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Abstract. Internet-of Things (IoT) and Cyber-Physical Systems (CPS) are 
considered as the key elements of the next industrial revolution. Operation and 
configuration of such systems require new approaches for managing the 
variability at design time and the dynamics at runtime, which is caused by 
changing application environments. The paper proposes to integrate concepts 
for variability management with context modelling and self-organization in 
intelligent systems. Self-contextualization is used to adapt behaviors of multiple 
services to the current situation and context variants for delimiting the extent of 
adaptation options. The main contributions are an analysis of variability 
challenges in IoT/CPS based on an industrial case, the concept of context 
variants as contribution to manage variability and an initial validation using a 
case study.  

Keywords: Cyber-physical systems, self-organization, self-contextualization, 
context variation. 

1   Introduction 

In many industrial sectors, Internet-of Things (IoT) and Cyber-Physical Systems 
(CPS) are considered as the key elements of innovative solutions. CPS are expected to 
be essential for higher efficiency and flexibility [15]. IoT allows for data collection 
and new functions in smart connect products [20]. Operation and configuration of 
such systems require new approaches and techniques for managing the variability at 
design time and the dynamics at runtime, which is caused by a multitude of 
component types and changing application environments. This paper proposes to 
integrate concepts from product line engineering for systematic control of variability 
with approaches for self-organization in intelligent systems. More concrete, we 
propose to explicitly model the “context” of IoT/CPS solutions, identify variants of 
the context and use these context variants for self-contextualization of IoT/CPS 
solutions. 

A central concept of our work is “self-contextualization” which aims at 
autonomously adapting behaviors of multiple services to their current operational 
context. For this reason, the presented conceptual model enables context-awareness 
and context-adaptability of the service. Using on an application case in industrial 



production lines, the paper illustrates selected challenges as starting point for our 
conceptual contribution on integrating variability management and self-organization. 
For this purpose, a certain degree of formality is required in CPS models, which will 
also be subject of the paper and based on previous work on a reference model in self-
contextualizing services [17].  

The main contributions offered by this paper are an analysis of variability 
challenges in IoT/CPS solutions based on an industrial case, the concept of context 
variants as contribution to manage variability and an initial validation using a case 
study. The remaining part of the paper is structured as follows: Section 2 gives a brief 
overview to background for this work including variability management and context 
computing. Section 3 introduces the concept of self-organization including context 
models and a formalization of context variants. Section 4 illustrates the use of context 
variants by considering a case study based on an assembly product line. Finally, 
section 5 summarizes the paper and discusses future work. 

2   Background 

This section summarizes the conceptual background for our work with focus on 
variability management (2.1) and context computing (2.2).  

2.1   Variability Modelling 

Capturing and representing variations in sub-systems, sensors or other elements of 
IoT/CPS solutions including the relationships or dependencies to other components is 
an essential task in context computing. The area of variability modeling offers 
concepts how to deal with variability in complex systems, which might be applicable 
for CPS and will be briefly presented in this section. 

Variability modeling offers an important contribution to managing the variety of 
the variants of systems by capturing and visualizing commonalities and dependencies 
between features and between the components providing feature implementations. 
Since more many years, systematic management of variants is frequently used in the 
area of technical systems and in software product lines [5]. Feature models are one of 
the variability modeling approaches often used in product lines and product families. 
The purpose of a feature model is to extract, structure and visualize the commonality 
and variability of a set of products. Commonalities are the properties of products that 
are shared among all the products in a set, which places these products in the same 
category or family. Variability are the elements of the products that differentiate and 
show configuration options, variation points and choices that are possible between 
variants of the product and aim at satisfying different customer requirements. Feature 
diagrams are used to visualize the hierarchy and other properties of a feature model; 
they express the relation between features. The exact syntax of feature diagrams is 
explained in [5]. 

Recent work on variability modelling also addresses the field of services and 
service line engineering. A method for service line engineering is proposed in [6] that 
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bundles all variations of a Software-as-a-Service (SaaS) application based on a 
common core. The authors of [7] work in the same area and use variability models to 
derive customization and deployment information for individual SaaS tenants. Unlike 
conventional distributed agent-based systems, the resources of CPS interact in both 
cyber and physical space. For this reason, the mechanisms developed for agent-based 
systems in most cases are not efficient in CPS [8].  

2.2   Context Computing and Context Modelling 

Context-computing plays an important role to enable services adapting to situations 
in IoT/CPS solutions [2, 3]. The term “context” has been used and still is subject of 
research in various application areas and sectors of computer science. In the most 
general meaning, context describes what relates the entity under consideration to the 
environment surrounding this entity. What an “entity” is depends on the actual 
interpretation of context. In this paper, we use the term context according to Dey, who 
defines context as “any information that can be used to characterize the situation of 
an entity, where an entity is a person, place, or object that is considered relevant to 
the interaction between a user and an application, including the user and the 
application themselves.” [4] 

Context-computing is first introduced in 1994 by [22]. They consider the context 
as the information about located-object and the changes to object over time. With 
increasing mobility of users, increased performance and functionality of mobile 
devises and sensors, and increasing amount of information available, context 
computing also gains of importance in order to integrate circumstances and situations 
of the users, what is often referred to as human related context.  

Although context-computing is widely used in computer science, there is no 
general representation and development procedure for context models. Many authors 
of context-based systems describe the way of developing the context model for their 
specific application, but do not provide a general view. [18] and [19] show examples 
for UML-context development in pervasive computing and OWL-based context for 
reasoning applications. Mena and colleagues [10] sketch a development process for 
context –aware systems and identify invariant characteristics of context as part of 
their work. These characteristics are (a) context relates always to some entity, (b) is 
used to solve a problem (c) depends on the domain and (d) is a dynamic process. [9] 
propose a method for context modelling in information systems. 

3 Context Variants for Service Self-Contextualization 

Our approach for increasing flexibility and controlling variability in IoT/CPS 
solutions consists of the principle of self-contextualization (section 4.1) and detailed 
specification of context variants (section 4.2).  
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3.1   Self-Contextualization in CPS 

From a technical viewpoint CPS tightly integrate physical and IT (cyber) systems 
based on interactions between these systems in real time [16]. CPS rely on control 
infrastructures commonly consisting of several levels with different components, such 
as sensors, actuators, computational resources, communication services, etc. The 
cyber and physical spaces of CPS are represented by sets of resources. The resources 
have some functionality in result of which they provide services. In this work, the 
term service is used to describe a software or hardware functionality offered by the 
service provider to a service user – in our case resources - by a defined interface and 
including constraints and policies for the service usage. With this definition, we are in 
line with definitions from the area of service-oriented architectures (see, e.g. [25]). 

The services provided by one resource are consumed by other resources. Since the 
resources are numerous, mobile, and with a changeable composition, the IoT/CPS 
solutions belong to the class of variable systems with dynamic structures. Restriction 
to only planned resource interactions in such systems is only a theoretical option, in 
practice this basically is just impossible. Resource self-organization is the most 
efficient way to organize interactions and communications between the resources 
making up IoT/CPS solutions. In order to achieve the dynamics of the self-organizing 
system, its components have to be creative, knowledgeable, active, and social. The 
resources that are parts of a system permanently change their joint environment what 
results in a synergetic collaboration and leads to achieving a certain level of collective 
intelligence.  

In order for distributed systems to operate efficiently, they have to be provided 
with self-organization mechanisms. In IoT/CPS solutions such mechanisms concern 
self-organization the system’s resources. The goal of the resource self-organization is 
support of humans in their decisions, activities, solution of the tasks, etc. At that, 
humans are the participants of the self-organization process, as well. 

The process of self-organization of a network assumes creating and maintaining a 
logical network structure on top of a dynamically changing physical network 
topology. The autonomous and dynamic structuring of components, context 
information and resources is the essential work of self-organization [11]. The network 
is self-organized in the sense that it autonomously monitors available context in the 
network, provides the required context and any other necessary network service 
support to the requested services, and self-adapts when context changes. 

Due to the nature of CPS, semantics is one of the necessary bases to ensure that 
several resources arrive at the same meaning regarding the situation and data / 
information / knowledge being communicated. Ontologies provide for a shared and 
common understanding of some domain that can be communicated across the 
multiple CPS' resources.  

The present research inherits the idea of ontology usage for modelling context in 
CPSs. According to [12], any information describing an entity’s context falls into one 
of five categories for context information: individuality, activity, location, time, and 
relations. The individuality category contains properties and attributes describing the 
entity itself. The category activity covers all tasks this entity may be involved in. The 
context categories location and time provide the spatio-temporal coordinates of the 
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respective entity. Finally, the relations category represents information about any 
possible relation the entity may establish with another entity. 

The context is purposed to represent only relevant information and knowledge 
from the large amount of those. Relevance of information and knowledge is evaluated 
on a basis how they are related to a modelling of an ad hoc problem. Resource's 
context is described by location, time, resource individuality, and event. Resources 
perform some activity according to the roles they fulfil in the current context and 
depending on the type of event. On the other hand, the type of activity that a resource 
performs defines the type of event. The context is updated depending on the 
information from the service’s environment and as a result of its activity. The ability 
of a system (service) to describe, use and adapt its behavior to its context is referred to 
as self-contextualization [13].  

3.2   Concept of Context Variants 

As explained in section 4.1, self-organization depends on context information. As 
the same set of context information potentially can be used for different IoT/CPS 
solutions or for different configuration or resource combinations in the same IoT/CPS 
solution, we propose the concept of context variant (cf. [21]). Context variant is a 
predefined structured sub-set of all potential contexts of a component for defining 
constraints in behavior of the component for this sub-set. Parametric knowledge set is 
the sub-set of system-related knowledge relevant for a specific context variant. 

In order to further specify context variants, this section presents a semi-formal 
definition. In this definition we also consider the fact, that variants can be composed 
of different alternating, optional or mandatory sub-variants. Decomposing variants in 
such a way will ease definition of dependencies between variants. 

A context is a tuple Cxt:={C, CT, PK, PKT, P, PT, CV, VS, type, map, specify}, 
consisting of 
 disjoint sets C, and CT whose elements are called context elements and context 

element types, respectively; and a function typeC: C  CT, that assigns a type 
cti  CT to each ci  C.  

 disjoint sets PK and PKT whose elements are called parametric knowledge 
elements and parametric knowledge element types respectively; and a function 
typep: PK  PKT, that assigns a type pkti  PKT to an element pki  PK 

 for each cti  CT a function map: CT  PKT that defines which parametric 
knowledge element type can be specified by which context element type and for 
each ci of the type cti  a function specify: C  PK which updates the parametric 
knowledge element corresponding to the context element  

 disjoint sets P, and PT whose elements are called parametric knowledge set 
elements and parametric knowledge set element types, respectively, with PT  
PKT and a function typePS: P  PT, that assigns a type pti  PT to each pi  P. 

 a set of context variants CV with cvi  CV: cvi  PK  P.  
Furthermore, we define a variability specification as a tuple VS:={CV, R, man, 

opt, alt, req, excl}, consisting of 
 the variation set CV introduced above and a set R whose elements are called 

relations; CV and R are disjoined sets. 
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 A function man: R  2CV  CV that relates mandatory variants. With man(R) = 
(CV1, CV2) we define CV2 as a mandatory sub-variant of CV1. 

 A function opt: R  2CV  CV that relates optional variants. With opt(R) = (CV1, 
CV2) we define CV2 as an optional sub-variant of CV1. 

 A function alt: R  2CV  CV that relates alternative variants. With alt(R) = (CV1, 
CV2) we define CV2 as an alternative sub-variant of CV1. 

 A function req: R  2CV  CV that relates required features. With req(R) = (CV1, 
CV2) we define CV2 as a required variant for CV1. 

 A function excl: R  2CV  CV that relates mutual-exclusive features. With excl(R) 
= (CV1, CV2) we define CV2 is mutual-exclusive to CV1. 

4   Context Variation Usage for Automated Production Line 

This section illustrates the usage of the context variation in an Industrie 4.0 
environment. Integration of the Internet of Things concepts in the industrial 
environment makes it possible to significantly increase the level of automation and 
flexibility enabling self-adaptation of the industrial equipment to the changing 
situation. In the case study, we consider a production line responsible for assembling 
optic devices consisting of a lenses and frames (a detailed description can be found in 
[23]). The production line consists of three handling units. Handling unit 1 (Fig. 1, 
R1) gets a tray from the storage facility (Fig. 1, Storage Facility) and loads it on the 
on a self-controlled carrier (Fig. 1, location S1). There are two types of trays in the 
system: trays containing frames and trays containing lenses ([24]), and R1 handles 
them by turns: one carrier is loaded with a tray with frames, and the next one is 
loaded with the tray with lenses. The loaded carriers move to the location S2 equipped 
with a controller and bar code sensor, where handling unit R2 unloads trays from 
carriers and puts them to locations S3 and S4 for trays with lenses and frames 
respectively. Then, handling unit R3 performs an assembly through putting lenses into 
frames (Fig. 2). 

When the assembly is finished, the tray with assembled parts is transferred by R2 
back to the carrier, which brings them further along the production line for gluing and 
other technological operations up to the final product assembly are done. 
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Fig. 1. Automated production line ([23]) 

 
Fig. 2. Handling unit R3 

In the test implementation of the described above case study, the interaction 
process between handling units R1 and R2 was considered. Below, the description of 
the scenario in an algorithmic way is presented: 

1) Self-controlled carrier transfers the first tray with lenses to S2. 
2) The controller installed at S2 detects (through reading the bar code) the 

presence of the carrier with a tray with lenses at location S2. 
3) The tray with lenses is handled by R2 from the carrier to the assembly table, 

location S3. 
4) The next carrier having a tray with frames arrives to S2. 
5) The controller of S2 detects the carrier with a tray with frames at location S2. 

Zone 2 

Zone 1

Storage Facility

R1

R3 
S4 

R2
S2

S3

S1
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6) The tray with frames is moved by R2 from the second carrier to the assembly 
table, location S4. 

7) R3 takes lenses from the tray, moves them to S4 and installs into the frames 
one by one. 

8) If a complete set of lenses and frames is assembled, the system goes to 
step 11. 

9) If a lens is missing but the assembly process is not completed, the tray with 
lenses is loaded by R2 back to the carrier and transferred to the storage 
facility (S1) to get the missing component. After that, the system goes to step 
1. 

10) If a frame is missing but the assembly process is not completed, the tray with 
frames is loaded by R2 back to the carrier and transferred to the storage 
facility (S1) to get the missing component. After that, the system goes to step 
1. 

11) The tray with frames with installed lenses is loaded by R2 to the carrier, 
which transfers it to the next assembly stages. 

12) The system goes to the initial state. 

The detailed description can be found in [23]. 
The test implementation showed that establishing complex communications and 

interactions between production units significantly increases the complexity and 
decreases the reliability of the entire system. Introduction of the context variation can 
simplify the implementation. 

In accordance with the notation given in sec. 4.2, the context elements related to 
the case study can be described as follows (fig. 3): 

 
<<enum>>

S2

+ empty carrier
+ carrier with lenses

+ carrier with assemblies
+ carrier with frames

+ carrier with empty tray

+ carrier with frames (missing frame)
+ carrier with lenses  (missing lens)

<<enum>>

S3

+ tray with frames
+ tray with assemblies

<<enum>>

S4

+ tray with lenses
+ empty tray

position1

position2

position3

<<enum>>

location

+ location2: S2
+ location3: S3
+ location4: S4

Context

+ {location_state: position}

+ nothing

+ nothing

 
Fig. 3. Context elements  
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C = {location} 
CT = {enum} 
PK = {location2; location3; location4} 
PKT = {S2, S3, S4} 
P = {nothing; carrier with lenses; carrier with frames; carrier with assemblies; 

carrier with empty tray; carrier with lenses (missing lens); carrier with frames 
(missing frame); tray with frames; tray with assemblies; tray with lenses; empty tray} 

PT = {S2, S3, S4} 
CV = P  PK 

R2 and R3 can be formulated as follows (only mandatory variants are considered): 
 
R3 (fig. 4) 
location3 = tray with frames (mandatory) 
location4 = tray with lenses (mandatory) 
Run “insert lenses into frames” program 

location3: S3 = tray with frames
and location4: S4 = tray with lenses

insert lenses into 
frames

do nothing

 
Fig. 4. Activity diagram for handling unit R3 

R2 (fig. 5) 
Context variation 1: 
location2 = carrier with lenses (mandatory) 
location4 = nothing (mandatory) 
Run “move tray from S2 to S4” program 
 
Context variation 2: 
location2 = carrier with frames (mandatory) 
location3 = nothing (mandatory) 
Run “move tray from S2 to S3” program 
 
Context variation 3: 
location2 = empty carrier (mandatory) 
location4 = empty tray (mandatory) 
Run “move tray from S4 to S2” program 
 
Context variation 4: 
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location2 = empty carrier (mandatory) 
location3 = tray with assemblies (mandatory) 
Run “move tray from S3 to S2” program 
 

location2: S2 = carrier with lenses
and location4: S4 = nothing

move tray from S2 to 
S4

do nothing

move tray from S2 to 
S3

move tray from S4 to 
S2

move tray from S3 to 
S2

location2: S2 = carrier with frames
and location3: S3 = nothing

location2: S2 = empty carrier
and location4: S4 = empty tray

location2: S2 = empty carrier
and location3: S3 = tray with assemblies

 
Fig. 5. Activity diagram for handling unit R2 

Such context variations were quite easy to implement. For testing purposes 
FESTO1 equipment was used controlled by CPX-FEC device implementing easyIP & 
Modbus protocols and HTTP requests. 

5   Summary and Future Work 

Using an industrial example from CPS in production, this paper motivated the need 
for controlling variability and for the introduction of context variants into self-
organization and self-contextualization of IoT/CPS solutions. Part of the work was to 
formalize the concept of context variant. Furthermore, the paper presents industrial 
cyber-physical system for two robots interaction in a configuration workstation. The 
systems is based on the Industrie 4.0 concept that is a new paradigm of intelligent 
manufacturing systems based on Internet of Things, internet services, cyber-physical 
systems, and cloud technologies. Robots interact with each other through the smart 
space infrastructure, which is developed based on Smart-M3 information sharing 
platform. Special software for the robot controllers has been developed that allows to 
implement scenarios based on control actions. The control actions are supported by 
the developed smart space services for each robot, which interact with each other in 
the smart space and control robots in the physical space. 

                                                           
1 Festo AG & Co. KG, http://www.festo.de 

103



The biggest limitation of our work is that it was implemented and used only in one 
prototype scenario, i.e. conceptual and technical feasibility have been shown but 
pertinence for real-world production has not been demonstrated yet. Context variant 
conceptualization were developed with the intention to serve as basis for 
implementing services for use in IoT/CPS solutions. We found it valuable to 
conceptualize the overall behavior of CPS.  

Future work will include conceptual and technical activities. From a technical 
perspective, experimentation with the use of context variants is one of the planned 
activities. From a conceptual point of view, we plan to investigate effect of using 
context variants on the engineering process of IoT/CPS solutions. The specification of 
variations probably has to be part of the design and specification of the overall CPS, 
which also will affect requirement elicitation. 
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#16-29-04349 and State Research no. 0073-2018-0002. 
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