
21

Establishing Software Product Lines from Existing
Products Based on Feature Model Recovery and Merging
VALENTINO VRANIĆ and MICHAL GRANEC, Slovak University of Technology in Bratislava

This paper introduces an approach to establishing software product lines from a set of existing products based on a reversed Lee�

Kang design feature based approach to deriving program code from features, Van den Broek's feature model merging combined

with partial feature models, and aspect-oriented refactoring strategies cataloged by Monteiro and Fernandes for implementing

the features as modules that can be plugged in or out as needed. The approach interlinks the feature model merging cases

with the actual implementation of features and speci�c aspect-oriented refactoring strategies used for this. The approach was

successfully applied to JForum, establishing a product line from three existing products prepared out of the original, publicly

available JForum code.

1. INTRODUCTION

Software development endeavors typically start with one specific product. Following a successful de-
ployment, another order of a similar product often occurs. The time is always short and what might
have been taken from the first product is reused with the necessary customization performed on-the-
fly. Documenting is typically postponed for some less rush times. Then comes another order, and yet
another one. . . The company grows, people change, further development teams are formed. . . The rush
times never provide a break for documenting. Many similar versions of the product linger around. Fea-
tures are being unnecessarily reimplemented because no one has an overview of what is available in
this unrecognized software product line.

Software product lines are a well-known approach to software reuse based on explicit and up-front
treatment of variability within one domain. This is performed at the level of features, which simply
represent whatever properties of the software systems in a given domain are identified as important.
Their variability indicates appropriate implementation mechanisms.

Establishing a software product line from a set of existing products may be achieved evolutionary
or revolutionary [Bosch 2000]. The approach proposed in this paper works either way. It is based on
a reversed Lee–Kang design feature based approach to deriving program code from features [Lee and
Kang 2013], Van den Broek’s feature model merging [van den Broek 2012] combined with partial
feature models [Menkyna and Vranić 2012], and aspect-oriented refactoring strategies cataloged by
Monteiro and Fernandes [Monteiro and Fernandes 2005; Monteiro 2004] for implementing the features
as modules that can be plugged in or out as needed.

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0508 and Research
& Development Operational Programme for the project Research of Methods for Acquisition, Analysis and Personalized Convey-
ing of Information and Knowledge, ITMS 26240220039, co-funded by the ERDF.
The authors’ addresses: Valentino Vranić, Institute of Informatics, Information Systems and Software Engineering, Faculty
of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovičova 2, 84216 Bratislava,
Slovakia; email: vranic@stuba.sk.

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.
In: Z. Budimac (ed.): Proceedings of the SQAMIA 2018: 7th Workshop of Software Quality, Analysis, Monitoring, Improvement,
and Applications, Novi Sad, Serbia, 27–30.8.2018. Also published online by CEUR Workshop Proceedings (http://ceur-ws.org,
ISSN 1613-0073)

http://ceur-ws.org


21:2 • V. Vranić and M. Granec

The rest of the paper is organized as follows. Section 2 presents the overall approach. Section 3 ex-
plains how product feature models are recovered. Section 4 explains the process of merging product
feature models into a product line feature model. Section 5 describes the feature module implemen-
tation strategy. Section 6 discusses the evaluation. Section 7 compares the approach proposed in this
paper with related work. Section 8 concludes the paper.

2. THE OVERALL APPROACH

The overall approach to establishing software product lines from existing products is depicted in Fig-
ure 1. As can be seen from the figure, the input to the approach are existing software products, in-
cluding their documentation, if available. After a series of activities, the approach produces its final
outputs: the feature model of a newly established software product line and feature modules, the mod-
ules that implement features [Apel et al. 2008].

Feature Analysis

Recovering 

Product Feature 

Models

Feature Model 

Merging

Feature Module 

Implementation

Product Line 

Feature Model 

Update

Existing Products

Feature Modules

Product Line 

Feature Model

Fig. 1. The overall approach.

The approach is iterative and incremental in its nature, which is indicated by a circular flow between
its main activities. This means that the individual steps should be treated within a reasonable time
frame and proceed to the next steps as soon as possible rather than refining them indefinitely. The
next steps will quickly confirm or refute the assumptions from previous steps forcing a re-iteration if
necessary.

The approach will be explained on a study performed on JForum, an open source discussion forum
implemented in Java [The JForum Team 2018]. Out of the original version, which will be referred to as
JForum Original, two other versions were created denoted JForum Simple and JForum Different Base.
JForum Simple offers only elementary features, mimicking a situation when this is explicitly required
by a customer or when a company wants to offer a simpler and cheaper version. Uncoordinated, these
two versions will continue to be developed separately. At some point, their merge extended by some
further features might be created. This is what the third product denoted as JForum Different Base
represents.



Establishing Software Product Lines from Existing Products • 21:3

3. RECOVERING PRODUCT FEATURE MODELS

Constructing a product line feature model as a common feature model of a set of related products is
a complex task. Here, it consists of recovering feature models out of individual products, discussed in
this section, followed by merging them together, discussed in Section 4.

The most important and relevant artifact for recovering a feature model out of a given product is its
source code. Models and documentation may be consulted, but should be used with caution, as they
rarely fully correspond to code.

Since features in feature modeling, which should be both comprehensible and usable for configu-
ration purposes, tend to be at a higher level of abstraction than code, it’s convenient to first create
their approximation closer to the actual code modules and then make appropriate abstraction out of
this initial design feature model. This is exactly how the Lee–Kang design feature based approach to
deriving program code from features [Lee and Kang 2013] works. Here, for the purposes of recovering
feature models from software products, the Lee–Kang method has been reversed within the process of
creating partial feature models [Menkyna and Vranić 2012], which will be explained on an example.

Consider JForum Simple. Figure 2 shows selected features of its initial partial feature model. The
basic Czarnecki–Eisenecker feature modeling notation [Czarnecki and Eisenecker 2000] is used. The
root node represents the JForum Simple system as such. Within the first iteration, the identified design
features are attached directly to the concept node (the root) as optional features (indicated by an
empty circle) without trying to determine precise feature relationships. The square brackets around
the feature name mean that the feature is open, i.e., further subfeatures are expected.

Fig. 2. Initial partial feature model of JForum Simple.

Afterwards, the work goes towards organizing the discovered features and correcting their variabil-
ity and also towards discovering further features, some of which are abstract (indicated by a lighter
background), i.e., no feature modules correspond to them. Figure 3 shows selected features of the re-
sulting JForum Simple feature model.

Figure 4 shows the feature model constructed for JForum Original. The JForum Different Base
feature model is very similar: it only lacks the Cache feature (and, consequently, its subfeature, Top-
icCache), as well as the additional restriction. Additional restrictions are textually defined relation-
ships between features. They are typically used to express relationships whose inclusion would com-
promise the tree structure of a feature diagram. Logical operators are used to form additional con-
straints [Vranić 2005].

In general, the approach proposed here focuses on variable features, which are essential to defining
a software product line, and does not capture thoroughly all the common (mandatory) features.



21:4 • V. Vranić and M. Granec

Fig. 3. Complete partial feature model of JForum Simple.

Fig. 4. Complete partial feature model of JForum Original.

4. FEATURE MODEL MERGING

The overall feature model reflecting the contemporary state of the software product line is obtained
by merging feature models of individual products. Feature model merging is performed using Van
den Broek’s approach [van den Broek 2012]. This approach operates upon a set and predicate logic
representation of feature models, such as this one of JForum Simple:

FE(JForumSimple) = {JForum, User History, Recent Topics, HistoryAccessDriver,
HistoryGenericAccessDriver, HistoryDAO, SavingHistory, UserRecentPost, RecentTopicsAction, Re-
centTopics}
RO(JForumSimple) = JForum
PA(JForumSimple, User History) = JForum
PA(JForumSimple, Recent Topics) = JForum
PA(JForumSimple, HistoryAccessDriver) = User History
PA(JForumSimple, HistoryDAO) = User History
PA(JForumSimple, SavingHistory) = User History
PA(JForumSimple, HistoryGenericAccessDriver) = HistoryAccessDriver
PA(JForumSimple, UserRecentPost) = Recent Topics
PA(JForumSimple, RecentTopicsAction) = Recent Topics
PA(JForumSimple, RecentTopics) = RecentTopicsAction
PC(JForumSimple, JForum) = {{}, {User History}, {Recent Topics}, {User History, Recent Topics}}
PC(JForumSimple, User History) = {{HistoryAccessDriver, HistoryDAO, SavingHistory}}
PC(JForumSimple, HistoryGenericAccessDriver) = {{}}
PC(JForumSimple, HistoryDAO), PC(JForumSimple, SavingHistory) = {{}}
PC(JForumSimple, UserRecentPost), PC(JForumSimple, RecentTopics) = {{}}



Establishing Software Product Lines from Existing Products • 21:5

PC(JForumSimple, RecentTopicsAction) = {{RecentTopics}}
RE(JForumSimple) a EX(FM2) = {}
AF(JForumSimple) = {JForum, User History, Recent Topics}

Here, JForumSimple is a name of a feature model. The rest of the identifiers represent features. The
feature model is defined using the predicates for retrieving the set of the features (FE), concept1 (RO),
feature parent (PA), possible sets of feature children in feature model configurations (PC), require
constraints (RE), and mutual exclusion constraints (EX). An additional predicate has been introduced
to indicate retrieving of abstract features (AF).

Feature models are merged one by one, gradually accumulating the features of the individual prod-
ucts in the product line feature model. Van den Broek’s feature model merging is based on making
an intersection of the two feature models to be merged after enriching each one of them with the dif-
ferentiating features occurring in the other one. These features are added as optional features. The
feature models being merged are assumed to fulfill so-called parent compatibility, which means that
equal features have equal parent features [van den Broek 2012].

With respect to the application of Van den Broek’s approach within the approach proposed in this pa-
per, several distinctive cases have been identified. These cases, presented in the following paragraphs,
also affect the implementation of the corresponding feature module, which should be considered along.

A feature occurring in a product feature model, but not in the product line feature model should be
added to the product line feature model. In implementation, this mostly requires just refactoring the
code that corresponds to this feature.

A feature missing in a product feature model, but mandatory in the product line feature model should
be transformed into a variable feature. In implementation, aspect-oriented refactoring of the corre-
sponding common base code may be performed.

A feature with varying implementation in different products poses a non-trivial problem. If it’s caused
by varying behavior being required, it may be resolved by introducing alternative design features. If
the behavior is essentially one and variance in the implementation is only accidental, this may be
resolved by refactoring. If this fails, the solution should be resorted to introducing alternative design
features. The variance might as well be caused by an additional functionality present in one of the
products. This functionality may be treated as a new optional feature or it may be incorporated as
mandatory to all the products.

A feature with equal implementation in all products indicates a mistake in feature identification,
as such a feature should have been identified as mandatory and probably not even introduced into
product feature models (recall from Section 3 that the approach proposed here tends to omit mandatory
features focusing on variability).

A feature with different names in different products might be tricky to discover during feature model
merging as its consequences become apparent only during feature module implementation. Of course,
the solution is to name all such features equally.

Figure 5 shows selected features of the merged feature model reconstructed from its set and predi-
cate logic representation.

5. FEATURE MODULE IMPLEMENTATION

In order to keep features pluggable, the corresponding feature modules are implemented using aspect-
oriented programming. With an object-oriented code base, aspect-oriented refactoring is required.

1denoted by Van den Broek as the root feature



21:6 • V. Vranić and M. Granec

Fig. 5. JForum merged feature model.

Aspect-oriented refactoring strategies cataloged by Monteiro and Fernandes are applied [Monteiro
and Fernandes 2005; Monteiro 2004], putting them into the context of product lines. Among these,
the Move Field from Class to Inter-Type Declaration and Move Method from Class to Inter-Type Dec-
laration strategies are in particular useful to implement the features occurring in a product feature
model, but not in the product line feature model and features missing in a product feature model, but
mandatory in the product line feature model.

The Partition Constructor Signature strategy is also applicable to the features occurring in a product
feature model, but not in the product line feature model.

The Extract Advice strategy is the most versatile refactoring. It can be used to implement the fea-
tures with varying implementation in different products. It can also be used to implement the features
occurring in a product feature model, but not in the product line feature model when Move Field from
Class to Inter-Type Declaration and Move Method from Class to Inter-Type Declaration are not ap-
plicable due to the necessity of preserving the corresponding attributes or methods in their original
place.

As it was indicated in the previous section, these refactoring strategies affect the product line feature
model as well.

6. EVALUATION

As it was explained in Section 2, the approach proposed here was applied to JForum, creating a product
line out of three existing products prepared out of the original, publicly available JForum code [The
JForum Team 2018]. For aspect-oriented code, AspectJ was used. Table I indicates the size of the study.
As expected, JForum Different Base caused the biggest number of merging conflicts.

Table I. Features and conflicts in the JForum study.
Number of JForum Simple JForum Original JForum Different Base JForum Product Line
Abstract Features 5 20 17 24
Design Features 11 33 27 49
Merging Conflicts 1 5 10 n/a

In merging, features occurring in a product feature model, but not in the product line feature model
occurred most frequently. This indicates the extent of the variability among the products.



Establishing Software Product Lines from Existing Products • 21:7

Features with varying implementation in different products also occurred frequently. It was caused
by how JForum Different Base differed from the other two products.

The other three merging cases mentioned in Section 4 have not been observed probably because of a
thorough initial analysis. Moreover, the study was of a modest size and constructed with product lines
in mind.

7. RELATED WORK

Liu et al. proposed an approach to feature oriented refactoring [Liu et al. 2006]. However, they do not
deal explicitly with feature model merging.

Yoshimura et al. proposed an approach to assess the merging of existing systems into a product line
and a method to identify the commonality among them [Yoshimura et al. 2006]. Instead on common-
ality, the approach proposed in this paper focuses on variability as a driving force in product lines
making it fully operational on both feature modeling and code level.

Shatnawi et al. proposed an approach to recovering software product line architecture of a family of
object-oriented product variants [Shatnawi et al. 2016]. Similarly as in the approach proposed in this
paper, they focus on variability. However, they do not target a complete implementation, but remain
on the architecture level.

8. CONCLUSIONS AND FURTHER WORK

This paper introduces an approach to establishing software product lines from a set of existing prod-
ucts based on a reversed Lee–Kang design feature based approach to deriving program code from
features [Lee and Kang 2013], Van den Broek’s feature model merging [van den Broek 2012] combined
with partial feature models [Menkyna and Vranić 2012], and aspect-oriented refactoring strategies
cataloged by Monteiro and Fernandes [Monteiro and Fernandes 2005; Monteiro 2004] for implement-
ing the features as modules that can be plugged in or out as needed. The approach interlinks the
feature model merging cases with the actual implementation of features and specific aspect-oriented
refactoring strategies used for this. The approach approach was successfully applied to JForum, creat-
ing a product line out of three existing products prepared out of the original, publicly available JForum
code.

Apart from the implementation, the approach is independent of the programming language being
used. The implementation part relies on AspectJ style of aspect-oriented programming since this is
the basis the aspect-oriented refactoring strategies employed in the approach work on. However, there
are indications that some programming languages not explicitly developed as aspect-oriented exhibit
aspect-oriented features [Bálik and Vranić 2012]. Aspect-oriented frameworks, which are available
for many programming languages, may be used, too. The problem is that these frameworks are often
obsolete with respect to the underlying programming language due to the lack maintenance support.

The next steps may lead towards improving the maintenance of the interconnection of features
and feature modules, partial automation of feature identification and feature model merging (possibly
with an application of design pattern detection techniques [Polášek et al. 2012]) and semi-automatic
aspect-oriented refactoring [Pipík and Polášek 2013], and a deeper examination of the approach on
larger studies. In the long run, dynamic code structuring [Nosál’ and Porubän 2012; Nosál’ et al. 2013;
Porubän and Nosál’ 2014] may be considered as an alternative to the fixed code representation. Also,
layered 3D visualization of software models [Ferenc et al. 2017; Gregorovič and Polášek 2015; Gre-
gorovič et al. 2015] possibly with virtual reality [Vincúr et al. 2017b; Vincúr et al. 2017a] could be
applied to make simultaneous work with several feature models and code easier and more transpar-
ent.



21:8 • V. Vranić and M. Granec

REFERENCES

Sven Apel, Thomas Leich, and Gunter Saake. 2008. Aspectual Feature Modules. IEEE Transactions On Software Engineering
34 (2008), 143–168.

Jan Bosch. 2000. Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach. Addison-Wesley.
Jaroslav Bálik and Valentino Vranić. 2012. Symmetric Aspect-Orientation: Some Practical Consequences. In Proceedings of

NEMARA 2012: International Workshop on Next Generation Modularity Approaches for Requirements and Architecture, at
AOSD 2012. ACM, Potsdam, Germany.

Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Programing: Methods, Tools, and Applications. Addison-Wesley.
Matej Ferenc, Ivan Polášek, and Juraj Vincúr. 2017. Collaborative Modeling and Visualisation of Software Systems Using

Multidimensional UML. In Proceedings of 5th IEEE Working Conference on Software Visualization, VISSOFT 2017. IEEE,
Shangai, China.

Lukáš Gregorovič and Ivan Polášek. 2015. Analysis and Design of Object-Oriented Software Using Multidimensional UML. In
Proceedings of 15th International Conference on Knowledge Technologies and Data-Driven Business. ACM, Graz, Austria.

Lukáš Gregorovič, Ivan Polášek, and Branislav Sobota. 2015. Software Model Creation with Multidimensional UML. In Proceed-
ings of 9th IFIP WG 8.9 Working Conference, CONFENIS 2015, part of WCC 2015 (LNCS 9357). Springer, Daejeon, Korea.

Hyesun Lee and Kyo Chul Kang. 2013. A Design Feature-Based Approach to Deriving Program Code from Features: A Step
Towards Feature-Oriented Software Development. In Proceedings of 7th International Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS 2013. ACM, Pisa, Italy.

Jia Liu, Don Batory, and Christian Lengauer. 2006. Feature Oriented Refactoring of Legacy Applications. In Proceedings of
28th International Conference on Software Engineering, ICSE ’06. ACM, Shanghai, China.

Radoslav Menkyna and Valentino Vranić. 2012. Aspect-Oriented Change Realization Based on Multi-Paradigm Design with
Feature Modeling. In Proceedings of 4th IFIP TC2 Central and East European Conference on Software Engineering Techniques,
CEE-SET 2009, Revised Selected Papers (LNCS 7054). Springer, Krakow, Poland.

Miguel Pessoa Monteiro. 2004. Object-to-Aspect Refactorings for Feature Extraction. In Proceedings of 3rd International Con-
ference on Aspect-Oriented Software Development, AOSD 2004. ACM, Lancaster, UK.

Miguel P. Monteiro and João M. Fernandes. 2005. Towards a Catalog of Aspect-Oriented Refactorings. In Proceedings of 4th
International Conference on Aspect-oriented Software Development, AOSD 2005. ACM, Chicago, Illinois.

Milan Nosál’ and Jaroslav Porubän. 2012. Supporting Multiple Configuration Sources Using Abstraction. Central European
Journal of Computer Science 2, 3 (2012), 283–299.

Matej Nosál’, Jaroslav Porubän, and Milan Nosál’. 2013. Concern-Oriented Source Code Projections. In Proceedings of 2013
Federated Conference on Computer Science and Information Systems, FedCSIS 2013. IEEE, Kraków, Poland, 1541–1544.

Roman Pipík and Ivan Polášek. 2013. Semi-Automatic Refactoring to Aspect-Oriented Platform. In Proceedings of 14th IEEE
International Symposium on Computational Intelligence and Informatics, CINTI 2013. IEEE, Budapest, Hungary.

Ivan Polášek, Peter Líška, Jozef Kelemen, and Ján Lang. 2012. On Extended Similarity Scoring and Bit-vector Algorithms for
Design Smell Detection. In Proceedings of 2012 IEEE 16th International Conference on Intelligent Engineering Systems, INES
2012. IEEE, Lisbon, Portugal, 115–120.

Jaroslav Porubän and Milan Nosál’. 2014. Leveraging Program Comprehension with Concern-Oriented Source Code Projections.
In Proceedings of 3rd Symposium on Languages, Applications and Technologies, Slate’14. Bragança, Portugal, 35–50.

Anas Shatnawi, Abdelhak-Djamel, and Houari Sahraoui. 2016. Recovering Software Product Line Architecture of a Family of
Object-Oriented Product Variants. The Journal of Systems and Software 131 (2016), 325–346.

The JForum Team. 2018. JForum Discussion Board System. http://jforum.net/. (2018).
Pim van den Broek. 2012. Intersection of Feature Models. In Proceedings of 16th International Software Product Line Conference,

SPLC 2012, Vol. 2. ACM, Salvador, Brazil.
Juraj Vincúr, Pavol Návrat, and Ivan Polášek. 2017a. VR City: Software Analysis in Virtual Reality Environment. In IEEE

International Conference on Software Quality, Reliability and Security, QRS 2017. IEEE, Prague, Czech Republic.
Juraj Vincúr, Ivan Polášek, and Pavol Návrat. 2017b. Searching and Exploring Software Repositories in Virtual Reality. In

Proceedings of ACM Symposium on Virtual Reality Software and Technology, VRST 2017. ACM, Gothenburg, Sweden.
Valentino Vranić. 2005. Multi-Paradigm Design with Feature Modeling. Computer Science and Information Systems Journal

(ComSIS) 2, 1 (2005), 79–102.
Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig. 2006. Defining a Strategy to Introduce a Software Product

Line Using Existing Embedded Systems. In Proceedings of 6th ACM & IEEE International Conference on Embedded Software,
EMSOFT 2006. ACM, Seoul, Korea.

http://jforum.net/

	Introduction
	The Overall Approach
	Recovering Product Feature Models
	Feature Model Merging
	Feature Module Implementation
	Evaluation
	Related Work
	Conclusions and Further Work

