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Abstract

This paper evaluates unsupervised and super-
vised neural sequence models for the task of
splitting (Swiss) German compound words.
The models are compared to a state-of-the-
art approach based on character ngrams and
a simple heuristic that accesses a dictionary.
We find that the neural models do not outper-
form the baselines on the German data, but
excel when applied to out-of-domain data, i.e.
splitting Swiss German compounds. We re-
lease our code and data1, namely the first an-
notated data set of Swiss German compounds.

1 Introduction
Splitting compound words is an important task when
setting up pipelines for Natural Language Process-
ing of the (Swiss2) German language. (Swiss) Ger-
man features a long tail regarding word frequencies
due to the phenomenon that compound words are not
orthographically separated by whitespaces as in e.g.
English (e.g. Autobahnraststätte vs. highway service
area). Thus, when mapping words to lexical resources
such as word nets or embeddings, it is likely that there
are compounds which are not represented in the re-
source.

Neural sequence models capture characteristics of
word or character sequences (ngrams) in a latent rep-
resentation and are thus hypothetically well-suited for
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1https://github.engineering.zhaw.ch/tuge/
neural_compound_splitter

2Swiss German subsumes the Alemannic dialects spoken in
Switzerland.

compound splitting. In this paper, we evaluate several
neural sequence models on the task of (Swiss) Ger-
man compound splitting. The models are compared
to an unsupervised character ngram-based approach
and a baseline that uses a dictionary. Furthermore,
we present the first gold standard for splitting Swiss
German compounds and evaluate the models on this
newly available resource. Swiss German dialects fea-
ture no official spelling, and they are closely related to
Standard German, but differ regarding some language
changes throughout history, and we use the Swiss Ger-
man compounds as a sort of out-of-domain test set for
the models.

1.1 Related Work

Several methods for automatic splitting of word com-
pounds exist. One approach is to use a dictionary
to perform a full morphological analysis (Schmid
et al., 2004). Others apply corpora statistics (Koehn
and Knight, 2003) and combine them with linguistic
heuristics (Weller-Di Marco, 2017). There are both
supervised (Alfonseca et al., 2008; Henrich and Hin-
richs, 2011) and unsupervised approaches (Macherey
et al., 2011; Tuggener, 2016; Ziering and van der Plas,
2016) to the task. Riedl and Biemann (2016); Zier-
ing et al. (2016) explore distributional semantics on
the premise that the constituents of a compound are
semantically similar to the compound. Other work
researches the semantic relation between the con-
stituents of the compounds (Schulte im Walde et al.,
2016). While most approaches focus on compounds
in a single language, there exists work that explores
the task in a multilingual context (Alfonseca et al.,
2008; Macherey et al., 2011).

While there exists work on morphological segmen-
tation (Kann et al., 2016), to the best of our knowl-
edge, there is no prior work on using neural sequence
models to identify head constituents of compounds.
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2 Neural sequence models for compound
splitting

We first introduce the neural sequence models that we
apply in the experiments and how we adapt them to fit
the task of (Swiss) German compound splitting.

2.1 Unsupervised Recurrent Neural Network

The first model we explore is a character-based lan-
guage model using a recurrent neural network (RNN).
Language models aim to predict the next token in a
sequence given the sequence history. Different from
ngram-based language models (Heafield et al., 2013,
e.g.), RNN-based models feature a hidden state that
is updated after consuming a token (a character or
a word). Based on the hidden state, a probability
distribution over the token vocabulary is calculated
using the softmax function, and the most likely to-
ken is selected when generating sequences. During
training, the difference between the predicted prob-
ability and the given next token constitutes the loss
that is backpropagated to update the model parame-
ters (i.e. weights). Such RNN-based language models
have been shown to outperform ngram-based models
in terms of perplexity on general language modelling
tasks (Mikolov et al., 2010, inter alia).

To employ RNNs for unsupervised compound
splitting, we exploit an implementation detail that is
commonly used when working with such approaches:
Before training an RNN on a given token sequence, a
special END token is appended to the sequence. This
token is inserted into the vocabulary of the model.
When using the trained RNN to generate a sequence,
the END token is used as a stopping criteria, i.e. if the
END token is the most likely next token, generation is
terminated and the sequence considered complete.

We adapt this idea and monitor the probability of
emitting the END token when consuming a compound
word character-wise. That is, in a character sequence
x, we consider the position xi with the highest proba-
bility of emitting the END token as the split position:

argmax
i

p(END|x0 . . . xi) (1)

Additionally, we are interested in positions in the
sequence where the probability of generating the next
given character is low, based on the hypothesis that
that such positions are indicators for a suitable split

position:

argmin
i

p(xi+1|x0 . . . xi) (2)

To combine the two features and determine the best
split position, we sum the END token probability and
the inverse of the probability of the next character at
each position in the sequence x of length n and take
the position with the highest score:

argmax
i

(
p(END|xi) + (1− p(xi+1|x0 . . . xi))

)

(3)

During initial experiments, we found that this ap-
proach did indeed yield correct boundaries of free
morphems in German compounds, but struggled to
find the correct boundary for splitting when com-
pounds consist of more then two such free mor-
phems. For example, for the compound Autobahn-
raststätte (highway service area) with four free mor-
phems (Auto, Bahn, Rast, Stätte), the approach iden-
tified Autobahnrast as the body and Stätte as the
head, instead of Autobahn and Raststätte. We hy-
pothesized that one flaw of the approach is that when
determining the best split position i in a sequence
x, only the character sequence up to position i, i.e.
x0 . . . xi, is considered, and the remaining string,
xi+1 . . . xn, is neglected. Therefore, we introduced a
backward-looking RNN that consumes the sequence
x in reverse order, which constitutes a bi-directional
RNN (biRNN). We calculate the same two features
as for the forward-looking RNN for the backward-
looking RNN and sum the scores of the forward and
backward-looking RNN for each position i in the se-
quence to determine the best position for a split.

Furthermore, we noted that the approach fails at
placing boundaries correctly if the compounds con-
tain so called Fugen elements (linking elements), as
in e.g. Installation-s-Anweisung (installation instruc-
tion), where a Fugen-S glues together the free mor-
phemes Installation and Anweisung. The approach
places the split after the first free morpheme (Installa-
tion), and thus attaches the Fugen-S to the head (san-
weisung), which yields an incorrect split in the result.
Therefore, we applied a regular expression (captur-
ing bound morphemes that often occur before com-
pound boundaries, e.g. -ions, -täts, -keits) that aims
to remove Fugen-S heuristically before identifying a
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splitting position (e.g. Installationsanweisung → In-
stallationanweisung).

For this approach, we only need a collection of Ger-
man words to train the character-based RNNs, as it is
unsupervised regarding the compound splitting task.

2.2 Supervised Recurrent Neural Network

A natural extension to the neural character-based lan-
guage model is to add supervision. To determine
the split in the unsupervised model, we summed
probabilities that we deemed relevant but did not
train the RNN itself on the task of compound split-
ting. In the supervised approach, we use the hidden
states of the trained character-based language model
biRNNs when consuming a German compound word
character-wise as features to train a binary classifier
regarding the splitting decision. That is, at each posi-
tion in the sequence, we concatenate the hidden states
of the forward and backward RNN to create a feature
vector. This vector is then fed to a fully connected
layer, as shown in Figure 1. For determining the split,
we take the position in the sequence that has the high-
est probability according to the binary classifier. Dur-
ing training, the split position is known and used to
calculate and backpropagate the loss.
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Figure 1: Supervised RNN-MLP architecture, shown
for the compound Türschloss (door lock), where the
split position is at the character s.

2.3 Sequence-to-sequence with attention

An alternative supervised neural model is the
Sequence-to-sequence model (Sutskever et al., 2014).

The model is applied to transform sequences into
other sequences in e.g. Machine Translation (Cho
et al., 2014). It consists of an encoder component that
encodes the input sequence into a latent representa-
tion, and a decoder that generates the desired output
sequence based on the encoded input.

The initial version of the seq2seq model encodes
the whole input sequence into one vector (i.e. the last
hidden state of the encoder) on which the generation
of the output is based. To address this limitation, Bah-
danau et al. (2014) introduced an attention mechanism
that lets the decoder peak at all hidden states in the in-
put and apply a weight to each which represents its re-
spective importance while generating the correct out-
put token at each step during generation.

We apply this model to the compound splitting task
by using the compounds as input and the head noun
as the desired output.3 We hypothesize that the at-
tention mechanism is helpful in our case, because not
all characters in the input sequence are equally impor-
tant when identifying the split boundary. The attention
mechanism enables the decoder to focus on different
character groups, which, ideally, represent (groups of)
relevant free morphems. We thus apply the seq2seq
with attention model.

3 Experiments

Having outlined our models, we now describe our
data, the baselines, followed by evaluation results.

3.1 Data

We use the dataset discussed in Henrich and Hinrichs
(2011), i.e. a list of 75 000 German compounds and
their head nouns extracted form GermaNet (Henrich
and Hinrichs, 2010), a German wordnet.4 Henrich
and Hinrichs (2011) used this resource to evaluate sev-
eral approaches to compound splitting. They also in-
cluded non-compounds in their evaluation, however,
these are not provided in the resource. Therefore, we
only compare the ability of our approaches to deter-
mine the correct split positions in known compounds
(corresponding to the task in section 7.2 in Henrich

3We also experimented with generating both the body and the
head constituents, but obtained slightly better results with gener-
ating the head only.

4http://www.sfs.uni-tuebingen.de/lsd/
compounds.shtml, we use version v12.0 (2017)
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and Hinrichs (2011)).5 Furthermore, we remove com-
pounds from the list that contain a hyphen, since split-
ting them at the hyphen is straight-forward. We ran-
domly split the remaining 73 1333 compounds into
80% train and 20% test data.

Additionally, we created the first gold standard of
Swiss German compounds and their head nouns. We
extracted the 150 longest Swiss German words in
the SB-CH corpus (Grubenmann et al., 2018) which
consists of Swiss German texts gathered from dif-
ferent sources (e.g. social media messages, business
reports). We then manually annotated their (recur-
sive) head nouns. For example, for the compound
Wältuntergangskatastrophefilm (apocalypse catastro-
phe movie), we extract the heads Katastrophefilm and
Film and consider both as a correct head in evaluation.
We use this data as a kind of out-of-domain test set in
the evaluation.

3.2 Baselines

We compare the neural models to two baselines:

Dictionary-based: The first baseline uses a
dictionary and matches its words to the end of the
compounds in the test set. If a word from the
dictionary is found to be a substring at the end of a
compound in the test set, it is taken as the head noun
of that compound. Clearly, the order in which the
dictionary is traversed matters, because the method
stops after finding the first match. We experimented
with sorting the dictionary by longest to shortest
words and vice versa. Also, we included a subroutine
to check if the found body (the remaining word after
removing the head noun from the compound;
potentially removing the Fugen-S) is also in the
dictionary and favored those splits which have both
body and head in the dictionary. The algorithm is
outlined in Algorithm 1.

CharSplit: The dictionary-based method is prone to
fail where a head noun of a compound is never seen
in the training corpus. CharSplit, proposed in
Tuggener (2016), alleviates this by basing the splits
on character ngrams rather than words. CharSplit

5Clearly, an end-to-end system for compound splitting needs
to be able to identify whether a given word constitutes a com-
pound. Unfortunately, we are not able to evaluate our approaches
in this regard here. Another resource containing non-compounds
is discussed in Escartı́n (2014), but it does not seem to be avail-
able.

Algorithm 1 Dictionary-based compound splitting
1: Create dictionaryD from train set
2: Sort D based on word length
3: procedure SPLIT(compound)
4: for word ∈ D do
5: if compound ends with word then
6: head = word
7: if body ∈ D then
8: break

calculates probabilities of ngrams (length 2 to 20) to
occur at the beginning, middle, and end of words in
an unlabeled corpus and calculates a splitting score at
each character position in a (compound) word.
Tuggener (2016) found that this method outperforms
several other splitters in the task of identifying
correct splitting boundaries on the GermaNet data,
achieving 95% accuracy.

3.3 Evaluation

Next, we evaluate the models regarding their ability
to identify correct splitting boundaries on the German
and Swiss German data. Since we only evaluate on
known compounds, we measure accuracy, i.e. the per-
centage of compounds for which the methods find the
correct split. Results are given in Table 1.

The first striking observation is that the dictionary-
based method outperforms all other approaches on the
GermaNet data. The reason for the high accuracy lies
in the overlap of the words in the train and test set.
While there exist no direct duplicates in the sets, al-
most all head nouns (97%) that need to be identified in
the test set are included in the train set as constituents
of a compound. For example, the test set contains the
instance Fruchtnektar (fruit nectar)→ Frucht→ Nek-
tar and the train set contains Bananennektar (banana
nectar) → Banane → Nektar. As we see from the
evaluation on the SB-CH data, the approach clearly
fails when this overlap diminishes.

The CharSplit baseline performs 2 accuracy points
below the dictionary method on the GermaNet data,
but achieves better results on the Swiss German com-
pounds. Relying on ngram representations of the Ger-
man training data leads to an advantage when moving
from the German training data to the related, but not
identical domain of Swiss German compounds.

For the unsupervised biLSTM, we found that train-
ing for more than 1 epoch did not improve results.
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Model Parameters Acc.

Dictionary check long words first 94.07
Dictionary check short words first 58.35
Dictionary +favor known words as body 95.18

CharSplit include Fugen-S 90.65
CharSplit remove Fugen-S 93.26

Unsup. biRNN 1 layer, 32 hidden size, 1 epoch 67.34
Unsup. biLSTM 1 layer, 32 hidden size, 1 epoch 78.13
Unsup. biLSTM 1 layer, 32 hidden size, 1 epoch, keep Fugen-S 71.51
Unsup. biLSTM 2 layer, 512 hidden size, 1 epoch 87.04

Unsup. biLSTM+MLP MLP: 3 layers, 128-64-16 hidden size, 2 epochs 95.10

Seq2seq+attention 1 layer, 128 hidden size, 3 epochs 92.40

Table 1: Models, parameters, and splitting accuracy for different approaches. Trained and evaluated on German
compounds (GermaNet). Best results per category are in bold, best overall underlined.

Model Acc.

Dictionary 20.67
CharSplit 36.67
Unsup. biLSTM 57.33
Unsup. biLSTM+MLP 68.67
Seq2seq+attention 52.00

Table 2: Splitting accuracy for different approaches
evaluated on Swiss German compounds (SB-CH). Us-
ing best performing models trained on GermaNet.

However, increasing the model size in terms of layers
and hidden state size benefited accuracy to a certain
extent, and removing the Fugen-S is vital. Also, we
found that a vanilla biRNN fares poorly compared to
using a biLSTM. The results show that for the German
compounds, the model falls behind the baselines by a
considerable margin. However, on the Swiss German
compounds, it leads to a large improvement compared
to the baselines (+20 accuracy points).

For the combination of the unsupervised biLSTM
coupled with the supervised MLP, we took the best
performing biLSTM model (2 layers, 512 hidden size)
to create the inputs for the MLP. We experimented
with different numbers of layers, hidden state sizes,
and epochs for the MLP and report results of the
best performing configuration. On the German data,
this approach is on par with the dictionary baseline.
It also improves performance on the Swiss German
compound by +11 accuracy points compared to only
using the unsupervised biLSTM, similar to the gains

on the German data.
The seq2seq model was trained independently from

the other models. It outperforms the unsupervised
biLSTM on the German data, but not on the out-of-
domain Swiss German test set. It falls behind the
other supervised approach on both test sets, but fea-
tures some other interesting properties discussed in
the next section.

3.4 Output analysis

In this section, we qualitatively compare the outputs
and other properties of the different approaches and
discuss (dis)advantages of each.

In general, we hardly ever encountered system out-
puts that put splits at seemingly random positions
within the compounds. The two main errors we ob-
served are related to the Fugen-S and errors in choos-
ing the correct split position for compounds consisting
of more than two free morphemes.

Dictionary-lookup: As this method relies on a
predefined list of know words, it is only able split
compounds that have a head noun which is contained
in the dictionary. Hence, a main error cause are
unknown head nouns, which especially affects
performance on the Swiss German data. The method
is robust against Fugen-S, since it looks for known
words at the compound end and hence never attaches
a Fugen-S to a found head noun. However, it is the
only approach that does not provide a way to
distinguish compounds from non-compounds (i.e. it
provides no measure for the confidence of a found
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split). That is, it does not provide any means to detect
non-compounds. The word Fahrzeug (vehicle) e.g.
includes the head noun Zeug (thing, but it is not a
hypernym of the word Fahrzeug and hence cannot be
split without straying away from its meaning, and the
dictionary approach would perform this split. Since
we only evaluate the splitting methods on known
compounds, this disadvantage does not affect the
accuracy of the approach in evaluation. In
conclusion, this methods works well when train and
test data feature a largely overlapping vocabulary and
the approach is coupled with a method to distinguish
compounds from non-compounds.

CharSplit: This approach often fails when
encountering the Fugen-S, i.e. it frequently attaches
it to the head noun if the regular expression is not
able to remove it before the split. However, this
model improves performance on out-of-domain data
compared to the dictionary approach, as it relies on
an ngram representation of the training data. This
enables it to better handle vocabulary differences
between training and testing domain compared to the
dictionary baseline. As an unsupervised approach, it
only relies on an unannotated corpus to calculate the
ngram probability distributions.

Unsupervised biLSTM: Similar to CharSplit, the
approach also often fails attaching Fugen-S to the
body instead of to the head if removing the Fugen-S
using the regular expression fails. In that regard, the
unsupervised biLSTM output is similar to CharSplit.
However, the latent representation of the character
sequences (compared to the ngram representation in
CharSplit that directly relies on the surface forms)
allows it to better generalize to the out-of-domain
data than CharSplit, yielding better splitting accuracy.

Unsupervised biLSTM + MLP: The combination of
the unsupervised biLSTM and the supervised MLP
yieled best overall results in our experiments. As one
of the supervised approaches, it does not seem to
struggle with occurrences of the Fugen-S and most
errors stem from splitting compounds with multiple
free morphemes at the wrong free morpheme
boundary.

seq2seq: As the second supervised model, this model
also does not struggle with removing Fugen
elements. The main error cause is thus splitting
compounds with multiple free morphems at the

incorrect free morpheme boundary, e.g. for the
compound Parkleitsystem (parking guiding system),
it generates the head System instead of Leitsystem.
A unique error source for this model is that it often
generates spelling errors in the (otherwise) correctly
identified heads, e.g. for Neukonstruktion (new
construction), it produces konstroktion as the head.
Clearly, generating the head noun instead of just
finding its starting character seems to overcomplicate
the task in our setting and has an unnecessary impact
on performance.
When moving to the out-of-domain data, the model
shows a bigger performance impact than the biLSTM
coupled with the MLP. One possible reason could be
that the model does more heavily rely on full words
during testing, i.e. the input representation is
constructed over the full compound and the attention
mechanism does not focus strongly enough on
relevant character sequences. A seq2seq model that
replaces the input representation with convolution
operations is presented in Gehring et al. (2017). An
interesting experiment would be to evaluate if
character convolutions are the better option for
representing important character sequences than the
biLSTM.
Finally, we noted that when training the model to
generate both the body and head constituents given
the compound, it often produces the correct
lemmatization of the body by removing Fugen
elements from it (-es, -en, -s, -n, e.g.
bundesforschungsminister→ bund,
forschungsminister or landesverwaltung→ land,
verwaltung). It thus seems to be the appropriate
candidate for a neural model if identifying the
lemmatized body of a compound is a goal of splitting
compounds.

Output combination: To gain insight on how
complementary the outputs of the different models
are, we calculated the percentage of compounds that
are split identically by all models, which is 76.63%.
This suggests that there is a substantial difference in
the outputs.
We also calculated the upper bound splitting
performance for ensembling the models. To do so,
we regarded a compound as split correctly if at least
one of the outputs contained the correct split. This
upper bound achieves an accuracy of 99.56% on the
GermaNet data, which indicates that the model
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outputs are sufficiently different to be combined in an
ensemble system.

4 Conclusion
We evaluated three common neural sequence models
for the task of splitting (Swiss) German compounds
and compared them to ngram- and dictionary-based
baselines. We found that for in-domain data (Ger-
man compounds), the neural sequence models were
not able to outperform the baselines, but that for out-
of-domain data (Swiss German), they achieved vastly
better accuracy in identifying splitting positions. We
hypothesize that the latent representations in the neu-
ral models of character sequences (in the form of
vectors) allows them to process similar character se-
quences in a similar way. Thus, when applying mod-
els trained on German data to Swiss German data, the
models are able to resolve the differences between the
languages because slightly modified but similar and
corresponding ngram sequences lead to similar hid-
den representations, which in turn yield similar out-
puts (i.e. splitting positions), where ngram- or dictio-
nary approaches, which directly rely on surface forms,
fail. Future work in the direction of Alfonseca et al.
(2008) will have to determine if the approaches based
on neural sequence models is applicable to other lan-
guage groups with similar spelling.
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