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ABSTRACT
Wepropose the Roadscape-based Route Recommender System (R3),
which provides diversified roadscape-based routes. Given start-
ing and destination points, R3 provides four types of roadscape-
based routes: rural-, mountainous-, waterside-, and urban-prior
routes. To reduce the computational cost, we propose a coarse-to-
fine route search approach that consists of a roadscape-based clus-
tering method, a roadscape cluster graph, a coarse-grained route
search, and a fine-grained route search. We evaluated the perfor-
mance of R3 using network data for a real road. The experimental
results show that using coarse-grained route search can signifi-
cantly reduce route search time.

CCS CONCEPTS
• Information systems → Social recommendation;
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1 INTRODUCTION
Cars are driven not only for transportation but also for the plea-
sure of it. Some people want to drive along the seaside or on rural
roads while enjoying their favorite landscape. We call such road-
side landscapes “roadscapes.” In such situations, it is not always
the best solution to provide the shortest or the fastest route. An
alternative solution is to provide routes with favored roadscapes
even if they involve a detour.

Given starting and destination points, a route recommender sys-
temprovides routes from the starting point to the destination point.
The majority of traditional route recommender systems provide
the shortest routes [3, 7], the fastest routes [4, 5, 9, 11, 12], or pop-
ular routes [1, 6, 8, 10]. As mentioned above, the shortest and the
fastest routes do not always satisfy the user’s demands. Systems
that recommend popular routes provide routes many people are
interested in. Wei et al. [8] extract popular routes by mining road
links many people are interested in from their trajectories. Such
route recommender systems consider the attractiveness of routes
based on the wisdom of crowds, without considering the content
features of routes.

In this paper, we focus on the roadscape as a route feature and
propose the Roadscape-based Route Recommender System (R3),
which provides diversified routes on the basis of roadscapes. Given
starting and destination points, R3 provides four types of roadscape-
based routes: rural-, mountainous-, waterside-, and urban-prior
routes. For example, a user who likes waterside views can select
waterside-prior routes from the four types of routes provided. To
develop such a route recommender system, we have proposed a

method for estimating roadscapes of given road links. In particu-
lar, we defined rural, mountainous, waterside, and urban elements
as the roadscape elements, which are basic elements that compose
a roadscape, through preliminary experiments. We defined a road-
scape vector each of whose elements corresponds to a roadscape
element and proposed amethod for estimating such roadscape vec-
tors for given road links. We presuppose that R3 is to be used on
road network data with roadscape vectors.

Traditional route searching algorithms, such as the Dijkstra al-
gorithm [2], are given the costs of road links and find a route that
minimizes the sum of their costs. The simplest approach is to ap-
ply the traditional method and reduce the costs of the road links
having the targeted roadscape elements. However, there is a high
computational cost in applying such a method to a very large road
network.

To reduce the computational cost, we propose a coarse-to-fine
route search approach. We focus on the concept that similar road-
scapes do not exist as fragments but in clusters. For example, there
are some areas composed of similar roadscape elements, such as
rural areas, mountainous areas, waterside areas, and urban areas.
Based on this characteristic, we expect that we can reduce the com-
putational cost by clustering similar roadscape areas in advance.

In this approach, we firstly extract areas—roadscape clusters—
composed of similar roadscape elements by using a roadscape-
based clustering method. Secondly, we create a roadscape clus-
ter graph whose nodes correspond to the roadscape clusters and
whose links correspond to the links between roadscape clusters.
In the route searching process, given the roadscape cluster graph
and starting and destination points, we roughly find four types
of roadscape-based routes, which are the roadscape cluster sets
passed through, one for each roadscape element; we call this the
coarse-grained route search. Then, we find specific routes that con-
nect the roadscape clusters in each type of route; we call this the
fine-grained route search.

The contributions of this paper are as follows:

• We propose the Roadscape-based Route Recommender Sys-
tem (R3), which provides diversified roadscape-based routes,
namely, rural-, mountainous-, waterside-, and urban-prior
routes.

• To reduce the computational cost, we propose a coarse-to-
fine route search approach that consists of a roadscape-based
clusteringmethod, a roadscape cluster graph, a coarse-grained
route search, and a fine-grained route search.

• We evaluate the performance of R3 using network data for a
real road. The results show that using coarse-grained route
search can significantly reduce route search time.
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2 PRELIMINARIES
Definition 1: Road network. A road network is a directed

weighted graph G = (V ,E), where V is a set of road nodes
and E ⊆ V × V is a set of road links. A road node vi ∈ V
represents an intersection or an endpoint of a road. A road
link ek = (vi ,vj ) ∈ E is a directed link from the starting
node vi to the ending node vj . A road link ek is assigned a
costwk according to the length of the link.

Definition 2: Roadscape element. Roadscape elements are
basic elements that compose a roadscape. We define four
roadscape elements: rural, mountainous, waterside, and ur-
ban elements. These elements were selected by preliminary
experimentation.1

Definition 3: Roadscape vector. A roadscape vector is de-
fined as a four-dimensional probability vector each ofwhose
elements corresponds to one of the respective roadscape
elements. We define a roadscape vector of a road link ei
as s(ei ) = (sri , s

m
i , s

w
i , s

u
i ). Each element of the vector de-

notes the probability of how strongly ei includes the cor-
responding roadscape element. Therefore, the sum of the
values over all elements is 1.

Definition 4: Roadscape cluster. A roadscape cluster Cj ∈
C is represented by a set of road links having similar road-
scape vectors. A roadscape vector s(Cj ) of roadscape cluster
Cj is represented by the mean vector of the roadscape vec-
tors of the road links included in cluster Cj . Therefore, we
define s(Cj ) as follows:

s(Cj ) =
1
|Cj |

∑
i ∈Cj

s(ei ). (1)

Here, |Cj | denotes the number of road links included in the
roadscape cluster Cj .

Definition 5: Roadscape cluster graph. A roadscape cluster
graph is a directed weighted graph G = (V, E), where V
is a set of roadscape clusters Ci and E ⊆ V ×V is a set of
links between roadscape clusters. A link lk = (Ci ,Cj ) ∈ E
is a directed link from the starting node Ci to the ending
node Cj . The road link lk is assigned a cost vector ωk =

(ωr
k ,ω

m
k ,ω

w
k ,ω

u
k ) based on the roadscape vector Cj of end-

ing roadscape clusterCj . Each element ofωk denotes a cost
for the corresponding roadscape; these are used for roadscape-
based route searching. For example, ωr

k is the cost refer-
enced when searching for rural-prior routes.

Definition 6: Intra-cluster similarity of roadscape vector.
The intra-cluster similarity is the mean similarity between
all pairs of road links included in the cluster. We denote the
intra-cluster similarity of roadscape clusterCj as intra_sim(Cj ).
The value of intra_sim(Cj ) is calculated as follows:

intra_sim(Cj ) =
1

n |Cj |
∑
i ∈Cj

∑
k ∈Cj

cos(s(ei ), s(ek )). (2)

Here, ei and ek are road links included in cluster Cj , and n
denotes the total number of links in the road network. The

1The preliminary experimentation to select the roadscape elements was done via
crowdsourcing. These four elements are specific to Japanese road network data. De-
tails are outside the scope of this paper.

Figure 1: Recommended roadscape-based routes.

value of cos(s(ei ), s(ek )) is calculated as follows:

cos(s(ei ), s(ek )) =
s(ei ) · s(ek )
|s(ei )| |s(ek )|

. (3)

3 ROADSCAPE-BASED ROUTE
RECOMMENDER SYSTEM

3.1 System Overview
Our proposed Roadscape-based Route Recommender System (R3)
provides four types of roadscape-based routes: rural-, mountainous-
, waterside-, and urban-prior routes. Figure 1 shows a result pro-
vided by R3. When a user inputs starting and destination points on
the map, the four types of roadscape-based routes are provided in
different colors.

It is assumed that R3 will be used with a road network with
roadscape vectors. The steps of R3 are as follows:

(1) Generate roadscape cluster graph based on road network
with roadscape vectors.

(2) Roughly find four types of roadscape-based routes in the
roadscape cluster graph based on the starting and destina-
tion points that are input (coarse-grained route search).

(3) Find a detailed route that connects roadscape clusters in
each type (fine-grained route search).

(4) Recommend four types of routes in different colors on the
map.

Here, step (1) can be performed offline because this process does
not depend on the inputs. In the next sections, we describe steps
(1)–(3) in detail.

3.2 Generating Roadscape Cluster Graph
3.2.1 Roadscape-based Clustering. Given a road network, we

form roadscape clusters based on proximities of pairs of road links
and similarities between their roadscape vectors. Adjacent road
links belong to the same cluster if their similarity is greater than
or equal to a given threshold value. Figure 2 shows the result of
applying roadscape-based clustering to the road network of Awaji
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Figure 2: Result of applying roadscape-based clustering to
the road network of Awaji Island, Japan. Each color corre-
sponds to a given cluster.

Island, Japan. Here, area A corresponds to a rural area, area B cor-
responds to a mountainous area, area C corresponds to a waterside
area, and area D corresponds to an urban area.

Algorithm 1 shows the pseudocode for roadscape-based cluster-
ing.We explain the clustering process as performed byAlgorithm 1
as follows:

Algorithm 1 Roadscape-based clustering.
Require: Target link ei , Cluster ID k
1: function roadscapeClustering(ei , k )
2: Cluster ID of ei ⇐ k
3: linkList ⇐ getLink(ei ): Get links adjacent to ei .
4: for each ej in linkList
5: if Cluster ID of ej = 0 then
6: if cos(s (ei ), s (ej )) >= α then
7: roadscapeClustering(ej , k )
8: end if
9: end if
10: end for
11: return 0
12: end function

We randomly select a road link from the road network. Let ei
be the target link, and let ej be one of the links adjacent to ei .
Here, if two links are connected to a common node, the links are
considered adjacent. Furthermore, let s(ei ) and s(ej ) be roadscape
vectors of the respective links.

The roadscape-based clustering algorithm is called as
roadscapeClustering(ei ,k). First, add k as the cluster ID of ei .
Second, get all links adjacent to ei , and set them into linkList.
For each link ej ∈ linkList, perform the following process. If a
cluster ID has not been assigned to ej , cos(s(ei ), s(ej )) (Equation
(3)) is calculated. If cos(s(ei ), s(ej )) is greater than or equal to the
threshold α , cluster ID k of ei is added as the cluster ID of ej . Fur-
thermore, roadscapeClustering(ej ,k) is recursively called. The
above process is repeated until the cluster ID has been added to all
of the links in the road network.

We define the roadscape cluster obtained by the above process
as Ck ∈ C, where k corresponds to the cluster ID. In addition,
roadscape vector s(Ck ) of cluster Ck is calculated by Equation (1).

node = roadscape cluster

link

Figure 3: Example of a roadscape cluster graph created for
Awaji Island’s road network.

3.2.2 Generating Roadscape Cluster Graph. After extracting the
roadscape clusters, we create the adjacency matrix for all road-
scape clusters. The adjacency matrix for the roadscape clusters is
represented as the |C| × |C| matrix A = [ai j ] |C |×|C | . If ai j = 1,
clustersCi andCj have at least one common node; otherwise, they
do not have a common node.

We then create the roadscape cluster graph based on the adja-
cency matrix. Figure 3 gives an example of the roadscape cluster
graph created for Awaji Island’s road network. Here, a node in the
roadscape cluster graph corresponds to a roadscape cluster, and a
link corresponds to the adjacency relationship between clusters.

3.2.3 Assigning Costs to Roadscape Cluster Graph. In order to
execute the coarse-grained route search described in the next sec-
tion, we assign costs to the links of the roadscape cluster graph in
advance. A link cost is calculated based on the roadscape vector
of the roadscape cluster corresponding to the link’s destination. If
the targeted roadscape element of the next roadscape cluster desti-
nation is emphasized, let its link cost be lower; on the other hand,
if it is not emphasized, let its link cost be higher. For example, for
a case in which a rural element is targeted, if the rural element of
the next roadscape cluster destination is emphasized, let its link
cost be lower; otherwise, let its link cost be higher. By assigning
costs in such a way, the route to the roadscape cluster where the
rural element is emphasized is more likely to be chosen in the route
search.

A cost vector ωk of link lk = (Ci ,Cj ) is calculated as follows:

ωk = dk (1 − s(Cj )2). (4)

Here, dk is the length of link lk .

3.3 Coarse-grained Route Search
As the first search, we execute the coarse-grained route search
method. This method roughly finds four types of roadscape-based
routes in the roadscape cluster graph. The process is as follows:

(1) Given starting and destination points, get roadscape clus-
ters and starting and destination clusters, which include the
starting and destination points, respectively.
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Figure 4: Comparison of route search times.

(2) For the targeted roadscape element, find a route that mini-
mizes the sum of the link costs related to the targeted ele-
ments using Dijkstra’s algorithm [2] on the roadscape clus-
ter graph.

(3) Repeat step (2) for each roadscape element.
Thus, we obtain four types of coarse-grained routes as the road-
scape cluster sets that are passed through for each roadscape ele-
ment.

3.4 Fine-grained Route Search
As the second search, we execute the fine-grained route search
method for each coarse-grained route. This method finds detailed
routes that connect roadscape clusters. The process for each tar-
geted element is as follows:

(1) Find common road nodes of each adjacent cluster in the
roadscape cluster sets captured by the coarse-grained route
search.

(2) Find the shortest route from the starting point to the first
common road node that is adjacent to the next cluster.

(3) While there are common road nodes, find the shortest route
from the common road node to the next common node.

(4) Find the shortest route from the last common node to the
destination point.

(5) Generate a route that connects all the routes obtained.
Here, we again use Dijkstra’s algorithm [2] to find the shortest
routes. Finally, we obtain four types of fine-grained routes.

4 RESULTS
In this section, we evaluate the performance of the proposed R3
method using network data for a real road in Awaji Island, Japan.
The road network data are derived fromOpenStreetMap,2 and they
include 102,506 road nodes and 212,050 road links for the area of
Awaji Island. For this area, roadscape vectors for all road links are
available on the web.3

R3 introduces a coarse-grained route search as preprocessing to
reduce the route search time instead of performing a route search
on all road links. In this section, we compare the route search times
using coarse-grained route search with those not using it.

First, we prepare the following five pairs of starting and desti-
nation points.
2https://www.openstreetmap.org/
3https://zenodo.org/record/1405255#.W4Yyb-j7T-g

(a) (34.257575, 134.722549) → (34.574902, 134.959632)
(b) (34.317774, 134.676412) → (34.348304, 134.896255)
(c) (34.499798, 134.938260) → (34.293801, 134.788816)
(d) (34.545838, 134.923368) → (34.440009, 134.912038)
(e) (34.208185, 134.814500) → (34.430861, 134.830634)

For each pair, we execute the route search algorithm that empha-
sizes each roadscape element and measure the route search time.
We regard this execution as one trial. We execute this trial ten
times for each pair and calculate themean of the route search times
across trials.

We implemented the route search algorithmusing Java andman-
aged the road network data using PostgreSQL 9.5. We conducted
experiments on a computer equipped with an Intel Core i5-6200U
CPU (2.8 GHz), 8 GB memory, 256 GB SSD, and Linux Mint 18.2.

Figure 4 shows the mean route search times for methods with
andwithout coarse-grained route search. For themethodwith coarse-
grained route search, the figure includes the route search time for
each value of α . ∗∗ indicates that a significant difference (p <
0.01) could be confirmed when comparing with the method with-
out coarse-grained route search by the paired t-test (one-sided test).
We can see from Figure 4 that the route search time can be short-
ened by using coarse-grained route search. The figure also shows
that the higher the value ofα was, the shorter the route search time
was. In particular, when α = 0.95, the search time with coarse-
grained route search was 6.24 s, whereas it was 456 s when coarse-
grained route search was not used. Consequently, we can say that
the use of coarse-grained route search can significantly reduce route
search time.

5 CONCLUSIONS
In this paper, we have proposed a Roadscape-based Route Rec-
ommender System (R3) that provides diversified roadscape-based
routes. Given starting and destination points, R3 provides four types
of roadscape-based routes: rural-, mountainous-, waterside-, and
urban-prior routes. To reduce computational costs, we proposed a
coarse-to-fine route search approach that consists of a roadscape-
based clusteringmethod, a roadscape cluster graph, a coarse-grained
route search, and a fine-grained route search.

We evaluated the performance of R3 using real road network
data with roadscape vectors in the area of Awaji Island. The results
show that using coarse-grained route search can significantly re-
duce route search time. In the future, we will conduct user tests to
evaluate our system from the users’ perspective.
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