
Service Self-Contextualization in
Cyber-Physical Systems based on

Context Modeling and Context Variation

Alexander Smirnov1,2, Kurt Sandkuhl2, Nikolay Shilov1,2, Nikolay Teslya1,2

1 SPIIRAS, 14 Line 39, 199178 St. Petersburg, Russia
2 ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia

smir@iias.spb.su; kurt.sandkuhl@uni-rostock.de; {nick, teslya}@iias.spb.su

Abstract. Internet-of Things (IoT) and Cyber-Physical Systems (CPS) are
considered as the key elements of the next industrial revolution. Operation and
configuration of such systems require new approaches for managing the
variability at design time and the dynamics at runtime, which is caused by
changing application environments. The paper proposes to integrate concepts
for variability management with context modelling and self-organization in
intelligent systems. Self-contextualization is used to adapt behaviors of multiple
services to the current situation and context variants for delimiting the extent of
adaptation options. The main contributions are an analysis of variability
challenges in IoT/CPS based on an industrial case, the concept of context
variants as contribution to manage variability and an initial validation using a
case study.

Keywords: Cyber-physical systems, self-organization, self-contextualization,
context variation.

1 Introduction

In many industrial sectors, Internet-of Things (IoT) and Cyber-Physical Systems
(CPS) are considered as the key elements of innovative solutions. CPS are expected to
be essential for higher efficiency and flexibility [15]. IoT allows for data collection
and new functions in smart connect products [20]. Operation and configuration of
such systems require new approaches and techniques for managing the variability at
design time and the dynamics at runtime, which is caused by a multitude of
component types and changing application environments. This paper proposes to
integrate concepts from product line engineering for systematic control of variability
with approaches for self-organization in intelligent systems. More concrete, we
propose to explicitly model the “context” of IoT/CPS solutions, identify variants of
the context and use these context variants for self-contextualization of IoT/CPS
solutions.

A central concept of our work is “self-contextualization” which aims at
autonomously adapting behaviors of multiple services to their current operational
context. For this reason, the presented conceptual model enables context-awareness
and context-adaptability of the service. Using on an application case in industrial

production lines, the paper illustrates selected challenges as starting point for our
conceptual contribution on integrating variability management and self-organization.
For this purpose, a certain degree of formality is required in CPS models, which will
also be subject of the paper and based on previous work on a reference model in self-
contextualizing services [17].

The main contributions offered by this paper are an analysis of variability
challenges in IoT/CPS solutions based on an industrial case, the concept of context
variants as contribution to manage variability and an initial validation using a case
study. The remaining part of the paper is structured as follows: Section 2 gives a brief
overview to background for this work including variability management and context
computing. Section 3 introduces the concept of self-organization including context
models and a formalization of context variants. Section 4 illustrates the use of context
variants by considering a case study based on an assembly product line. Finally,
section 5 summarizes the paper and discusses future work.

2 Background

This section summarizes the conceptual background for our work with focus on
variability management (2.1) and context computing (2.2).

2.1 Variability Modelling

Capturing and representing variations in sub-systems, sensors or other elements of
IoT/CPS solutions including the relationships or dependencies to other components is
an essential task in context computing. The area of variability modeling offers
concepts how to deal with variability in complex systems, which might be applicable
for CPS and will be briefly presented in this section.

Variability modeling offers an important contribution to managing the variety of
the variants of systems by capturing and visualizing commonalities and dependencies
between features and between the components providing feature implementations.
Since more many years, systematic management of variants is frequently used in the
area of technical systems and in software product lines [5]. Feature models are one of
the variability modeling approaches often used in product lines and product families.
The purpose of a feature model is to extract, structure and visualize the commonality
and variability of a set of products. Commonalities are the properties of products that
are shared among all the products in a set, which places these products in the same
category or family. Variability are the elements of the products that differentiate and
show configuration options, variation points and choices that are possible between
variants of the product and aim at satisfying different customer requirements. Feature
diagrams are used to visualize the hierarchy and other properties of a feature model;
they express the relation between features. The exact syntax of feature diagrams is
explained in [5].

Recent work on variability modelling also addresses the field of services and
service line engineering. A method for service line engineering is proposed in [6] that

95

bundles all variations of a Software-as-a-Service (SaaS) application based on a
common core. The authors of [7] work in the same area and use variability models to
derive customization and deployment information for individual SaaS tenants. Unlike
conventional distributed agent-based systems, the resources of CPS interact in both
cyber and physical space. For this reason, the mechanisms developed for agent-based
systems in most cases are not efficient in CPS [8].

2.2 Context Computing and Context Modelling

Context-computing plays an important role to enable services adapting to situations
in IoT/CPS solutions [2, 3]. The term “context” has been used and still is subject of
research in various application areas and sectors of computer science. In the most
general meaning, context describes what relates the entity under consideration to the
environment surrounding this entity. What an “entity” is depends on the actual
interpretation of context. In this paper, we use the term context according to Dey, who
defines context as “any information that can be used to characterize the situation of
an entity, where an entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and the
application themselves.” [4]

Context-computing is first introduced in 1994 by [22]. They consider the context
as the information about located-object and the changes to object over time. With
increasing mobility of users, increased performance and functionality of mobile
devises and sensors, and increasing amount of information available, context
computing also gains of importance in order to integrate circumstances and situations
of the users, what is often referred to as human related context.

Although context-computing is widely used in computer science, there is no
general representation and development procedure for context models. Many authors
of context-based systems describe the way of developing the context model for their
specific application, but do not provide a general view. [18] and [19] show examples
for UML-context development in pervasive computing and OWL-based context for
reasoning applications. Mena and colleagues [10] sketch a development process for
context –aware systems and identify invariant characteristics of context as part of
their work. These characteristics are (a) context relates always to some entity, (b) is
used to solve a problem (c) depends on the domain and (d) is a dynamic process. [9]
propose a method for context modelling in information systems.

3 Context Variants for Service Self-Contextualization

Our approach for increasing flexibility and controlling variability in IoT/CPS
solutions consists of the principle of self-contextualization (section 4.1) and detailed
specification of context variants (section 4.2).

96

3.1 Self-Contextualization in CPS

From a technical viewpoint CPS tightly integrate physical and IT (cyber) systems
based on interactions between these systems in real time [16]. CPS rely on control
infrastructures commonly consisting of several levels with different components, such
as sensors, actuators, computational resources, communication services, etc. The
cyber and physical spaces of CPS are represented by sets of resources. The resources
have some functionality in result of which they provide services. In this work, the
term service is used to describe a software or hardware functionality offered by the
service provider to a service user – in our case resources - by a defined interface and
including constraints and policies for the service usage. With this definition, we are in
line with definitions from the area of service-oriented architectures (see, e.g. [25]).

The services provided by one resource are consumed by other resources. Since the
resources are numerous, mobile, and with a changeable composition, the IoT/CPS
solutions belong to the class of variable systems with dynamic structures. Restriction
to only planned resource interactions in such systems is only a theoretical option, in
practice this basically is just impossible. Resource self-organization is the most
efficient way to organize interactions and communications between the resources
making up IoT/CPS solutions. In order to achieve the dynamics of the self-organizing
system, its components have to be creative, knowledgeable, active, and social. The
resources that are parts of a system permanently change their joint environment what
results in a synergetic collaboration and leads to achieving a certain level of collective
intelligence.

In order for distributed systems to operate efficiently, they have to be provided
with self-organization mechanisms. In IoT/CPS solutions such mechanisms concern
self-organization the system’s resources. The goal of the resource self-organization is
support of humans in their decisions, activities, solution of the tasks, etc. At that,
humans are the participants of the self-organization process, as well.

The process of self-organization of a network assumes creating and maintaining a
logical network structure on top of a dynamically changing physical network
topology. The autonomous and dynamic structuring of components, context
information and resources is the essential work of self-organization [11]. The network
is self-organized in the sense that it autonomously monitors available context in the
network, provides the required context and any other necessary network service
support to the requested services, and self-adapts when context changes.

Due to the nature of CPS, semantics is one of the necessary bases to ensure that
several resources arrive at the same meaning regarding the situation and data /
information / knowledge being communicated. Ontologies provide for a shared and
common understanding of some domain that can be communicated across the
multiple CPS' resources.

The present research inherits the idea of ontology usage for modelling context in
CPSs. According to [12], any information describing an entity’s context falls into one
of five categories for context information: individuality, activity, location, time, and
relations. The individuality category contains properties and attributes describing the
entity itself. The category activity covers all tasks this entity may be involved in. The
context categories location and time provide the spatio-temporal coordinates of the

97

respective entity. Finally, the relations category represents information about any
possible relation the entity may establish with another entity.

The context is purposed to represent only relevant information and knowledge
from the large amount of those. Relevance of information and knowledge is evaluated
on a basis how they are related to a modelling of an ad hoc problem. Resource's
context is described by location, time, resource individuality, and event. Resources
perform some activity according to the roles they fulfil in the current context and
depending on the type of event. On the other hand, the type of activity that a resource
performs defines the type of event. The context is updated depending on the
information from the service’s environment and as a result of its activity. The ability
of a system (service) to describe, use and adapt its behavior to its context is referred to
as self-contextualization [13].

3.2 Concept of Context Variants

As explained in section 4.1, self-organization depends on context information. As
the same set of context information potentially can be used for different IoT/CPS
solutions or for different configuration or resource combinations in the same IoT/CPS
solution, we propose the concept of context variant (cf. [21]). Context variant is a
predefined structured sub-set of all potential contexts of a component for defining
constraints in behavior of the component for this sub-set. Parametric knowledge set is
the sub-set of system-related knowledge relevant for a specific context variant.

In order to further specify context variants, this section presents a semi-formal
definition. In this definition we also consider the fact, that variants can be composed
of different alternating, optional or mandatory sub-variants. Decomposing variants in
such a way will ease definition of dependencies between variants.

A context is a tuple Cxt:={C, CT, PK, PKT, P, PT, CV, VS, type, map, specify},
consisting of
 disjoint sets C, and CT whose elements are called context elements and context

element types, respectively; and a function typeC: C CT, that assigns a type
cti CT to each ci C.

 disjoint sets PK and PKT whose elements are called parametric knowledge
elements and parametric knowledge element types respectively; and a function
typep: PK PKT, that assigns a type pkti PKT to an element pki PK

 for each cti CT a function map: CT PKT that defines which parametric
knowledge element type can be specified by which context element type and for
each ci of the type cti a function specify: C PK which updates the parametric
knowledge element corresponding to the context element

 disjoint sets P, and PT whose elements are called parametric knowledge set
elements and parametric knowledge set element types, respectively, with PT
PKT and a function typePS: P PT, that assigns a type pti PT to each pi P.

 a set of context variants CV with cvi CV: cvi PK P.
Furthermore, we define a variability specification as a tuple VS:={CV, R, man,

opt, alt, req, excl}, consisting of
 the variation set CV introduced above and a set R whose elements are called

relations; CV and R are disjoined sets.

98

 A function man: R 2CV CV that relates mandatory variants. With man(R) =
(CV1, CV2) we define CV2 as a mandatory sub-variant of CV1.

 A function opt: R 2CV CV that relates optional variants. With opt(R) = (CV1,
CV2) we define CV2 as an optional sub-variant of CV1.

 A function alt: R 2CV CV that relates alternative variants. With alt(R) = (CV1,
CV2) we define CV2 as an alternative sub-variant of CV1.

 A function req: R 2CV CV that relates required features. With req(R) = (CV1,
CV2) we define CV2 as a required variant for CV1.

 A function excl: R 2CV CV that relates mutual-exclusive features. With excl(R)
= (CV1, CV2) we define CV2 is mutual-exclusive to CV1.

4 Context Variation Usage for Automated Production Line

This section illustrates the usage of the context variation in an Industrie 4.0
environment. Integration of the Internet of Things concepts in the industrial
environment makes it possible to significantly increase the level of automation and
flexibility enabling self-adaptation of the industrial equipment to the changing
situation. In the case study, we consider a production line responsible for assembling
optic devices consisting of a lenses and frames (a detailed description can be found in
[23]). The production line consists of three handling units. Handling unit 1 (Fig. 1,
R1) gets a tray from the storage facility (Fig. 1, Storage Facility) and loads it on the
on a self-controlled carrier (Fig. 1, location S1). There are two types of trays in the
system: trays containing frames and trays containing lenses ([24]), and R1 handles
them by turns: one carrier is loaded with a tray with frames, and the next one is
loaded with the tray with lenses. The loaded carriers move to the location S2 equipped
with a controller and bar code sensor, where handling unit R2 unloads trays from
carriers and puts them to locations S3 and S4 for trays with lenses and frames
respectively. Then, handling unit R3 performs an assembly through putting lenses into
frames (Fig. 2).

When the assembly is finished, the tray with assembled parts is transferred by R2
back to the carrier, which brings them further along the production line for gluing and
other technological operations up to the final product assembly are done.

99

Fig. 1. Automated production line ([23])

Fig. 2. Handling unit R3

In the test implementation of the described above case study, the interaction
process between handling units R1 and R2 was considered. Below, the description of
the scenario in an algorithmic way is presented:

1) Self-controlled carrier transfers the first tray with lenses to S2.
2) The controller installed at S2 detects (through reading the bar code) the

presence of the carrier with a tray with lenses at location S2.
3) The tray with lenses is handled by R2 from the carrier to the assembly table,

location S3.
4) The next carrier having a tray with frames arrives to S2.
5) The controller of S2 detects the carrier with a tray with frames at location S2.

Zone 2

Zone 1

Storage Facility

R1

R3
S4

R2
S2

S3

S1

100

6) The tray with frames is moved by R2 from the second carrier to the assembly
table, location S4.

7) R3 takes lenses from the tray, moves them to S4 and installs into the frames
one by one.

8) If a complete set of lenses and frames is assembled, the system goes to
step 11.

9) If a lens is missing but the assembly process is not completed, the tray with
lenses is loaded by R2 back to the carrier and transferred to the storage
facility (S1) to get the missing component. After that, the system goes to step
1.

10) If a frame is missing but the assembly process is not completed, the tray with
frames is loaded by R2 back to the carrier and transferred to the storage
facility (S1) to get the missing component. After that, the system goes to step
1.

11) The tray with frames with installed lenses is loaded by R2 to the carrier,
which transfers it to the next assembly stages.

12) The system goes to the initial state.

The detailed description can be found in [23].
The test implementation showed that establishing complex communications and

interactions between production units significantly increases the complexity and
decreases the reliability of the entire system. Introduction of the context variation can
simplify the implementation.

In accordance with the notation given in sec. 4.2, the context elements related to
the case study can be described as follows (fig. 3):

<<enum>>

S2

+ empty carrier
+ carrier with lenses

+ carrier with assemblies
+ carrier with frames

+ carrier with empty tray

+ carrier with frames (missing frame)
+ carrier with lenses (missing lens)

<<enum>>

S3

+ tray with frames
+ tray with assemblies

<<enum>>

S4

+ tray with lenses
+ empty tray

position1

position2

position3

<<enum>>

location

+ location2: S2
+ location3: S3
+ location4: S4

Context

+ {location_state: position}

+ nothing

+ nothing

Fig. 3. Context elements

101

C = {location}
CT = {enum}
PK = {location2; location3; location4}
PKT = {S2, S3, S4}
P = {nothing; carrier with lenses; carrier with frames; carrier with assemblies;

carrier with empty tray; carrier with lenses (missing lens); carrier with frames
(missing frame); tray with frames; tray with assemblies; tray with lenses; empty tray}

PT = {S2, S3, S4}
CV = P PK

R2 and R3 can be formulated as follows (only mandatory variants are considered):

R3 (fig. 4)
location3 = tray with frames (mandatory)
location4 = tray with lenses (mandatory)
Run “insert lenses into frames” program

location3: S3 = tray with frames
and location4: S4 = tray with lenses

insert lenses into
frames

do nothing

Fig. 4. Activity diagram for handling unit R3

R2 (fig. 5)
Context variation 1:
location2 = carrier with lenses (mandatory)
location4 = nothing (mandatory)
Run “move tray from S2 to S4” program

Context variation 2:
location2 = carrier with frames (mandatory)
location3 = nothing (mandatory)
Run “move tray from S2 to S3” program

Context variation 3:
location2 = empty carrier (mandatory)
location4 = empty tray (mandatory)
Run “move tray from S4 to S2” program

Context variation 4:

102

location2 = empty carrier (mandatory)
location3 = tray with assemblies (mandatory)
Run “move tray from S3 to S2” program

location2: S2 = carrier with lenses
and location4: S4 = nothing

move tray from S2 to
S4

do nothing

move tray from S2 to
S3

move tray from S4 to
S2

move tray from S3 to
S2

location2: S2 = carrier with frames
and location3: S3 = nothing

location2: S2 = empty carrier
and location4: S4 = empty tray

location2: S2 = empty carrier
and location3: S3 = tray with assemblies

Fig. 5. Activity diagram for handling unit R2

Such context variations were quite easy to implement. For testing purposes
FESTO1 equipment was used controlled by CPX-FEC device implementing easyIP &
Modbus protocols and HTTP requests.

5 Summary and Future Work

Using an industrial example from CPS in production, this paper motivated the need
for controlling variability and for the introduction of context variants into self-
organization and self-contextualization of IoT/CPS solutions. Part of the work was to
formalize the concept of context variant. Furthermore, the paper presents industrial
cyber-physical system for two robots interaction in a configuration workstation. The
systems is based on the Industrie 4.0 concept that is a new paradigm of intelligent
manufacturing systems based on Internet of Things, internet services, cyber-physical
systems, and cloud technologies. Robots interact with each other through the smart
space infrastructure, which is developed based on Smart-M3 information sharing
platform. Special software for the robot controllers has been developed that allows to
implement scenarios based on control actions. The control actions are supported by
the developed smart space services for each robot, which interact with each other in
the smart space and control robots in the physical space.

1 Festo AG & Co. KG, http://www.festo.de

103

The biggest limitation of our work is that it was implemented and used only in one
prototype scenario, i.e. conceptual and technical feasibility have been shown but
pertinence for real-world production has not been demonstrated yet. Context variant
conceptualization were developed with the intention to serve as basis for
implementing services for use in IoT/CPS solutions. We found it valuable to
conceptualize the overall behavior of CPS.

Future work will include conceptual and technical activities. From a technical
perspective, experimentation with the use of context variants is one of the planned
activities. From a conceptual point of view, we plan to investigate effect of using
context variants on the engineering process of IoT/CPS solutions. The specification of
variations probably has to be part of the design and specification of the overall CPS,
which also will affect requirement elicitation.

Acknowledgment. The research was partially supported by the Government of
Russian Federation (grant 08-08), grant of the Russian Foundation for Basic Research
#16-29-04349 and State Research no. 0073-2018-0002.

References

1. Serugendo, G. D. M., Gleizes, M.-P., Karageorgos, A.: Self-Organisation and Emergence in
MAS: An Overview, Informatica, 30, 45–54 (2006)

2. Preuveneers, D., Berbers, Y.: Internet of Things: A Context-Awareness Perspective, (eds.
Yan, L., Zhang, Y., Yang, L. T., Ning, H.) The Internet of Things: From RFID to the Next-
Generation Pervasive Networked Systems. Auerbach Publications, Taylor and Francis
Group, New York, USA, 287-307 (2008)

3. Zhang, D., Huang, H., Lai, C.-F., Liang, X., Zou, Q., Guo, M.: Survey on Context-
Awareness in Ubiquitous Media, Multimedia Tools and Applications, 1-33 (2011)

4. Dey, A. K.: Understanding and Using Context, Personal Ubiquitous Computing, 5(1), 4-7
(2001)

5. Thörn, C., Sandkuhl, K.: Feature Modeling: Managing Variability in Complex Systems,
(eds. Tolk, A., Jain, L. C.) Complex systems in knowledge-based environments. Theory,
models and applications, 168. Springer, 129-162 (2009)

6. Walraven, S., Van Landuyt, D., Truyen, E., Handekyn, K., & Joosen, W.: Efficient
Customization of Multi-Tenant Software-as-a-Service Applications with Service Lines.
Journal of Systems and Software, 91, 48-62 (2014)

7. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.: Variability Modeling to Support
Customization and Deployment of Multi-Tenant-Aware Software as a Service Applications.
Proceedings of the 2009 ICSE Workshop on Principles of Engineering Service Oriented
Systems, IEEE Computer Society, 18-25 (2009)

8. Lin, J., Sedigh, S. & Miller, A.: A Semantic Agent Framework for Cyber-Physical Systems,
(eds. Elçi, A., Koné, M. T. & Orgun, M. A.) Semantic Agent Systems, Springer, Studies in
Computational Intelligence, 344, 189-213 (2011)

9. Sandkuhl, K. and U. Borchardt (2014) How to identify the relevant elements of “context” in
Context-aware Information Systems? 13th International Conference on Business Informatics
Research (BIR 2014), September 22-24, 2014, Lund (Sweden). LNBIP, Springer Verlag.

10. .Mena, T., Bellamine-Ben Saoud, N., Ahmed, M. and Pavard, B. (2007): Towards a
Methodology for Context Sensitive Systems Development, in Kokinov, B., Richardson,
D.C., Roth-Berghofer, T.R. and Vieu, L. (Eds.), Modeling and Using Context, Lecture

104

Notes in Computer Science, Vol. 4635, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
56–68.

11. Ambient Networks Phase 2. Integrated Design for Context, Network and Policy
Management, Deliverable D10.-D1, 2006, Retrieved September 09, 2014 from
http://www.ambient-networks.org/Files/deliverables/D10-D.1_PU.pdf.

12. Zimmermann, A., Lorenz, A., Oppermann, R.: An Operational Definition of Context,
CONTEXT 2007, LNAI, 4635, Springer-Verlag, 558–571 (2007)

13. Raz, D., Juhola, A. T., Serrat-Fernandez, J., Galis, A.: Fast and Efficient Context-Aware
Services, John Willey & Sons, Ltd, 2006.

14. De Mola, F., and Quitadamo, R. (2006). Towards an Agent Model for Future Autonomic
Communications, Proceedings of the 7th WOA 2006 Workshop From Objects to Agents,
Catania, Italy, Sept. 26-27, 2006, Retrieved June 18, 2012, from:

15. Deutsche Bank Research http://www.dbresearch.de/PROD/DBR_INTERNET_EN-
PROD/PROD0000000000333571/Industry+4_0%3A+Upgrading+of+Germany%E2%80%9
9s+industrial+capabilities+on+the+horizon.pdf

16. Horvath, I., Gerritsen, B. H. M.: Cyber-Physical Systems: Concepts, Technologies and
Implementation Principles. Horvath, I., Rusak, Z., Albers, A. Behrendt, M. (eds.)
Proceedings of TMCE 2012, 19-36 (2012)

17. Smirnov, A.; Sandkuhl, K.; Shilov, N.; Telsya, N. (2015) Context Variation for Service
Self-Contextualization in Cyber-Physical Systems. Proc. BIS 2015, LNBIP 208, pp. 1–13,
2015. Springer. DOI: 10.1007/978-3-319-19027-3_25

18. Henricksen, K., Indulska, J. and Rakotonirainy, A. (2002): Modeling con context
information in pervasive computing systems; Pervasive ’02: Proceedings of the First
International Conference on Pervasive Computing; Pervasive ’02: Proceedings of the First
International Conference on Pervasive Computing; 167–180; Springer-Verlag, London, UK

19. Wang, X., Zhang, D., Gu, T. and Pung, H. (2004): Ontology based context modeling and
reasoning using owl; 18–22.

20. Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming
competition. Harvard business review, 92(11), 64-88.

21. Smirnov A., Sandkuhl K., Shilov N., Telsya N. (2015) Context Variation for Service Self-
contextualization in Cyber-Physical Systems. In: Abramowicz W. (eds) Business
Information Systems. BIS 2015. Lecture Notes in Business Information Processing, vol 208.
Springer, Cham.

22. Schilit, B. N., Theimer, M. M.: Disseminating Active Map Information to Mobile Hosts,
Network, IEEE; 8(5), 22-32 (1994)

23. Smirnov, A., Levashova, T., Shilov, N., Sandkuhl. K. (2014): Ontology for cyber-physical-
social systems self-organisation. Proc. FRUCT-16, pp. 101-107, IEEE 2014, ISBN 978-5-
7577-0489-0.

24. Kashevnik, A., Teslya, N., Padun, B., Kipriyanov, K. and V. Arckhipov (2015) Industrial
Cyber-Physical System for Lenses Assembly: Configuration Workstation Scenario.
Proceedings of the 17th Conference of the Open Innovations Association FRUCT, 2015, pp.
62-67.

25. OASIS (2006) OASIS SOA Reference Model Reference Model for Service Oriented
Architecture 1.0. OASIS Standard, 12 October 2006. Available at: http://docs.oasis-
open.org/soa-rm/v1.0/soa-rm.pdf, accessed 2018-09-03.

105

