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Abstract

Monitoring the biomedical literature for cases
of Adverse Drug Reactions (ADRs) is a crit-
ically important and time consuming task
in pharmacovigilance. The development of
computer assisted approaches to aid this pro-
cess in different forms has been the subject of
many recent works.

One particular area that has shown promise is
the use of Deep Neural Networks, in particu-
lar, Convolutional Neural Networks (CNNs),
for the detection of ADR relevant sentences.
Using token-level convolutions and general
purpose word embeddings, this architecture
has shown good performance relative to more
traditional models as well as Long Short Term
Memory (LSTM) models.

In this work, we evaluate and compare two
different CNN architectures using the ADE
corpus. In addition, we show that by de-
duplicating the ADR relevant sentences, we
can greatly reduce overoptimism in the clas-
sification results. Finally, we evaluate the use
of word embeddings specifically developed
for biomedical text and show that they lead
to a better performance in this task.

1 Introduction

Pharmacovigilance is a crucial component at every
stage of the drug development cycle, and regulations
require pharmaceutical companies to prepare peri-
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odic reports such as Development Safety Update Re-
ports (DSURs) and Periodic Safety Update Reports
(PSURSs) regarding the safety of their drugs and prod-
ucts (Krishnamurthy et al., 2017).

One of the most important sources of information
to be monitored in pharmacovigilance is the biomed-
ical literature (Pontes et al., 2014). To this end, large
numbers of scientific abstracts and publications need
to be screened and/or read in full in order to collect
information relevant to safety, and in particular Ad-
verse Drug Reactions (ADRSs) associated to a particu-
lar drug.

Screening and reading the biomedical literature is
a time consuming task and is of critical importance.
It requires particular expertise, and needs to be per-
formed by well-trained readers. Given this, systems
that enable human readers to perform this task faster
and more effectively would be of great value.

2 Background

Computer assisted pharmacovigilance and, more
specifically, the automation of the detection of ADR
relevant information across various data sources has
the potential to have great positive impact on the
pharmaceutical industry. There is a very vast ar-
ray of sources of potential ADR relevant information,
including both structured and unstructured data re-
sources.

In many cases, adverse reactions are initially de-
tected through unstructured means of communication,
such as a patient speaking to a healthcare profes-
sional, and case reports written by physicians and pub-
lished in biomedical literature sources, such as MED-
LINE, PubMed and EMBASE (Rison, 2013). Sponta-
neous reporting can also be made through telephone
calls, email communication, and even fax (Vallano
et al., 2005). Such information is processed, gener-
ally through human intervention in order to properly



categorize them and add the necessary metadata.

Other potential sources of safety signals include
electronic medical/health records (EMRs/EHRSs)
(Park et al., 2011). Similarly, omics, chemical, phe-
notypic and metabolic pathway data can be analyzed
using a diverse array of methods to find associations
between drugs and specific side effects (Liu et al.,
2012; Mizutani et al., 2012; Lee et al., 2011). In
recent years, social media websites have also become
a potential source of safety signals (Karimi et al.,
2015; Sarker and Gonzalez, 2015; Tafti et al., 2017).

Finally, after careful processing, the data is usually
aggregated and stored in structured databases for re-
porting and/or aggregation. Many regulatory agencies
maintain databases that aggregate information regard-
ing reported adverse events, such as the FDA Adverse
Event Reporting System (FAERS) (Fang et al., 2014)
in the U.S., EudraVigilance in Europe (Banovac et al.,
2017), and the MedEffect Adverse Reaction Online
Database in Canada (Barry et al., 2014).

The aim of our work is to contribute towards the de-
velopment of systems that provide assistance to read-
ers in charge of finding ADR signals in the biomedical
literature. As such, the ideal system should be able to
accurately discriminate between ADR relevant and ir-
relevant sentences in the documents that it processes.

In the following section, we detail some of the past
efforts to automate this as well as other tasks related to
the extraction of ADR relevant information from the
biomedical literature.

3 Related Work

The automation of the detection of ADR relevant in-
formation across various data sources has received
much attention in recent years. Ho er al. performed
a systematic review and summarized their findings
on various methods to predict ADEs ranging from
omics to social media (Ho et al., 2016). In addition,
the authors presented a list of public and commercial
data sources available for the task. Similarly, Tan et
al. summarized the available data resources and pre-
sented the state of computational decision support sys-
tems for ADRs (Tan et al., 2016). Harpaz et al. pre-
pared an overview of the state of the art in text mining
for Adverse Drug Events (ADEs) (Harpaz et al., 2014)
in various contexts, such as the biomedical literature,
product labelling, social media and web search logs.
Xu et al. initially proposed a method based on
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manually curated lexicons which could be used to
build cancer drug-side effect (drug SE) pair knowl-
edge bases from scientific publications (Xu and Wang,
2014c). The authors also described a method to ex-
tract syntactical patterns, via parse trees from the
Stanford Parser (Xu and Wang, 2014a), based on
known seed cancer drug-SE pairs. The patterns can
then be used to extract new cancer drug-SE pairs.
They further proposed an approach using SVM classi-
fiers to categorize tables from cancer related literature
as either ADR relevant or not (Xu and Wang, 2015a).
The authors then extracted cancer drug-SE pairs from
the tables using a lexicon-based approach and com-
pared them with data from the FDA label information.
Xu et al. also evaluated their method in a large scale,
full text corpus of oncological publications (Xu and
Wang, 2015b), extracting drug-SE pairs and showing
good correlation of the extracted pairs with gene tar-
gets and disease indications.

There are a number of available data resources for
the purpose of ADR signal detection. Gurulingappa
et al. introduced the ADE corpus, a large corpus of
MEDLINE sentences annotated as ADR relevant or
not (Gurulingappa et al., 2012). Karimi et al. de-
scribed CADEC, a corpus of social media posts with
ADE annotations (Karimi et al., 2015) including map-
pings to vocabularies such as SNOMED. Further, the
annotations include detailed information such as drug-
event and drug-dose relationships. Sarker ef al. de-
scribed an approach using SVM classifiers, as well as
diverse feature engineering methods, to classify clini-
cal reports and social media posts from multiple cor-
pora as ADR relevant or not (Sarker and Gonzalez,
2015). Odom et al. explored an approach using rela-
tional gradient boosting (FRGB) models to combine
information learned from labelled data with advice
from human readers in the identification of ADRs in
the biomedical literature (Odom et al., 2015). Adams
et al. proposed an approach using custom search
PubMed queries making use of MeSH subheadings to
automatically identify ADR related publications. The
authors conducted an evaluation by comparing with
results manually tagged by investigators, obtaining a
precision of 0.90 and a recall of 0.93.

Some researchers have tried to combine informa-
tion from structured databases with the unstructured
data found in the biomedical literature. For exam-
ple, Xu et al. showed that, by combining informa-



tion from FAERS and MEDLINE using signal boost-
ing and ranking algorithms, it’s possible to improve
cancer drug-side effect (drug-SE pair) signal detection
(Xu and Wang, 2014b).

There have recently been efforts to use neural net-
works to improve the performance of the ADR sen-
tence detection, entity and relation extraction tasks.
Gupta et al. proposed a two step approach for ex-
tracting mentions of adverse events from social media:
(1) predicting the drug based on the context, unsuper-
vised; (2) predicting adverse event mentions based on
a tweet and the features learned in the previous step,
supervised (Gupta et al., 2017). Li et al. proposed ap-
proaches combining CNNs and bi-LSTMS to perform
named entity recognition as well as relation extrac-
tion for ADRs in the annotated sentences in the ADE
dataset (Li et al., 2017). More recently, Ramamoor-
thy et al. described an approach using bi-LSTMs with
an attentional mechanism to jointly perform relation
extraction as well as visualize the patterns in the sen-
tence.

Huynh proposed using convolutional recurrent neu-
ral networks (CRNN) and convolutional neural net-
works with attention (CNNA) to identify ADR related
tweets and MEDLINE article sentences (Huynh et al.,
2016). The CNNA’s attention component had the at-
tractive property that it allows visualization of the in-
fluence of each word in the decision of the network.

In this work, we introduce approaches building
upon previous results using convolutional neural net-
works (CNNs) (Huynh et al., 2016) to detect ADR rel-
evant sentences in the biomedical literature. Our key
contributions are as follows:

e We compare Huynh’s CNN approach, which
is based on the architecture proposed by Kim
(2014), with a deeper architecture based on the
one proposed by Hughes et al. (2017), using the
ADE dataset, showing that Kim’s architecture
performs much better for this task and dataset.

e We apply a de-duplication of the ADR relevant
sentences in the ADE dataset, (Gurulingappa
et al., 2012) which we believe leads to a better
estimation of the performance of the algorithm
and does not seem to be applied in some of the
previous works.

e We evaluate the use of word embeddings devel-
oped specifically for biomedical text introduced
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by Pyysalo et al. (2013) and show that, by using
these embeddings in place of general-purpose
GloVe embeddings, it is possible to improve the
performance of the algorithm.

4 Dataset

The ADE corpus was introduced by Gurulingappa et
al. (2012) in order to provide a benchmark dataset
for the development of algorithms for the detection of
ADRs in case reports. The original source of the data
was 2972 MEDLINE case reports. The data was la-
belled by three trained annotators and their annotation
results were consolidated into a final dataset includ-
ing 6728 ADE relations (in 4272 sentences), as well
as 16688 non-ADR relevant sentences.

The authors calculated Inter-Annotator Agreement
(IAA), using F1 scores as a criterion, for adverse event
entities between 0.77 and 0.80 for partial matches and
between 0.63 and 0.72 for exact matches. For more
detail, the reader can refer to the work of Gurulin-
gappa et al. (Gurulingappa et al., 2012).

4.1 Preprocessing

The dataset is suitable for two types of tasks: (1) cat-
egorization of sentences as either relevant for ADRs
or not; and (2) extraction of drug-adverse event rela-
tions and drug-dose relations. Because there can be
more than one relation in the same sentence, the ADR
relevant sentences are sometimes duplicated.

The presence of duplicates can lead to situations
where the same sentence is present in both the training
and test datasets, as well as to an overall distortion of
the distribution of the sentences. In order to prevent
this, we de-duplicate these sentences, which results in
4272 ADR relevant sentences, as stated in the work of
Gurulingappa et al. (Gurulingappa et al., 2012).

5 Methods

In the following sections, we will describe (1) the
word embeddings used in our learning algorithms; and
(2) the two different CNN architectures evaluated in
our experiments.

5.1 Embeddings

GloVe 840B

As in Huynh’s work (Huynh et al., 2016), we use
pre-trained word embeddings. Huynh focused mainly



on the general purpose GloVe Common Crawl 840B,
300 dimensional word embeddings (Pennington et al.,
2014).

Pyysalo’s Embeddings

We also evaluate the use of 200 dimensional word2vec
embeddings introduced by Pyysalo et al. (Pyysalo
et al., 2013). These word embeddings were fitted on
a corpus combining PubMed abstracts, PubMed Cen-
tral Open Access (PMC OA) full text articles as well
as Wikipedia articles. We also initialize zero valued
vectors for the unknown word symbol as well as for
the padding symbol.

Preprocessing

As in Huynh’s work, no new word vectors are ini-
tialized for tokens not present in the pre-trained vo-
cabulary, and only the tokens that are in the 20000
most frequent words in the dataset are included. The
remaining tokens are mapped to the unknown word
symbol vector. We enable the algorithm to optimize
the pre-trained weights after initialization. We fol-
low the preprocessing strategy used by Huynh (Huynh
et al., 2016), which is itself based on that of Kim
(Kim, 2014), and includes expansion of contractions,
and additionally, all non-alphabetic characters are re-
placed with spaces prior to tokenization.

6 Convolutional Neural Network Architec-
tures

In all architectures described below, the sentences are
mapped to a vector representation, v. Dropout is ap-
plied to v during training with a dropout probability
of 0.5. As in usual classification tasks, the predicted
probability of a possitive outcome, that is, of the sen-
tence being ADR relevant, is given by

§=p(viw+b), (1)
where w is a vector of coefficients, b is the inter-
cept, and p is the sigmoid function.
The objective function to be optimized is the cross
entropy, which can also be interpreted as an average
negative log-likelihood, and is given by
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Figure 1: Diagram of the architecture proposed by
Huynh (Huynh et al., 2016).
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Huynh’s CNN architecture

This architecture consists of the use of a 1D-
convolution layer with 300 filters and a 5 token win-
dow applied on the word vectors. This is followed by
a Rectified Linear Unit (ReLu) and a 1D-max pool-
ing over the full axis of 1D-convolution results. This
leads to a 300 dimensional vector representation, v,
which is used as an input for the classification net-
work described above. Figure 1 shows a diagram of
the resulting architecture. Note that M, the number of
embedding dimensions, may be equal to either 300 or
200, but is shown as 300 for illustration in the figure.

To reduce overfitting, a constraint is added to en-
sure that the L9 norms of each one of the 1D convolu-
tion filters are never above a threshold value, s, after
each batch. For more detail, the reader can refer the
works of Huynh (Huynh et al., 2016) and Kim (Kim,
2014).

Hughes’ CNN architecture

Based on the approach proposed by Hughes (Hughes
et al., 2017) we explored a deeper architecture, with
multiple successive stages of 1D-convolution, non-
linear transformations, and max pooling.
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Figure 2: Diagram of an architecture based on the one
proposed by Hughes (Hughes et al., 2017).

This architecture starts with two successive stages
of 1D-convolutions with 256 filters and a 5 token win-
dow, each followed by a ReLu transformation. After
this, a 1D-max pooling on the axis of the convolutions
with a window of length 5 is applied. Finally, an-
other two successive stages of 1D-convolutions with
256 filters and a window of length 5, each followed by
a ReLu transformation, is applied, followed by a 1D-
max pooling over the full axis of the 1D-convolutions.

Similar to the case of the previous architecture, this
leads to a 256 dimensional vector representation, v,
and a constraint is used to keep the Lo norms of all
1D-convolution filters under a threshold value s. Fig-
ure 2 shows a diagram of the resulting architecture. As
previously, note that M/ may be equal to either 300 or
200, but is shown as 300 for illustration in the figure.

For further detail, the reader can refer to the work
of Hughes (2017).
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7 Experimental Setup

Following the approach used by Huynh et al. (2016),
we used 10-fold cross validation to evaluate the per-
formance of our classifiers. The normalization thresh-
old used to clip the Lo norms of the filters, s, was set
to 9.

The Adam optimizer (Kingma and Ba, 2014) was

used to minimize the loss, L(@), with 8 epochs and

a batch size of 50. To avoid overfitting, early stopping
is used based on a development set consisting of 10%
of the training data of each fold. For the decision of
the classifier, instead of a g threshold of 0.5, we deter-
mine the optimum threshold by evaluating all possible
thresholds present in the development set of each fold
and keeping the threshold that results in the best F1
score.

After every 10 batches, the optimal threshold is de-
termined from the development set and the associated
best F1 score is obtained. Optimization is stopped if
the F1 score on the development set fails to improve
after 6 steps. The set of CNN parameters associated
with the best F1 score observed throughout the train-
ing process is then kept and used to evaluate the net-
work’s performance on the test set of each fold.

We use the architecture originally proposed by
Huynh (Huynh et al., 2016) without de-duplication as
the baseline results to understand the impact of the
de-duplication, choice of embeddings, and CNN ar-
chitecture.

All CNN implementations were done using Python
3.4.5 (Rossum, 1995) and Tensorflow 1.2.0 (Abadi
et al., 2015).

8 Results

8.1 Impact of De-duplication on Classification
Performance Estimates

Table 8.1 shows a comparison of the performance
metrics of our implementation of Huynh’s architec-
ture and GloVe 849B word embeddings with and
without de-duplication of the sentences labelled as
ADR relevant. After de-duplication, most of the per-
formance metrics were lower, since the presence of
duplicates in the positive samples resulted in overly
optimistic results.

The biggest impact was observed on precision, re-
call and F1 scores. Overall accuracies and area under
the ROC curve (AUROC) didn’t seem to be greatly



De-duplication No Yes
Accuracy 0.919 | 0914
Precision 0.858 | 0.784
Recall 0.860 | 0.798
F1-score 0.859 | 0.790
Specificity 0.942 | 0.943
AUROC 0.966 | 0.954

Table 1: Performance metrics of Huynh’s architecture
using GloVe 840B embeddings with and without de-
duplication of the ADR relevant sentences.

affected. Note that the specificity, which is the true
negative rate, was higher after de-duplication.

We initially obtained somewhat lower perfor-
mances for the baseline model without de-duplication
compared to the one reported by Huynh e al. (2016)
even though we accurately followed the described ar-
chitecture. After investigating the differences in the
code, we noticed that during pre-processing, charac-
ters that are not alphabetic are replaced with spaces
prior to tokenization. After incorporating this step into
our code, the results matched the previously reported
ones much better.

8.2 Impact of Biomedical Word Embeddings

Word Embeddings | Glove 840B | Pyysalo
Accuracy 0.914 0.918
Precision 0.784 0.800
Recall 0.798 0.797
F1-score 0.790 0.798
Specificity 0.943 0.949
AUROC 0.954 0.958

Table 2: Performance metrics of Huynh’s architec-
ture with de-duplication with GloVe 840B embed-
dings and Pyysalo’s embeddings.

Table 8.2 shows a comparison of the performance
metrics with de-duplication of ADR relevant sen-
tences using the GloVe 840B word embeddings, and
the word embeddings fit for biomedical data purposes
proposed by Pyysalo et al. (Pyysalo et al., 2013).

In most cases, the use of biomedical word embed-
dings was favorable or non-detrimental to the perfor-
mance metrics. The largest improvement was seen
on the increase of average precision from 0.780 with
GloVe 840B to 0.800 with the biomedical embed-
dings.
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This also led to an increased average F1 score from
0.790 to 0.798. The average AUROC also increased
from 0.954 to 0.958. Specificity increased from 0.943
to 0.949, and recall was the only metric that was
slightly reduced from 0.798 to 0.797.

8.3 Comparison With Hughes’ CNN Architec-

ture
Architecture | Huynh | Hughes
Accuracy 0.918 0.905
Precision 0.800 0.765
Recall 0.797 0.771
F1-score 0.798 0.767
Specificity 0.949 0.939
AUROC 0.958 0.940
Table 3: Performance metrics of Huynh’s and

Hughes’ architectures
Pyysalo’s embeddings.

with de-duplication and

Table 8.3 shows a comparison between the per-
formances of our implementations of Huynh’s and
Hughes’ architectures. In both cases, de-duplication
of ADR relevant sentences, and biomedical embed-
dings were used. The former ourperformed the latter
in every performance metric. The biggest improve-
ment was in metrics associated to the positive class,
such as precision, recall, and F1 score.

9 Discussion

The purpose of this work was to evaluate the use
of convolutional neural networks (CNNSs) architec-
tures and biomedical word embeddings for the au-
tomatic categorization of sentences relevant to ad-
verse drug reactions (ADRSs) in case reports present
in the biomedical literature. For this purpose, we used
the ADE corpus, which consists of sentences coming
from 2972 MEDLINE case reports labelled by trained
annotators. This includes 4272 ADR relevant sen-
tences, as well as 16688 non-ADR relevant sentences.

We showed that, because of duplications present in
the ADE corpus, the use of this dataset for sentence
classification without performing a de-duplication can
lead to overoptimistic performance estimates. In ad-
dition, we showed that, by using biomedical word em-
beddings, as opposed to general purpose word embed-
dings, it’s possible to improve upon the performance



of the algorithm. Finally, we compared the perfor-
mance of our implementations of two CNN architec-
tures, with the architecture proposed by Huynh out-
performing the architecture proposed by Hughes in
this task and dataset in every metric.

One important measure of the potential noise in
the inputs of human annotators is the Inter Annotator
Agreement (IAA) (Gurulingappa et al., 2012), which
in this dataset was measured by its original authors
by calculating inter annotator F1 scores. Although
this measure was calculated on the entity (partial and
exact) matching level, and although there has been
a harmonization process, it is informative of the po-
tential noise in the inputs used to build the dataset.
The fact that the IAAs for partial matches of adverse
events ranged between 0.77 and 0.80 indicates that
aiming for near perfect predictions may be unrealistic,
since there is a considerable degree of disagreement
between human annotators.

10 Conclusions and Future Work

Our results highlight the importance of sentence de-
duplication, pre-processing, choice of word embed-
dings, and neural network architectures when apply-
ing convolutional neural networks (CNNs) for the de-
tection of adverse drug reaction (ADR) relevant sen-
tences in the biomedical literature using the ADE
dataset. We believe that these are only a few of the
factors that can greatly influence the performance of
the algorithms performing these tasks.

Future work could include the use of either
grid-based, random, or reinforcement-learning based
search for more optimal CNN architectures, as well
as the evaluation of architectures other than CNNss.
In addition, another very interesting area explored
in previous works (Huynh et al., 2016) was the as-
pect of visualization using CNNs with Attention (CN-
NAs). However, this algorithm seemed to underper-
form compared to the normal CNN. Building upon
this approach to improve its performance while re-
taining its attractive visualization properties would be
an important step towards the development of systems
that assist human readers.
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