
Karlskrona Manifesto: Software Requirement

Engineering Good Practices

Shola Oyedeji

School of Engineering Science (LENS)

Lappeenranta University of Technology (LUT)

Lappeenranta, Finland

shola.oyedeji@lut.fi

Birgit Penzenstadler

Department of Computer Engineering and Computer Science

California State University Long Beach (CSULB)

Long Beach, California, USA

birgit.penzenstadler@csulb.edu

Abstract—Manifestos in the history of computer science and

software engineering have framed guiding principles upon which

processes, methods and tools were developed. The Karlskrona

Manifesto for Sustainability Design serves this same purpose as a

guide for designing and developing sustainable software systems.

The goal of this paper is to explore the derivation of good prac-

tices by applying the Karlskrona principles in sustainability re-

quirements elicitation. How can the Karlskrona manifesto be

translated into methods, processes and tools in the software re-

quirements engineering domain? The result is a proposed list of

best practices for software sustainability requirements elicitation.

This will facilitate the application of the Karlskrona manifesto

for sustainability requirements elicitation and engineering.

Index Terms—Karlskrona Manifesto, requirements

engineering, sustainable software, sustainability, best practice,

best practice documentation, software requirements,

sustainability requirement elicitation, sustainability design

I. INTRODUCTION

Sustainability has become one of the major issues of society

today because of the impact of human activity on our planet –

this includes interactions in between individual persons, within

communities, and between companies and users. Bonini et al.

[1] report that sustainability is an important element in the pro-

gram of many companies, but their environmental, social and

governance activities are disconnected from their core strategy.

The challenge for most companies is that there is little under-

standing of how sustainability can be understood by software

and requirements engineering professionals to facilitate sus-

tainability design as an established part of the software devel-

opment process and, specifically, the requirements engineering

process [2][3][4].

Users these days are willing to pay more for sustainable

software products and services because of the increased aware-

ness from different worldwide initiatives. One central initiative

and set of guiding goals are the United Nations Sustainable

Development Goals (SDGs), which state initiatives to tackle

different crucial sustainability problems humanity faces [5].

Nielsen’s global online study [6] shows the percentage of con-

sumers willing to pay extra for products and services from

companies dedicated to positive environmental and social im-

pact increased from 55% in 2014 to 72% in 2015.

Software is a core of all human activities today and a major

facilitator in the way humans produce and use products and

services [7]. The way the software is designed, the require-

ments to ensure sustainability are factors in software design

and how software can support sustainability are still areas that

are evolving with different challenges on how best to elicit

sustainability requirements for software systems [8].

Consequently, requirements engineering has a major role to

play in ensuring the sustainability of software in its broadest

understanding. The challenge is that, compared to other types

of software requirements like usability and security require-

ments, which have a well-defined systematic structure and

principles on how to elicit system requirements [9], there is still

less support on how sustainability requirements can be derived

systematically.

One known guiding framework for software sustainability

design is the Karlskrona Manifesto for Sustainability Design

(KMSD). Following in the footsteps of other successful mani-

festos such as the Agile manifesto [10], the Business Rules

manifesto [11] and the Recomputation manifesto [12], the

Karlskrona Manifesto proposes principles that aim to serve as a

guide – in this case on how to think of sustainability when it

comes to software systems design.

Manifestos like the Agile manifesto are one example that

has transitioned into processes, methodologies and tools to help

practitioners using Agile in software development. Dick et al.

[13] showed how the Agile method was used in software engi-

neering processes to develop “greener” software systems sup-

ported by Agile software project management. Agile has dif-

ferent frameworks and approaches such as Scrum, Kanban, and

Lean. Agile also has some best practices such as test-driven

development (TDD), refactoring, continuous integration, and

Pair programing [14].

Relating Agile to requirement engineering, Paetsch et al.

[15] have studied the similarities and difference between tradi-

tional requirements engineering and agile approaches in order

to complement agile with some methods from requirements

engineering. Up to now, the Karlskrona Manifesto for Sustain-

ability Design has put forward only limited research on trans-

forming these principles into processes, methods and tools that

can support software designers and developers during software

systems development.

This paper explores a starting point for such a transition of

the principles into processes and methods that can educate and

encourage software system designers and developers in elicit-

ing software sustainability requirements.

Birgit Penzenstadler
Copyright held by the author(s).

Section 2 covers the background on the Karlskrona Mani-

festo and best practice documentation. Section 3 presents the

research design for the paper. Section 4 sketches the relation

between the Karlskrona Manifesto and software development

life cycle phases. Section 5 highlights the proposed method for

documenting requirements engineering best practices. Section

6 covers the discussion and Section 7 provides concluding

thoughts and future work.

II. BACKGROUND

A. The Karlskrona Manifesto

The Karlskrona Manifesto for Sustainability Design

(KMSD) was initiated through an initiative to create a common

ground and a point of reference for the global community of

research and practice in software and sustainability to effective-

ly communicate major issues, goals, values and principles of

sustainability for the design and development of software sys-

tems [16]. KMSD has its roots in the Third International Work-

shop on Requirements Engineering for Sustainable Systems

(RE4SuSy) [17]. The motive for creating the KMSD was as a

result of Christoph Becker’s contribution [18] on the relation-

ship between the concerns of sustainability and longevity.

The first stakeholders that contributed, drafted and signed

the manifesto were a number of researchers from various areas

in the field of software engineering with sustainability research

interests as described in [19] [20].

The Karlskrona Manifesto was conceived based on the fol-

lowing guidance [16]:

 Principles not techniques as a guide for building,

developing and improving new/old techniques and

tools to support sustainability design.

 Provide a broader scope to be all-inclusive and en-

compassing all aspects of sustainability.

 Bottom up approach to cover all emerging struc-

ture from contributions of all participants in-

volved in the initiation of the manifesto.

 Discussion through participation and transpar-

ency to encourage broader engagement of differ-

ent experts of sustainability and interested partici-

pants.

 Conversation over consensus to enable dialogue

among the community of stakeholders and all in-

terested participants.

 Minimal and adaptive process focussed on

emergent content and structure.

 Synchronous collaboration. Contents of the man-

ifesto were written through synchronous collabo-

ration.

 Iterative evolution. A common vision was formu-

lated to guide the incremental evolution of the

manifesto.

Table 1 covers all the Karlskrona Manifesto principles and

description for each principles.

TABLE 1. KARLSKRONA MANIFESTO

Principles Description

P1. Sustainability is sys-

temic

Sustainability is never an isolated prop-

erty. It requires transdisciplinary com-

mon ground of sustainability as well as a

global picture of sustainability within

other properties.

P2 Sustainability has mul-

tiple dimensions

All the different dimensions of sustaina-

bility has to be included into our analy-

sis if we are to understand the nature of

sustainability in any given situation.

P3 Sustainability trans-

cends multiple disciplines

Working in sustainability means work-

ing with people from across many disci-

plines, addressing the challenges from

multiple perspectives.

P4. Sustainability is a

concern independent of the

purpose of the system.

Sustainability has to be considered even

if the primary focus of the system under

design is not sustainability.

P5. Sustainability applies

to both a system and its

wider contexts

There are at least two spheres to consid-

er in system design: the sustainability of

the system itself and how it affects the

sustainability of the wider system of

which it will be part of.

P6. System visibility is a

necessary precondition and

enabler for sustainability

design

Strive to make the status of the system

and its context visible at different levels

of abstraction and perspectives to enable

participation and informed responsible

choice.

P7. Sustainability requires

action on multiple levels

Seek interventions that have the most

leverage on a system and consider the

opportunity costs: Whenever you are

taking action towards sustainability,

consider whether this is the most effec-

tive way of intervening in comparison to

alternative actions (leverage points).

P8. Sustainability requires

to meet the needs of future

generations without com-

promising the prosperity of

the current generation

Innovation in sustainability can play out

as decoupling present and future needs.

By moving away from the language of

conflict and the trade-off mind-set, we

can identify and enact choices that bene-

fit both present and future.

P9. Sustainability requires

long-term thinking

Multiple timescales, including longer-

term indicators in assessment and deci-

sions should be considered.

The Karlskrona Manifesto as a guide has helped in increas-

ing sustainability awareness amongst those interested in soft-

ware systems design and development. However, the core chal-

lenge is how to exemplify these principles through practical

application in software development. Requirements engineer-

ing as a starting point in any software development has a cru-

cial role to play in exemplifying the use of the manifesto prin-

ciples in software systems requirements elicitation and engi-

neering. There have already been research strides on sustaina-

bility in requirements engineering stating the need for sustaina-

bility requirements in software systems such as the following

research in chronological order:

Mahaux et al. [23] present an experience report about pro-

jects that treated sustainability as a first class quality require-

ments. The authors assessed the current techniques used in sys-

tematically eliciting, analyzing and documenting sustainability

requirements and pointed at the need for a sustainability

toolbox to support requirements engineers to better elicit sus-

tainability requirements.

Roher et al. [21] are concerned with the lack of software

engineering teams including environmental sustainability dur-

ing software development proposed the use of sustainability

requirements patterns (SRPs).

Penzenstadler et al. [9] support the consideration of sustain-

ability as a nonfunctional requirement like safety and security

that are considered as a system quality attribute.

Raturi et al. [22] focused on how to develop sustainability

as a non-functional requirement (NFR) using NFR framework

informed by sustainability models.

Becker et al. [24] explain the crucial role of requirements

not only for software systems but also for how requirements for

sustainability can impact the social-economic and natural envi-

ronment.

Hinai et al. [25] proposed the use of requirements engineer-

ing methodology using social values to elicit social sustainabil-

ity requirements for software systems.

As highlighted by Becker et al. [16], there are different

concerns and dimensions of sustainability, software engineers

focusing on the concerns of software qualities, business stake-

holders looking at how to make profit and keep business afloat.

Furthermore, there is the aspect of social wellbeing of people to

ensure better living standards. This, at times, makes the global

concern of sustainability difficult to elicit and engineer. Also,

quoting Becker et al. [16] offering a way forward: “Rather than

asking whether it is appropriate to balance these concerns, we

should instead be asking What methods and tools are needed to

explore inter-dependencies between these concerns, and to

foster more integrated and long-term thinking?”

Oyedeji et al. [7] support this further, stating that without a

standard for software sustainability requirements, it becomes

difficult to identify the boundaries of the sustainability of soft-

ware systems. A standard will lead to a unifying consensus that

can foster sustainability quantification in software systems.

Software sustainability has also gained attention as a quality

attribute in which there is a proposal to extend the ISO/IEC

quality model 25010 to address sustainability [26].

Therefore it is important to follow up on the Karlskrona

Manifesto principles and propose examples of how these prin-

ciples can be applied in software systems requirements elicita-

tion and engineering. This could lay the foundation for a stand-

ard template that can encourage and educate requirements en-

gineers for software sustainability requirements.

B. Best practice documentation and templates

A “best practice” (BP) is a practice that is not only good but

has proven to work well and produce good results and therefore

is recommended as a model. According to Schatten et al.[27], a

BP is the transfer of knowledge based on years of success, mis-

takes and failures from experienced developers to novice de-

velopers. These BP can be some good and bad decisions (anti-

patterns) from concrete projects that are presented as abstracted

scenarios. Designing and developing well-structured software

is a challenge especially for young and novice developers. With

the use of BP, such challenges can be eased for them with

knowledge of how best to develop well-designed software sys-

tems from proven procedures.

Fricker at al. [28] presented the best requirements tech-

niques that became industrial best practice based on a survey of

a large number of industry projects. One of their core findings

showed that projects incorporated stakeholder workshops, the

study of existing systems, and re-using specifications. Work-

shops dominated requirements elicitation practice. Only few

projects used techniques like observation, ethnography, sur-

veys, or data mining.

Mike Perks [29] from IBM describes best practices for

software development projects from development processes,

requirements, architecture, design, construction of code, peer

reviews, testing, quality and defects management, deployment,

system operations and support, project management, and meas-

uring software project success.

In requirements documentation, one best practice is to use a

single and consistent template that all development team mem-

bers should adhere to in requirements gathering and software

development [30].

Parker et al. [31] identified the best practices for managing

requirements as the following:

 Naming conventions. Defining and maintaining

conventions for identifying releases from the ap-

proved requirement set through to the baselined

release to the emergency fix or patch.

 Baseline requirements. Requirements, like soft-

ware releases, must be baselined and those base-

lines must map directly to the releases they pro-

duce.

 Well-defined and understood change control pro-

cess. Once a baseline is created, changes must be

controlled, tracked, traced, approved, and re-

viewed.

 Requirements review. There must be a require-

ments review process, and it must be enforced

 Expectation of changes. Make sure changes can be

made easily, but under strict access control rules

(that include having full traceability).

 Version management. Requirement history should

be maintained using methods that make it easy for

analysts to look back.

 Requirements traceability. Without the ability to

trace a requirement from the idea through to its de-

fined implementation, there is no ability to under-

stand the impact of a proposed change.

 Information maintenance. Maintain attributes for

dependencies, relationships, owners, stakeholders,

users, funder, dates, costs, models, prototypes, di-

agrams, and governance about the requirement.

 Collaboration. Provide easy access to requirements

information and automatically notify stakeholders

of any change of status or change of the require-

ment to foster collaboration.

 Requirements in a single location. Keep require-

ments in a single location, preferably in a database

designed to manage them.

For companies and organizations, BP are a key way for

sharing knowledge and improving the quality of their operation

processes [32]. Alwazae et al. [32] introduced the use of a best

practice document template (BPDT) as a way for creating high

quality documentation within organizations.

Learning from outside the software and requirements engi-

neering domain, the United Nations food and agriculture organ-

ization (FAO) presented some good criteria for good practice

which also considers sustainability [33].

This body of existing work around best practice documen-

tation and templates was used as a foundation to develop the

template presented in the paper at hand.

III. RESEARCH DESIGN

The first author performed a mapping of the Karlskrona

Manifesto principles onto the Software Development Life Cy-

cle (SDLC) phases and the second author reviewed the map-

ping.

Based on existing literature on best practice templates [28]

[31] [32] [33], the first author developed a first version of the

best practice template to document how those Karlskrona man-

ifesto principles can be used in software development activi-

ties. This template and some example instances were presented

and assessed in an expert evaluation with 15 software develop-

ers with at least 3 years of experience in industrial software

development at a workshop in the Lappeenranta University of

Technology. The workshop is a mentoring program to educate

young developers interested in software development career.

The feedback from the developers (more straight-forward,

more concrete examples) was incorporated and then presented

to the experts again for re-evaluation. Table 2 provide back-

ground details of the expert evaluators.

TABLE 2. EXPERT EVALUATORS BACKGROUND

Expert Background Company Type Years of

Experience

1 Software Tester Software Develop-

ment

5

2 Requirement Engi-

neer

Software Develop-

ment

3

3 Programmer Software Develop-

ment

4

4 UI Designer Software Develop-

ment

3

5 Business Analyst Software Develop-

ment

3

6 Software Developer Software Develop-

ment

4

7 Programmer Software Develop-

ment

3

8 IT Manager Software Develop-

ment

4

9 CEO / Software

Developer

Startup Software

Development

3

10 ICT Engineer Telecom 4

11 Programmer Finance 3

13 Product Tester /
Integration Engineer

HR 3

14 Project Manager /
UX expert

Software Develop-
ment

4

15 Not Provided Not Provided Not Pro-
vided

IV. KARLSKRONA MANIFESTO FOR SUSTAINABILITY DESIGN

AND SOFTWARE DEVELOPMENT

This section provides an overview of how the Karlskrona

Manifesto principles can be mapped onto software develop-

ment life cycle phases.

Table 3 shows the exemplary mapping. There may be addi-

tional matches where further principles can be applied within a

specific SDLC phase but this mapping is sufficiently extensive

for exploring the concepts.

TABLE 3. KARLSKRONA MANIFESTO PRINCIPLES IN RELATION

TO SDLC PHASES (adopted from [34])

SDLC Phases Karlskrona Manifesto Principles

Phase 1.

Project Definition

P1- This ensures that the project initiation

considers sustainability in the overall project

definition from the beginning.

P2- Software sustainability has different

dimensions that have to be taken into account

from the beginning for better project

management with different stakeholders.

P3- Software projects usually involve

stakeholders from different domains,

incorporating their sustainability concerns

provides better management of those concerns

from multiple perspectives which can help the

incorporation of sustainability for the software.

Phase 2.

User Requirements

Definition

P2- Recording and documenting user feedback

on their perception of sustainability during

requirements elicitation will foster better

sustainability analysis during the system

analysis and design phase.

Phase 3.

System Requirements

Definition

P4- During elicitation of system requirements

to consider sustainability concerns for the

system during the requirements definition even

when it is not a core part of the user

requirements.

P5- Cross evaluate the consequential impacts of

the system sustainability requirements and the

environment in which the system will function.

Phase 4.

Analysis and Design

P2- Applying this principle provides a blueprint

for system evaluation from all sustainability

dimensions (Economic, environment, social,

individual and technical).

P4- This principle provides a rethink of how to

conduct analysis of system design with

consideration of sustainability in order to

facilitate development of sustainable system.

P6- Application of this principle enables better

visual and visible overview of the system from

different levels of abstraction.

P8- This will provide better understanding

during analysis to make better choices that will

help the potential users of the system in present

and in future when the system evolves.

Phase 5.

Development

P2- This will encourage developers during this

phase to consider different sustainability

dimensions especially technical, social and

individual dimensions

P4- Encourages the search for better avenues to

make the system sustainable from the

development perspective (developers) and also

the functions of the system to aid longevity.

Phase 6.

Integration and Testing

P2- Provides integration and test team to have a

sustainability template that can be used to test

the system for all sustainability dimensions

based on the sustainability requirement output

from phase 2, 3, and 4.

P4- Application of this principle will aid

consideration of sustainability in this phase

even if the primary focus of system is not about

sustainability.

Phase 7.

Implementation

P5- Provides a beforehand reasoning for the

development team to consider sustainability of

the system, its production environment and

when push live for use.

P7- The use of this principle will aid

consideration of seeking the involvement of

different stakeholders to make the actualization

of the system sustainability possible in the

production environment and when pushed live.

Phase 8.

Sustainment /

Maintenance

P9- At this stage, this principle helps to create

the conscious awareness so that when the

system is in live environment, there will be

continuous evaluation to assess the system

sustainability and think of ways for optimizing

and improving sustainability of the system from

the different dimensions.

There has been progress on how to design the maintainabil-

ity of software during/after development and how the security

and usability can be improved over time. One thing lacking is

how to consider the external impact of the software on the dif-

ferent dimensions of sustainability and engineering those con-

siderations into the software. This is why it is important to con-

duct proper software sustainability requirements elicitation.

The sustainability requirements process needed during SDLC is

still evolving in terms of finding the most effective way to elic-

it software sustainability requirements.

After mapping the Karlskrona Manifesto principles to all

the SDLC phases, the next section exemplifies the use of the

Karlskrona principles during user and system requirements

gathering in the first three phases of the SDLC. This will serve

as a benchmark for the remaining SDLC phases because re-

quirements are the first part of any system’s design, develop-

ment and improvement.

V. METHOD FOR DOCUMENTING SOFTWARE SUSTAINABILITY

REQUIREMENTS BEST PRACTICE

This section covers details of the method for collecting and

disseminating best practice for software sustainability require-

ments elicitation and engineering. Figure 1 shows the process

flow of this method.

Figure 1. Method for documenting software sustainability requirement

elicitation best practice

The proposed method is the first attempt towards exempli-

fying how the Karlskrona Manifesto principles can serve as a

guide for eliciting sustainability requirements for software sys-

tems and how such process can be documented as good prac-

tice. Such documented good practice can then be reused or

followed by software developers and different stakeholders

interested in software sustainability.

The first step is to select from the nine Karlskrona princi-

ples a principle that relates to the system to be developed or

improved. Table 3 shows our mapping of the Karlskrona mani-

festo to each software development phase.

The second step is to use the selected principle in generat-

ing sustainability goals for the system. These goals will serve

as a base for creating the system requirements.

The third step involves deriving software sustainability re-

quirements based on all the sustainability goals. These re-

quirements must be measurable and tangible.

The fourth step involves tagging each of the derived sus-

tainability requirements with each sustainability dimension

(economic, environment, social, individual and technical).

The fifth step involves using the template that will be pro-

posed in this paper to document the requirements using the

good requirement practice template.

The sixth step validates the saved requirement practice us-

ing the following criteria [33]:

 Effective and successful: A “good practice” has

proven its strategic relevance as the most effective

way in achieving a specific objective; it has been

successfully adopted and has had a positive impact

on individuals and/or communities.

 Environmentally, economically and socially sus-

tainable: A “good practice” meets current needs, in

particular the essential needs of the world’s poor-

est, without compromising the ability to address

future needs.

 Technically feasible: Technical feasibility is the

basis of a “good practice”. It is easy to learn and to

implement.

 Inherently participatory: Participatory approaches

are essential as they support a joint sense of own-

ership of decisions and actions.

 Replicable and adaptable: A “good practice”

should have the potential for replication and

should therefore be adaptable to similar objectives

in varying situations.

 Reducing disaster/crisis risks, if applicable: A

“good practice” contributes to disaster/crisis risks

reduction for resilience.

Based on these criteria, the collected requirements are

validated, and if all necessary good practice criteria are

satisfied the requirements are published as good re-

quirements practice. If there is need for improvement,

the requirements are refined again and cross-validated

before being published as good requirements practice.

Table 4 provides the best practice template. Table 5

presents an example of the instantiated template for the

sustainability best practice - how the Karlskrona Mani-

festo principles influenced the requirements elicitation

process between the requirements engineer, the end us-

er, the programmer, and the business analyst.

The field ‘requirements’ uses sample requirements

from the illustrative case study of a web application for

online hospitality service to rent homes for short stays.

Table 4. DESCRIPTION OF TEMPLATE FOR SOFTWARE SUSTAINABILITY REQUIREMENT ELICITATION BEST PRACTICE

Element Description

Title Which title best describes the best practice?

Date What month and year is the “good practice” published or documented?

Authors Who wrote the good practice document?

Target Audience Who is the target group?

To whom is this document useful?

Objective What is the goal or aim of the best practice?

Location What is the geographic location in which this practice can be applied for software system (country, region, town or

village)? Examples: system for a country’s, state, province health care system or banking system or a commercial

software application

Stakeholders Beneficiaries of this best practice?

Who are the users, institutions and implementing agencies of the best practice?

Methodology What methodology was used in documenting the best practice?

What were the process steps involved?

Selected Karlskrona

manifesto principles

What are the principles that served as guide for creating the best practice for requirement elicitation?

Requirements What were the requirements used in the best practice?

How was sustainability considered in the requirement?

Validation How was the best practice validated?

Did the best practice fulfil the best practice criteria?

Impact What there an impact in the application of the best practice?

Lessons Learnt What are the key take away from the application the best practice?

Sustainability What are the dimensions of sustainability covered in the best practice application?

Contact Details What is contact details of those responsible for the best practice?

Table 5. TEMPLATE OF SOFTWARE SUSTAINABILITY REQUIREMENT ELICITATION BEST PRACTICE

Element Description

Title Sustainability user awareness best practice of online hospitality service for short term house renting and sharing

Date 11-06-2018

Authors Shola Oyedeji, Birgit Penzenstadler

Target

Audience

Requirement engineers, Web developers, Business analyst

Objective Document best practice in requirement elicitation for a web system in order to:

 Create awareness among web application developers on how to elicit sustainability requirements

 Encourage development of web systems with consciousness of sustainability for end users while using the web
application

Location Applicable worldwide for any web system

Stakeholders Software requirement engineer, Programmers and Business analyst

Methodology Discussion among software development team on what sustainability means to them by going through the
Karlskrona manifesto principles

 Use the Karlskrona manifesto principles as guide during requirement elicitation during discussion with the end
user with aid of the sustainability analysis chat

 Record all the requirements in the user requirement specification (URS) and software requirements specification

(SRS)

 Dialogue about which requirements can better influence end user awareness about sustainability in the user and
software requirements specification (URS and SRS) document.

 Selected identified requirements

 Discussion between with the requirement engineer, end user and programmers about these sustainability re-
quirements to see if implementation is possible or if there is need for modification

 Modify requirement in URS and SRS with a set of new requirements targeted towards sustainability based on
discussion between the requirement engineer, end user and programmer

Selected

Karlskrona
manifesto

principles

Principle 2: Sustainability has multiple dimensions

Principle 6: System visibility is a necessary precondition and enabler for sustainability design
Principle 7: Sustainability requires action on multiple levels

Requirements Functional Requirement

REQ 1 –Registration (user must be able to register using web form and receive a notification via email)

 Sustainability requirement added to this general registration requirement is to include short sustainability
tips/links in the registration notification email such as how to recycle common grocery items, use home energy,

water, heater and nearest cycling station for getting bicycle commuting

REQ 2- UI Search Results (Display search results for all homes with prices and availability to users)

 The requirement for sustainability added to this search requirement is to include the CO2 emission for all homes

based on the user (searcher location) to the search home (destination) and also add green level label for all

homes based on user feedback on how easy to recycle, access to path way for walking or bicycle or public trans-
portation and energy usage during their stay in a home

Non-Functional Requirements

REQ 3 – Performance (ensure good response time)

 The sustainability consideration for this requirement is write good compact design codes during development

that can determine the exact CPU usage for specific components of the web application and optimize them for
less CPU usage

 Create effective and efficient algorithm for data structures to help use minimum system resource which can in
turn improve respond time and reduce application energy usage

Validation Programmer, Business analyst and requirement engineer cross validate those requirements with the best practice criteria

Impact Promote sustainability awareness among software developers and end users

Provide opportunity to rethink how software requirement are elicited with consideration of sustainability

Lessons Learnt 1. Software developers don’t like too much documentation, so this template has been simplified
2. Requirement engineers appreciated the mapping of Karlskrona manifesto with software development phases

3. Software developers said they would appreciate more documentation on software sustainability for agile devel-

opment process though they find the mapping in Table 3 useful for them to understand how each of the Karls-
krona manifesto relates to each of the software development phases

4. Developers started discussing about coming to office by bicycle or public bus transport instead of their car to re-
duce CO2 emission

Sustainability The requirements in this template covers:

Social Sustainability

Environment Sustainability
Individual Sustainability

Contact Details shola.oyedeji@lut.fi , birgit.penzenstadler@csulb.edu

mailto:shola.oyedeji@lut.fi
mailto:birgit.penzenstadler@csulb.edu

VI. DISCUSSION

The systematic mapping of the Karlskrona Manifesto aids

requirements engineers and software developers in understand-

ing how the Karlskrona Manifesto for software sustainability

design relates to the software development life cycle (see Table

3). The template (see Tables 4 and 5) provides a typical exam-

ple of how best practices for software sustainability require-

ments can be documented. Table 4 provides details of what is

expected in the template and Table 5 shows the template usage

for documenting both functional and non-functional require-

ments. This best practice uses the example of an online hospi-

tality web application.

In addition, with the work presented in this paper, we par-

tially respond to research challenges identified by Chitchyan et

al. [2] from the state of practice for software sustainability de-

sign in requirement engineering. They noted the following:

There is a lack of methodological support for sustainability

design in requirement engineering because it is not part of most

companies practice [2]. The method presented in this paper

serves as support for helping requirements engineers, software

developers and all stakeholders in documenting best practices

from sustainability design in requirements engineering using a

structured methodology.

They also noted a need for a mentality change to make peo-

ple transition from their old ways of eliciting requirements and

developing software to new way of sustainability design in

requirements engineering. Documenting best practices using

the proposed template presented here educates and promotes

awareness among those involved in the requirements engineer-

ing process of software development. This can be one way of

persuading them to see benefits of eliciting software require-

ments and developing software system in a new way with sup-

port for sustainability design.

Overall, the mapping of the Karlskrona Manifesto princi-

ples in Table 3, the method (see Figure 1), and the template for

documenting (see Table 4) provide guidance to support re-

quirements engineers and software developers in software sus-

tainability requirements elicitation and in documenting best

practices from the requirements process.

In our opinion, instantiating the Karlskrona Manifesto for

sustainability design for software processes, practices and

methods will go a long way to create awareness about software

sustainability and increase broader engagement for different

stakeholders within academia and industry.

The following are some of the limitations of our work:

 The mapping of the Karlskrona Manifesto principles

to software development process phases in this current

version may be incomplete as of now and require a

further iteration of the mapping process (meaning:

there could be principles that are not listed for a spe-

cific phase despite being applicable), but the mapping

is sufficiently complete to provide solid grounds for

discussion.

 The template may be too restrictive and not capture all

relevant information potentially provided by those

documenting the best practice. However, if templates

get too lengthy, which can easily occur when trying to

accommodate all possibilities, they are less likely to

be picked up by practitioners (see next point).

 If structure and guidance become too detailed, engi-

neers may refuse to use them, find them too specific to

apply, or apply the principles without putting suffi-

cient critical thought into it. Consequently, that is why

the template for documenting best practices has been

simplified for straightforward and self-explanatory

documentation.

VII. CONCLUSION

This paper presents a mapping of the application of the

Karlskrona Manifesto principles to software development ac-

tivities and a template for documenting their usage in best prac-

tices, supported by an example instance of its usage. An expert

group evaluated this template in two iterations.

The proposed approach can be used as guide by require-

ments engineers during software requirements elicitation and

documenting software sustainability requirements best practic-

es. Furthermore, software developers can also benefit from

using it for rethinking how they develop software using the

mapped Karlskrona Manifesto principles as guide during each

stage of the software development life cycle.

Future work includes the application of the proposed meth-

odology in industrial case studies and using the template to

document best practices from those case studies. Specifically,

during the evaluation, the expert group requested a mapping of

the Karlskrona Manifesto to agile software development meth-

od, especially to Scrum. Consequently, we plan this mapping

and adaptation for the first industry case study.

REFERENCES

[1] S. Bonini and S. Görner, “The business of sustainability :

Putting it into practice,” Insights Publ., p. 6, 2011.

[2] R. Chitchyan, L. Duboc, C. Becker, S. Betz, B.

Penzenstadler, and C. C. Venters, “Sustainability Design in

Requirements Engineering : State of Practice,” pp. 533–542,

2016.

[3] M. Mahaux and C. Canon, “Integrating the Complexity of

Sustainability in Requirements Engineering,” First Int.

Work. Requir. Eng. Sustain. Syst., 2012.

[4] U. K. Jannat, “Green Software Engineering Adaption In

Requirement Elicitation Process,” vol. 5, no. 08, pp. 94–98,

2016.

[5] United Nations, “Sustainable Development Goals Available

at: http://www.undp.org/content/undp/en/home/sustainable-

development-goals.html . Accessed on 25-04-2018,” no.

September 2000, pp. 8–23, 2015.

[6] Nielsen, “Nielsen global online study. Available online at:

http://www.nielsen.com/eu/en/insights/news/2015/green-

generation-millennials-say-sustainability-is-a-shopping-

priority.html Accessed on 3-03-2018,” Web Rep., 2015.

[7] S. Oyedeji, A. Seffah, and B. Penzenstadler, “Sustainability

Quantification in Requirements Informing Design,” 6th Int.

Work. Requir. Eng. Sustain. Syst., vol. i, 2017.

[8] G. saval Martin, mahaux, patrick heymans, “Requirements

Engineering: Foundation for Software Quality,” Requir.

Eng. Found. Softw. Qual., vol. 4542, no. January, pp. 247–

261, 2007.

[9] B. Penzenstadler, A. Raturi, D. Richardson, and B.

Tomlinson, “Safety, security, now sustainability: The

nonfunctional requirement for the 21st century,” IEEE

Softw., vol. 31, no. 3, pp. 40–47, 2014.

[10] M. Fowler and J. Highsmith, “The agile manifesto,” Softw.

Dev., vol. 9, no. August, pp. 28–35, 2001.

[11] B. R. Group, “The Business Rules Manifesto,” Bus. Rules

Group. Version Available online

http//www.businessrulesgroup.org/brmanifesto.php

Accessed 12-11-2017, no. c, pp. 1–2, 2003.

[12] I. Gent, “THE RECOMPUTATION MANIFESTO,”

Available online: https://www.software.ac.uk/blog/2016-10-

05-recomputation-manifesto Accessed on 12-11-2017, p.

9479.

[13] M. Dick, J. Drangmeister, E. Kern, and S. Naumann, “P66-

Green software engineering with agile methods,” 2013 2nd

Int. Work. Green Sustain. Software, GREENS 2013 - Proc.,

pp. 78–85, 2013.

[14] A. R. & D, “Agile Project Management: Best Practices and

Methodologies,” Altexsoft, 2015.

[15] F. Paetsch and F. Maurer, “Requirements Engineering and

Agile Software Development,” pp. 1–6, 2003.

[16] C. Becker et al., “Sustainability Design and Software: The

Karlskrona Manifesto,” Proc. - Int. Conf. Softw. Eng., vol. 2,

pp. 467–476, 2015.

[17] B. Penzenstadler, M. Martin, and S. Camille, “RE4SuSy:

Requirements engineering for Sustainable systems,” CEUR

Work. Proceedings, Retrieved from Http//ceur-ws.org/Vol-

1216/, vol. 995, 2013.

[18] B. Christoph, “Sustainability and longevity: Two sides of the

same quality?,” CEUR Workshop Proc., vol. 1216, pp. 1–6,

2014.

[19] C. Becker et al., “Website for The Karlskrona manifesto for

sustainability design,” arXiv1410.6968 [cs] Available online

Http//sustainabilitydesign.org/karlskrona-manifesto/

Accessed 10-10-2017, vol. 20, no. May, p. 2014, 2014.

[20] C. Becker et al., “The Karlskrona manifesto for

sustainability design,” arXiv1410.6968 [cs], vol. 20, no.

May, p. 2014, 2014.

[21] K. Roher and D. Richardson, “Sustainability requirement

patterns,” 2013 3rd Int. Work. Requir. Patterns, RePa 2013 -

Proc., pp. 8–11, 2013.

[22] A. Raturi, B. Penzenstadler, B. Tomlinson, and D.

Richardson, “Developing a sustainability non-functional

requirements framework,” Proc. 3rd Int. Work. Green

Sustain. Softw. - GREENS 2014, pp. 1–8, 2014.

[23] G. Saval, M. Mahaux, and P. Heymans, “Discovering

Sustainability Requirements: An Experience Report,”

REFSQ, 2013.

[24] B. Christoph et al., “Requirements: The key to

sustainability,” IEEE Softw., vol. 33, no. 1, pp. 56–65, 2016.

[25] M. Al Hinai and R. Chitchyan, “Engineering Requirements

for Social Sustainability,” Proc. ICT Sustain. 2016, 2016.

[26] G. A. García-mireles, “Exploring Sustainability from the

Software Quality Model Perspective,” in 13th Iberian

Conference on Information Systems and Technologies

(CISTI).

[27] A. Schatten, S. Biffl, M. Demolsky, E. Gostischa-Franta, T.

Östreicher, and D. Winkler, Best Practice Software-

Engineering: Eine praxiserprobte Zusammenstellung von

komponentenorientierten Konzepten, Methoden und

Werkzeugen. 2010.

[28] S. A. Fricker, R. Grau, and A. Zwingli, “Requirements

Engineering : Best Practice Requirements Engineering State-

of-Art,” 2015.

[29] M. Perks and IBM, “Best practices for software

development projects. Available online :

https://www.ibm.com/developerworks/websphere/library/tec

harticles/0306_perks/perks2.html. Accessed on 18-06-

2018,” 2006.

[30] altexsoft, “Software Documentation Types and Best

Practices. Available online :

https://www.altexsoft.com/blog/business/software-

documentation-types-and-best-practices/ Accessed on 18-06-

2018,” 2017.

[31] P. Kevin and S. Serena, “Requirements Engineering : Best

Practice,” no. July, 2015.

[32] M. Alwazae, E. Perjons, and P. Johannesson, “Applying a

Template for Best Practice Documentation,” Procedia

Comput. Sci., vol. 72, pp. 252–260, 2015.

[33] FAO, “Good practices template,” Food Agric. Organ.

United Nations, no. July, pp. 1–5, 2014.

[34] S. Oyedeji, B. Penzenstadler, and A. Seffah, “Proposal for a

Software Sustainability Design Catalogue,” no. May, pp. 1–

28, 2018.

