
Learning the Parameters of Deep Probabilistic
Logic Programs

Arnaud Nguembang Fadja1, Fabrizio Riguzzi2, Evelina Lamma1

1 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

[arnaud.nguembafadja,fabrizio.riguzzi,evelina.lamma]@unife.it

Abstract. Probabilistic logic programming (PLP) is a powerful tool for
reasoning in relational domains with uncertainty. However, both infer-
ence and learning from examples are computationally expensive tasks.
We consider a restriction of PLP called hierarchical PLP whose clauses
and predicates are hierarchically organized forming a deep neural net-
work or arithmetic circuit. Inference in this language is much cheaper
than for general PLP languages. In this work we present an algorithm
called Deep Parameter learning for HIerarchical probabilistic Logic pro-
grams (DPHIL) that learns hierarchical PLP parameters using gradient
descent and back-propagation.

Keywords: Probabilistic Logic Programming, Distribution Semantics, Deep
Neural Networks, Arithmetic Circuits.

1 Introduction

Probabilistic logic programming (PLP) under the distribution semantics [8] has
been very useful in machine learning. However, inference is expensive so machine
learning algorithms may turn out to be slow. We consider a restriction of the
language of Logic Programs with Annotated Disjunctions (LPADs) called hier-
archical PLP (HPLP), see [6] in which clauses and predicates are hierarchically
organized. Any HPLP can be translated into an arithmetic circuit (AC) or a
deep neural network. Inference is performed by evaluating the AC and parame-
ter learning by applying gradient descent and back-propagation algorithms.

The paper is organized as follows: we describe HPLP in Section 2 and present
parameter learning in Section 3. Related work is discussed in Section 4 and
Section 5 concludes the paper.

2 Hierarchical PLP

Programs in LPADs allow alternatives in the head of clauses. They are set
of clauses, Ci, of the form hi1 : πi1; . . . ;hini

: πini
:− bi1, . . . , bimi

where

hi1, . . . , hini
are logical atoms, bi1, . . . , bimi

are logical literals and
πi1, . . . , πini

are real numbers in the interval [0, 1] that sum up to 1. Clauses
where

∑ni

k=1 πik < 1 implicitly contain an extra atom null that does not appear
in the body of any clause and whose annotation is 1−

∑ni

k=1 πik.

An HPLP is a restricted LPAD where clauses are of the form Cpi = ap :
πpi :− φpi, bpi1, . . . , bpimp . ap, an atom possibly about target predicate (the
atom we aim at predicting), is the single head atom annotated with probability
πpi. The body of the clause has 2 parts: a conjunction of input predicates, φpi, in
the sense that their definition is given as input and is certain, and a conjunction
of literals for hidden predicates, bpik, that are defined by clauses of the program.
Hidden predicates are disjoint from input and target predicates. Moreover, the
program is hierarchically organized so that it can be divided into layers forming
an Arithmetic circuit or a deep neural netwoks, see [6].

Let us consider the following example in the UW-CSE domain where the
objective is to predict the “advised by” relation (advisedby/2 is the target pred-
icate)

C1 = advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C,A), project(C,B),
r11(A,B,C).

C2 = advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C,A), taughtby(C,B).

C111 = r11(A,B,C) : 0.2 :−
publication(D,A,C), publication(D,B,C).

where project(C,A) means that C is a project with participant A, ta(C,A)
means that A is a teaching assistant (TA) for course C and taughtby(C,B)
means that course C is taught by B. publication(A,B,C) means that A is
a publication with author B produced in project C. student/1, professor/1,
project/2, ta/2, taughtby/2 and publication/3 are input predicates and r11/3 is
a hidden predicate.

The probability p = advisedby(harry, ben) depends on the number of joint
courses and projects and on the number of joint publications from projects. The
clause for the hidden predicate r11/3 computes an aggregation over publications
of the same project and the clause of the level above aggregates over projects.
The corresponding arithmetic circuit is shown in Fig 1 .

In order to perform inference with such a program, we can generate its
grounding. Each ground probabilistic clause is associated with a random vari-
able whose probability of being true is given by the parameter of the clause and
that is independent of all the other clause random variables. Given a ground in-
stance of Cpi, the probability that the body is true is computed by multiplying
the probability of being true of each individual atom in positive literals and one
minus the probability of being true of each individual atom in negative literals.
Therefore the probability of the body of Cpi is P (bpi1, . . . , bpimp) =

∏mp

i=k P (bpik)
and P (bpik) = 1 − P (apik) if bpik = ¬apik. If bpik = a is a literal for an input
predicate, P (a) = 1 if it belongs to the example interpretation and P (a) = 0
otherwise. To compute the probability, P (ap), of an atom ap of a given hidden

r

⊕

× × × ×

⊕
0.3

⊕
0.6

× × × ×

0.2

Fig. 1: Arithmetic circuit.
.

literal bp, we need to take into account the contribution of every ground clause
for the atom ap. For a single clause, P (ap) = πp1 ·P (body(Cp1)). For two clauses,
we can compute the contribution of each clause as above and then combine them
with the formula P (api) = 1− (1−πp1 ·P (body(Cp1)) · (1−πp2 ·P (body(Cp2))).
We defined the operator ⊕ that combines two probabilities as follows p ⊕ q =
1 − (1 − p) · (1 − q). This operator is commutative and associative. For many
clauses, we can compute sequences of applications as

⊕
i pi = 1−

∏
i(1−pi). AC

are built by performing inference using tabling and answer subsumption using
PITA(IND,IND) [7] as described in [6]. However, writing HPLP can be unintu-
itive because of the constraints imposed on it and because of uncleared meaning
of hidden predicates. We plan in our future work to design an algorithm for
learning both the parameters and the structure of HPLP.

3 Parameter learning

We propose a back-propagation algorithm for learning HPLP parameters. Given
an HPLP T with parameters Π, an interpretation I defining input predicates and
a set of positive and negative examples E = {e1, . . . , eM ,not eM+1, . . . ,not eN}
where each ei is a ground atom for the target predicate r, we want to find the
values of Π that minimize the sum of cross entropy errors, erri = −yi log(pi)−
(1−yi) log(1−pi), for all the examples. The algorithm, called DPHIL 1, starts by
building a set of ground ACs sharing parameters Π, line 2. Then weights (W [i]),
gradients (G[i]) and moments (adam’s parameters, see [3]) are initialized, lines
2–6 . At each iteration, three actions are performed on each AC: the Forward
pass computes the output v(n) of each node n in the AC, the Backward pass
computes the derivative of the error d(n) 1, that is the gradient, with respect to

each parameter

d(n) =

d(pan) v(pan)

v(n) if n is a
⊕
node,

d(pan) 1−v(pan)
1−v(n) if n is a × node∑

pan
d(pan).v(pan).(1− πi) if n=σ(Wi)

−d(pan) pan = not(n)

(1)

where pan is the parent of node n and πi = σ(Wi) = 1
1+e−Wi

, lines 9–16. Pa-

rameters are updated using Adam the optimizer [3], line 17. These actions are
repeatedly performed until a maximum number of steps is reached or until the
difference between the log likelihood of the current and the previous iteration
drops below a threshold or the difference is below a fraction of the current log
likelihood. Finally the theory is updated with the learned parameters, line 19.

Algorithm 1 Function DPHIL.

1: function DHPIL(Theory, ε, δ,MaxIter, β1, β2, η, ε̂, Strategy)
2: Examples← BuildACs(Theory) . Build the set of ACs
3: for i← 1→ |Theory| do . Initialize weights,gradient and moments vector
4: W [i]← random(Min,Max) . initially W [i] ∈ [Min,Max].
5: G[i]← 0, Moment0[i]← 0, Moment1[i]← 0
6: end for
7: Iter ← 1, LL← 0
8: repeat
9: LL0 ← LL

10: LL← 0
11: Batch← NextBatch(Examples) . Select the batch according to the

strategy
12: for all node ∈ Batch do
13: P ← Forward(node)
14: Backward(G,− 1

P
, node)

15: LL← LL+ logP
16: end for
17: UpdateWeightsAdam(W,G,Moment0,Moment1, β1, β2, η, ε̂, Iter)
18: until LL− LL0 < ε ∨ LL− LL0 < −LL.δ ∨ Iter > MaxIter
19: FinalTheory ← UpdateTheory(Theory,W)
20: return FinalTheory
21: end function

4 Related Work

HPLP is related to [4,2,5] where the probability of a query is computed by
combining the contribution of different rules and grounding of rules with noisy-
Or or Mean combining rules. In First-Order Probabilistic Logic (FOPL), [4]

and Bayesian Logic Programs (BLP), [2], each ground atoms is considered as
a random variable and rules have a single atom in the head and only positive
literals in the body. Each rule is associated with a conditional probability table
defining the dependence of the head variable from the body ones. Similarly to
HPLP, FOPL and BLP allow multiple layer of rules. Differently from FOPL
and HPLP, BLP allows different combining rules. Like FOLP, BLP and HPLP,
First-Order Conditional Influence Language (FOCIL) [5], uses probabilistic rules
for compactly encoding probabilistic dependencies. The probability of a query is
computed using two combining rules: the contributions of different groundings
of the same rule with the same random variable in the head are combined by
taking the Mean, and the contributions of different rules are combined either
with a weighted mean or with a noisy-OR combining rule. FOPL, BLP and
FOCIL implement parameter learning using gradient descent, as DPHIL, or
using the Expectation Maximization algorithm. By suitably restricting the form
of programs, we were able to provide simpler formulas for the computation of
the gradient with respect to [4,2,5].

5 Conclusion

We have presented the algorithm DPHIL that performs parameter learning of
HPLP. DPHIL converts an HPLP into an AC and performs gradient descent
and back-propagation. In the future we plan to experiments with DPHIL and
investigate the Expectation Maximization algorithm as an alternative parameter
learning method. We also plan to design an algorithm for learning both the
structure and the parameters of HPLPs, taking inspiration from SLIPCOVER
[1].

References

1. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by search-
ing the clause space. Theor. Pract. Log. Prog. 15(2), 169–212 (2015)

2. Kersting, K., De Raedt, L.: Basic principles of learning bayesian logic programs. In:
Institute for Computer Science, University of Freiburg. Citeseer (2002)

3. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

4. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: IJCAI.
pp. 1316–1323 (1997)

5. Natarajan, S., Tadepalli, P., Kunapuli, G., Shavlik, J.: Learning parameters for
relational probabilistic models with noisy-or combining rule. In: Machine Learning
and Applications, 2009. ICMLA’09. International Conference on. pp. 141–146. IEEE
(2009)

6. Nguembang Fadja, A., Lamma, E., Riguzzi, F.: Deep probabilistic logic program-
ming. CEUR-WS, vol. 1916, pp. 3–14. Sun SITE Central Europe (2017)

7. Riguzzi, F.: Speeding up inference for probabilistic logic programs. Comput. J. 57(3),
347–363 (2014)

8. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) ICLP 1995. pp. 715–729. MIT Press (1995)

	Learning the Parameters of Deep Probabilistic Logic Programs

