:9

It is clear that code clone benchmarking still requires a lot of effort, primarily overcoming the prob-
lematics of manual judgment and bias. However, current benchmarks can provide some valuable in-
formation when comparing an arbitrary tool’s results with some state-of-the-art tools, which may lack
a formal assessment but have proven themselves in practise.

Regarding a possibility of using any of these benchmarks in cross-language context, we can conclude
that only those which contain semantic, or functionally similar clones can be considered. Other bench-
marks concentrate on copy&paste clones which are not to be found in fragments written in different
languages. Since BigCloneBench contains Java projects exclusively, the benchmark which could pro-
vide a starting point for evaluating cross-language clones is the one presented in [Wagner et al. 2016].
Although it contains examples in two syntactically similar languages (Java and C), differences in their
respective paradigms mean significant differences in code organization and structure.

REFERENCES

Brenda S Baker. 2007. Finding clones with dup: Analysis of an experiment. IEEE Transactions on Software Engineering 33, 9
(2007).

Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier. 1998. Clone detection using abstract
syntax trees. In Software Maintenance, 1998. Proceedings., International Conference on. IEEE, 368–377.

Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo. 2007. Comparison and evaluation of clone
detection tools. IEEE Transactions on software engineering 33, 9 (2007).

Alan Charpentier, Jean-Rémy Falleri, David Lo, and Laurent Réveillère. 2015. An empirical assessment of Bellon’s clone bench-
mark. In Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering. ACM,
20.

Alan Charpentier, Jean-Rémy Falleri, Floréal Morandat, Elyas Ben Hadj Yahia, and Laurent Réveillère. 2017. Raters reliability
in clone benchmarks construction. Empirical Software Engineering 22, 1 (2017), 235–258.

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A language independent approach for detecting duplicated code.
In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Conference on. IEEE, 109–118.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

Cory Kapser, Paul Anderson, Michael Godfrey, Rainer Koschke, Matthias Rieger, Filip Van Rysselberghe, and Peter Weißgerber.
2007. Subjectivity in clone judgment: Can we ever agree?. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

Rainer Koschke, Andrew Walenstein, and Ettore Merlo. 2007. 06301 Abstracts Collection–Duplication, Redundancy, and Simi-
larity in Software. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Jens Krinke. 2001. Identifying similar code with program dependence graphs. In Reverse Engineering, 2001. Proceedings. Eighth
Working Conference on. IEEE, 301–309.

Daniel E Krutz and Wei Le. 2014. A code clone oracle. In Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, 388–391.

Ettore Merlo. 2007. Detection of plagiarism in university projects using metrics-based spectral similarity. In Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and evaluation of code clone detection techniques and
tools: A qualitative approach. Science of computer programming 74, 7 (2009), 470–495.

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Mohammad Mamun Mia. 2014. Towards a big data
curated benchmark of inter-project code clones. In Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 476–480.

Jeffrey Svajlenko and Chanchal K Roy. 2014. Evaluating modern clone detection tools. In Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on. IEEE, 321–330.

Tijana Vislavski, Gordana Rakic, Nicolás Cardozo, and Zoran Budimac. 2018. LICCA: A tool for cross-language clone detection.
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 512–516.

Stefan Wagner, Asim Abdulkhaleq, Ivan Bogicevic, Jan-Peter Ostberg, and Jasmin Ramadani. 2016. How are functionally
similar code clones syntactically different? An empirical study and a benchmark. PeerJ Computer Science 2 (2016), e49.

Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, and Arun Lakhotia. 2003. Problems Creating Task-relevant Clone
Detection Reference Data.. In WCRE, Vol. 3. 285.



20:10 • T. Vislavski and G. Rakić

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto. 2015. Classification model for code clones
based on machine learning. Empirical Software Engineering 20, 4 (2015), 1095–1125.


