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Abstract

We propose a genetic-based algorithm for
combining visual and textual embeddings in
a compact representation that captures fine-
grain semantic knowledge—or attributes—of
concepts. The genetic algorithm is able to
select the most relevant representation com-
ponents from the individual visual and tex-
tual embeddings when learning the represen-
tations, combining thus complementary vi-
sual and linguistic knowledge. We evaluate
the proposed model in an attribute recognition
task and compare the results with a model that
concatenates the two embeddings and models
that only use monomodal embeddings.

1 Introduction

Distributed representations of words (Collobert et al.,
2011; Mikolov et al., 2013; Pennington et al., 2014;
LeCun et al., 2015) in a vector space that capture
the textual contexts in which words occur have be-
come ubiquitous and been used effectively for many
downstream natural language processing tasks such as
sentiment analysis and sentence classification (Kim,
2014; Bansal et al., 2014). In computer vision, convo-
lutional neural network (CNN) based image represen-
tations have become mainstream in object and scene
recognition tasks (Krizhevsky et al., 2012a; Karpathy
et al., 2014). Vision and language capture comple-
mentary information that humans automatically inte-
grate in order to build mental representations of con-
cepts (Collell and Moens, 2016). Certain concepts
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or properties of objects cannot be explicitly visually
represented while, at the same time, not all the prop-
erties are easily expressible with language. Here, we
assume that many properties of objects are learned by
humans both by visual perception and through the use
of words in a verbal context. For example, a cat has
fur, which is visually observed, but from language this
property can also be learned when speaking of the fur
of this animal or of hairs that shake when moving.
When building meaning representations of an object’s
attribute, combining visual representations or embed-
dings with textual representations seems beneficial.

In this paper we investigate how to integrate vi-
sual and textual embeddings that have been trained
on large image and text databases respectively in or-
der to capture knowledge about the attributes of the
objects. We rely on the assumption that fine-grain se-
mantic knowledge of attributes (e.g., shape, function,
sound, etc.) is encoded in each modality (Collell and
Moens, 2016). The results shed light on the potential
benefit of combining vision and language data when
creating better meaning representations of content. A
first baseline model just concatenates the visual and
textual vectors, while a second model keeps a com-
pact vector representation, but selects relevant vector
components to make up the representation based on
a genetic algorithm, which allows capturing a mix-
ture of the most relevant visual and linguistic features
that encode object attributes. We additionally com-
pare our model with vision-only and text-only base-
lines. Our contribution in this paper is as follows:
To the best of our knowledge, we are the first to dis-
entangle and recombine embeddings based on a ge-
netic algorithm. We show that the genetic algorithm
most successfully combines complementary informa-
tion of the visual and textual embeddings when eval-
uated in an attribute recognition task. Moreover, with
this genetic algorithm we learn compact and targeted
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embeddings, where we assume that compact mean-
ing representations are preferred over longer vectors
in many realistic applications that make use of large
sets of representations. Ultimately, this work provides
insight on building better representations of concepts,
which is essential towards improving automatic lan-
guage understanding.

The rest of the paper is organized as follows. In the
next Section we review and discuss related work. In
Section 3 we describe the proposed genetic algorithm
that combines visual and textual embeddings in en-
coding and classifying attributes, as well as a baseline
method that concatenates the visual and textual em-
beddings and baseline vision-only or text-only mod-
els. Next, we present and discuss our experimental
results. Finally, in conclusions and future work, we
summarize our findings and suggest future lines of re-
search.

2 Related Work

Representations of concepts are often task specific,
where they mostly have been used in word similar-
ity tasks. In this context integration of the visual
and linguistic representations was realized by Collell
et al. (2017); Lazaridou et al. (2015); Kiela and Bot-
tou (2014); Silberer and Lapata (2014). Kiela and
Bottou (2014) proposed the concatenation of visual
and text representations, while Lazaridou et al. (2015)
extend the skip-gram model to the multimodal do-
main, but none of these works regard attribute recog-
nition. Silberer and Lapata (2014) obtain multimodal
representations by implementing a stacked autoen-
coder with the visual and word vectors as input in an
attribute recognition task. These vectors were sep-
arately trained with a classifier. In this work, we
start from general pre-trained embeddings. Rubin-
stein et al. (2015) research attribute recognition by
relying only on linguistic embeddings. Bruni et al.
(2012) showed that the color attribute is better cap-
tured by visual representations than by linguistic rep-
resentations. Farnadi et al. (2018) train a deep neural
network for multimodal fusion of user’s attributes as
found in social media. They use a power-set com-
bination of representation components in an attempt
to better model shared and non-shared representations
among the data sources which are composed of im-
ages, texts of and relationships between social media
users. The closest work to ours is that of Collell and

Moens (2016) who compare the performance of visual
and linguistic embeddings each pre-trained on respec-
tively a large image and text dataset for a large num-
ber of visual attributes, as well as for other non-visual
attributes such as taxonomic, function or encyclope-
dic. In contrast to their work, we propose a model that
integrates visual and linguistic embeddings, leverag-
ing their findings in which they show that visual and
linguistic embeddings encode complementary knowl-
edge.

Genetic algorithms have been used for feature se-
lection in text classification and clustering tasks (e.g.,
Abualigah et al. (2016); Gomez et al. (2017); Onan
et al. (2017)), where the goal is to reduce the num-
ber of features. In this paper we continue this line of
thinking for learning better multimodal embeddings.

3 Methodology

Given visual and textual embeddings of the same con-
cept word but with different dimensionality, our goal
is to combine the two embeddings so that the new em-
bedding can capture both visual and textual seman-
tic knowledge but with a more compact form than the
concatenation representation. This section describes
why and how we achieve this goal under the genetic
algorithm (GA) framework.

3.1 Why Genetic Algorithms

When combining two embeddings, the instinctive idea
naturally comes to mind is to check the meaning of
each dimension in order to “pick” the dimensions that
are really useful in a certain task. However, it has
been a long term and highly debated issue in NLP
that what exactly each dimension in the learned em-
beddings means to the whole representation. This is
a work requires devoted observation and up till now
there has been no final judgment on this topic. Back
to the original goal, our final task is not to investigate
the exact meaning of each dimension but to choose the
dimensions that really help. This motivates us to use
genetic algorithm which can provide numerous solu-
tions and select them based on the natural selection
principle. Specifically, the genetic operators such as
crossover in genetic algorithm can be just used to vary
the programming of embeddings from one generation
to the next.
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3.2 Genetic Algorithms Basic

Belonging to the larger class of evolutionary algo-
rithms, genetic algorithms (GA) are meta-heuristics
inspired by the process of natural selection. In a given
environment, a population of individuals competes for
survival and, more importantly, reproduction. The
ability of each individual to achieve certain goals de-
termines his or her chance of producing the next gen-
eration. In a GA setting, an individual is a solution
with regard to the problem and the quality of the solu-
tion determines its fitness. The fittest individuals tend
to survive and have children. By searching the so-
lution space through the use of simulated evolution,
i.e., following the survival of the fittest strategy, a GA
achieves continuous improvement over the successive
generations.

GA haven been shown to generate high-quality
solutions to linear and non-linear problems through
biologically-inspired operators such as mutation,
crossover, and selection. A more complete discus-
sion can be found in the book of Davis (1991). Algo-
rithm.1 summarizes the procedure of a basic genetic
algorithm.

Algorithm 1 Framework of a Genetic Algorithm.
1: initialize population;
2: evaluate population;
3: while (!StopCondition) do
4: select the fittest individuals;
5: breed new individuals;
6: evaluate the fitness of new individuals;
7: replace the least fitted population;
8: end while

There are six fundamental issues to be determined
to use a genetic algorithm: chromosome representa-
tion, initialization, the selection function, the genetic
operators of reproduction, evaluation function, and
termination criteria. The rest of this section describes
the detail of these issues in creating a compact rep-
resentation to capture fine-grain semantic visual and
textual knowledge.

3.3 Chromosome Representation, Initialization,
and Selection

The chromosome representation determines the prob-
lem structure and the genetic operators in a GA. The
floating point representation of the chromosomes has
been shown to be natural to evolution strategies and

evolutionary programming (Periaux et al., 2015). One
may point out that the pre-trained visual and textual
embeddings can naturally be used as the original chro-
mosomes since they consists of floating numbers. But
recall that our goal is to form a compact embedding,
and by “compact” we mean that the dimension of the
final embedding should be smaller than the concate-
nation of the visual and textual embeddings. Due to
the previous reason, we first concatenate visual and
textual embeddings, then shuffle the dimensions in
the concatenation, and divide the concatenation into
two embeddings with the same dimension. Those two
embeddings are used as the original chromosomes.
Specifically, each real number in an embedding vec-
tor, representing a feature of the target concept, can
be seen as a gene. In this way, the chromosome (em-
bedding) is made up of a sequence of shuffled real
numbers (floating points) which either comes from the
original visual or textual embedding. Thus the two
embeddings can be seen as a mixture of visual and
textual knowledge with different degrees. For clar-
ity, we henceforth use the term embedding instead of
chromosome.

In a standard GA, the initial population is often
generated randomly and the selection function is usu-
ally based on the fitness of an individual. However
in our case, as explained previously, the initial popu-
lation is formed by the original embeddings. Conse-
quently, we make a change in the target of the selec-
tion function. Instead of trying to select the most fitted
individuals to reproduce, the selection function first
makes sure that every pair of visual and textual em-
beddings having the same target concept reproduce a
group of candidates of the next generation, by repeat-
ing the reproduction method several times. The repro-
duction method involves randomly initialized param-
eters and will produce different children each time.
Once a certain group of children candidates are gen-
eralized, they will compete against each other to sur-
vive but only the fittest one can win the opportunity of
becoming the next generation. In this way, the fitness
of the children generation is assured to be better than
their parent generation and the fitness is guaranteed to
improve over generations.

3.4 The Genetic Operators of Reproduction

Genetic operators determine the basic search mecha-
nism and create new solutions based on existing ones
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in the population. Normally there are two types of op-
erators: crossover and mutation. Crossover takes two
individuals and produces two new individuals while
mutation alters one and produces one new. Since the
embeddings used in our problem represent mappings
from spaces with one dimension per concept word to
continuous vector spaces with lower dimension, the
value in each dimension of the embeddings character-
izes the target concept in the vector spaces and should
not be recklessly changed. Due to this reason, we only
use the crossover operator to reproduce the next gen-
eration.

Recall that we now have two embeddings and each
one can be seen as a mixture that combined visual and
textual knowledge with different degrees. Our goal
is to find all dimensions that help to achieve a cer-
tain goal. To test whether a certain dimension is rel-
evant, the crossover operator is defined as follows:
Let X = (x1, · · · , xn) and Y = (y1, · · · , yn) be
two n-dimensional embeddings. The crossover opera-
tor generates two random integers k, t from a uniform
distribution from 1 to n, and creates two new embed-
ding X ′ = (x′1, · · · , x′n), Y ′ = (y′1, · · · , y′n) accord-
ing to:

x′i =
{

xi if i 6= k
yi otherwise

(1)

y′i =
{

yi if i 6= t
xi otherwise

(2)

As mentioned in the selection function, in one time
of reproduction the same crossover operator is applied
to all embeddings, producing one candidate of next
generation. By repeating it a certain number of times,
a group of different candidates is produced. We call
such repetition a “reproduction trial”.

3.5 Evaluation and Termination

Diverse evaluation functions can be used, depending
on the specific tasks. For instance, for classification
tasks the evaluation function can be any classification
metric such as precision or Jaccard similarity score, as
long as it can map the population into a partially or-
dered set. In regression, correlation is typically used
as evaluation function. In our experiment, the F1 mea-
sure is used as the evaluation function. Generally, we
use two types of F1 measure as the evaluation of fit-
ness to avoid bias, one with respect to positive labels

and the other negative labels. Section 4 shows the de-
tail of how we use the F1 measure as evaluation func-
tion.

GA moves through generations, selecting and re-
producing, until a specific termination criterion is met.
From the point of view of reproducing, the stopping
criterion can be set as a maximum number of gener-
ations reproduced. For example, the algorithm will
stop once it reproduce 1000 generations. The first ter-
mination criterion is the most frequently used. The
second termination strategy is a population conver-
gence criteria that evaluates the sum of deviations
among individuals. Third, the algorithm can also be
terminated when a lack of improvement over a cer-
tain number of generations happens or, alternatively,
when the value for the evaluation measure meets a tar-
get acceptability threshold. For instance, one can set
as threshold if there is no improvement over a series
of 10 times of reproduction, or if the fitness of the
current generation is larger than the target threshold,
then the algorithm terminates. Usually, several strate-
gies can be used in conjunction with each other. In
the experiments described below, a conjunction of the
maximum number of generations reproduced in the
first termination criterion and the maximum number
of generations that allows a lack of improvement in
the third termination criterion is used. Please noted
here that a maximum number of generations repro-
duced in the first termination criterion and a certain
number of generations that allows a lack of improve-
ment are two different concepts. For example, if the
former is set to 1000 while the latter 10, the algorithm
will terminate when either 1) the algorithms reproduce
1000 generations; or 2) during the algorithm, there is
no improvement in fitness 10 consecutive times of re-
production trials.

4 Experiments and Results

4.1 Experimental Setup

4.1.1 Pre-trained Visual Embeddings

Following Collell and Moens (2016), we use Ima-
geNet (Russakovsky et al., 2015) as our source of
visual data. ImageNet is the largest labeled image
dataset, and covers 21,841 WordNet synsets or mean-
ings (Fellbaum, 1998) and over 14M images. We only
preserve synsets with more than 50 images, and we
set an upper bound of 500 images per synset for com-
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putation time. After this, 11,928 synsets are kept. We
extract a 4096-dimensional vector of features for each
image as the output of the last layer of a pre-trained
AlexNet CNN in Krizhevsky et al. (2012b). For each
concept, we combine the representations from its in-
dividual images into a single vector by averaging the
CNN feature vectors of individual images component-
wise, which is equivalent to the cluster center of the
individual representations.

4.1.2 Pre-trained Word Embeddings

Following Collell and Moens (2016), we employ 300-
dimensional GloVe vectors (Pennington et al., 2014)
trained on the largest available corpus (840B tokens
and a 2.2M words vocabulary from Common Crawl
corpus) from the GloVe website1.

4.1.3 Dataset

The data set collected by McRae et al. (2005) con-
sists of data gathered from 30 human participants that
were asked to list properties—attributes—of concrete
nouns. The data contains 541 concepts, 2,526 differ-
ent attributes, and 10 attribute types.

Attribute type # Attr. Avg. # concepts SD

encyclopedic 4 32.7 1.5
function 3 46 27.9
sound 1 34 -
tactile 1 26 -
taste 1 33 -
taxonomic 7 42 24.8
color 7 42.4 12.0
form and surface 14 63.7 29.9
motion 4 37.5 5.7

Table 1: Attribute types, number of attributes in each
type (# Attr.), and average number of concepts in
each type (Avg. # concepts) with their respective
standard deviations (SD).

4.2 Attribute Recognition

To evaluate the composed embeddings, we assess how
well the attributes from McRae et al. (2005) can be
recognized by using the embeddings as input. For
each attribute a, we build a data set with the concepts
to which this attribute applies as the positive class
instances and the rest of concepts form the negative
class. For example, a “beetle” is a negative instance
and “airplane” a positive instance for the attribute a

1http://nlp.stanford.edu/projects/glove

= is large. And an “ant” is a negative instance and
a “bear” is a positive instance for the attribute a =
has 4 legs. We consider that an attribute applies to a
noun concept if a minimum of 5 people have listed it2.
We treat attribute recognition as a binary classification
problem: For each attribute a we learn a predictor:

fa : X → Y
where X ⊂ Rd is the input space of (d-

dimensional) concept representations and Y = {0, 1}
the binary output space. We report results with a linear
SVM classifier, implemented with the scikit machine
learning toolkit from Pedregosa et al. (2011).

To guarantee sufficient positive instances, only at-
tributes with at least 25 positive instances in the above
dataset are kept. This leads to a total of 42 attributes,
covering 9 attribute types, and their corresponding in-
stance sets. The concept selection in ImageNet de-
scribed in Sect. 4.1.1 results in a visual coverage of
400 concepts (out of 541 from McRae et al. (2005)
data), and, for a fair vision-language comparison, only
the word embeddings (from GloVe) of these nouns are
employed. Hence, our training data {(−→xi , y)}400i=1 con-
sists of 400 instances. Table 1 shows the detail of each
attribute type.

4.3 Parameter Setting

Notice that each reproduction operation will give birth
to two forms of embedding. To avoid potential bias,
we evaluate one embedding by F1 measure on the pos-
itive labels and the other on the negative labels. The
average of these two F1 measures can be an option to
evaluate fitness. However, in practice, the negative la-
bels are more numerous than the positive ones. An in-
crease of the F1 measure on the negative labels while
a decrease of the positive ones can still result in an in-
crease on the average F1 measure. Thus, we use the
F1 measure on the positive labels as the first measure
of fitness and the F1 measure on the negative labels as
the second. Only the one with largest increase in the
first F1 measure and largest increase or at least non-
decrease in the second F1 measure will be chosen as
the next generation.

The maximum number of generations reproduced
is set to 106. The maximum number of reproduc-
tion trials in case a lack of improvement among the

2This threshold was set by McRae et al.
(2005)
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children candidates is 10. The repeat times of the
crossover operation in one reproduction trial is 103.
And in the final evaluation of each embedding on the
attribute recognition task, we perform 5 runs of 5-fold
cross validation.

We evaluate four different embeddings as input
of the attribute recognition task: 1) Embeddings of
the concept obtained with the GA described above
(GeMix); 2) Embeddings obtained by concatenat-
ing the visual and textual embedding vectors (CON);
3) Monomodal visual embeddings (CNN); and 4)
Monomodal text embeddings (GloVe). Table 2 shows
the number of dimensions of each embedding respec-
tively.

# dimensions
CNN 4096
Glove 300
CON 4396

GeMix 2198

Table 2: Dimensionality of each embedding type.

4.4 Result and Discussion

4.4.1 Performance per Attribute Type

We first evaluate how the proposed method performs
on each attribute type. There are 9 attribute types and
we evaluate the four embeddings for each type by with
the average F1 measure.

From Table 4 one can see that the GeMix embed-
dings outperform the other three embedding methods
in 7 attribute types, i.e., encyclopedic, function, tac-
tile, taste, taxonomic, color and form and surface. Es-
pecially in encyclopedic, GeMix increases the average
F1 measure by more than 0.02 and in function and
taxonomic, it increases by nearly 0.02. We perform
Wilcoxon Signed-Rank test of each two methods on
different feature sets and find that the difference is sig-
nificant at p ≤ 0.05.

Another interesting finding is that the performance
of the concatenated embedding (CON) is not always
better than the performance of the monomodal em-
beddings, CNN or GloVe. For instance, in tactile,
color and motion, the F1 measure of CNN or GloVe
is higher than that of concatenated embeddings. This
indicates that there are certain attributes in which the
performance of combined visual and textual knowl-
edge is not necessarily better than unimodal visual or

textual knowledge. This will further be discussed in
Section 4.4.2.

4.4.2 Performance per Attribute and Overall

Table 5 provides a more detailed answer to our ques-
tion, showing that GeMix outperforms the other three
embeddings in 20 attributes while CNN performs best
in 6 attributes, GloVe in 7 attributes and the con-
catenated embedding (CON) in 9 attributes. Specif-
ically, GeMix outperforms the second best method
with more than 0.04 in attributes 04 (lays eggs), 09
(is soft), 12 (a vegetable), and 14 (a mammal) and
0.10 in 30 (has a beak) and 37 (made of wood).

F1attr F1samp

CNN 0.535 0.469
Glove 0.552 0.474
CON 0.572 0.495

GeMix 0.586 0.507

Table 3: Overall F1 measure per attribute and per sam-
ple.

According to Collell and Moens (2016), vi-
sual embeddings perform better than textual ones
when recognizing three main attributes: motion,
form and surface, and color, while textual embed-
dings (GloVe) outperform the visual CNN embed-
dings in recognizing encyclopedic and function at-
tributes. A closer look at Table 5 further reveals that
for attribute types where vision or language embed-
dings show better performance over the other one, it
is high likely that adding respectively language or vi-
sion information lower the performance, e.g., attribute
05 (hunted by people), 07 (used for transportation)
in function and 20 (is fast), 21 (eats) in motion. Be-
cause GeMix tend to set aside the “noisy” dimensions
of the embeddings, it performs better than the con-
catenated embedding.

Let us take a look at the overall average F1 mea-
sure increase. We evaluate the F1 measure with re-
spect to two different aspects. First, the overall aver-
age F1 measure per attribute, i.e., F1attr = 1

|L|F1L
where |L| is the number of different attributes (42 in
our case) and F1L is the F1 measure of a specific at-
tribute. Second, the overall average F1 measure per
sample, i.e., F1samp =

1
|S|F1S where |S| is the num-

ber of samples (400 in our case) and F1L is the F1
measure of each sample. Table 3 shows that in both
cases, GeMix achieves the highest F1 measure.
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Encyc Funct Sound Tactile Taste Taxon Color Form&Surf Motion
CNN 0.429 0.738 0.513 0.470 0.421 0.486 0.676 0.567 0.628
GloVe 0.422 0.743 0.747 0.517 0.341 0.495 0.630 0.563 0.595
CON 0.457 0.760 0.762 0.477 0.433 0.512 0.663 0.582 0.623

GeMix 0.471 0.786 0.758 0.520 0.438 0.528 0.671 0.588 0.620

Table 4: Performance per Attribute Type: Averages of F1 measures per attribute type (i.e., average individual
attributes) for CNN, GloVe, CON and GeMix.

01 02 03 04 05 06 07 08 09 10 11
CNN 0.484 0.580 0.355 0.591 0.410 0.682 0.794 0.663 0.261 0.418 0.591
GloVe 0.463 0.611 0.521 0.591 0.486 0.602 0.971 0.701 0.551 0.311 0.668
CON 0.462 0.673 0.576 0.626 0.456 0.723 0.944 0.765 0.547 0.437 0.683

GeMix 0.502 0.661 0.570 0.672 0.466 0.734 0.944 0.717 0.605 0.439 0.690
12 13 14 15 16 17 18 19 20 21 22

CNN 0.460 0.284 0.632 0.405 0.431 0.422 0.439 0.581 0.915 0.527 0.812
GloVe 0.292 0.233 0.628 0.491 0.484 0.530 0.320 0.617 0.822 0.510 0.622
CON 0.522 0.321 0.641 0.443 0.471 0.522 0.466 0.603 0.846 0.510 0.773

GeMix 0.565 0.228 0.702 0.475 0.437 0.476 0.475 0.651 0.863 0.524 0.822
23 24 25 26 27 28 29 30 31 32 33

CNN 0.513 0.643 0.884 0.699 0.647 0.544 0.727 0.325 0.489 0.649 0.738
GloVe 0.347 0.595 0.743 0.668 0.379 0.448 0.437 0.313 0.495 0.767 0.672
CON 0.476 0.668 0.852 0.728 0.640 0.558 0.433 0.298 0.503 0.722 0.651

GeMix 0.546 0.660 0.829 0.704 0.639 0.548 0.414 0.476 0.512 0.744 0.734
34 35 36 37 38 39 40 41 42

CNN 0.580 0.421 0.372 0.532 0.906 0.506 0.748 0.421 0.418
GloVe 0.444 0.440 0.368 0.345 0.970 0.522 0.543 0.415 0.291
CON 0.622 0.548 0.377 0.547 0.888 0.570 0.784 0.483 0.539

GeMix 0.622 0.562 0.387 0.670 0.900 0.573 0.791 0.468 0.500

Table 5: Performance of the attribute classification task per attribute in terms of F1 measure for each embedding
method. Attribute 01 - 04 belong to encyclopedic, 05 - 07 function, 08 sound, 09 tactile, 10 taste, 11 - 17
taxonomic, 18 - 21 motion, 22 - 28 color and 29 - 42 form and surface.

5 Conclusion and Future Work

In this paper, we propose a genetic-based algorithm
which learns a compact representation that combines
visual and textual embeddings. Two embeddings,
coming from random evenly divide of the shuffled
concatenation of vision and textual embeddings, are
used as the initial chromosomes in the genetic algo-
rithm. A variant of one-point crossover method is
used to move the most relevant components in the rep-
resentation to one embedding, and the non-relevant
ones to the other. To avoid bias, we use two measures
as the evaluation of fitness: one is respect to positive
labels and the other negative labels. The learned em-
beddings can be seen as a combination of both visual
and textual knowledge. In an attribute recognition task

the genetic-based representation outperformed a base-
line composed of the concatenation of the visual and
textual embeddings, as well as the monomodal visual
or textual embedding.

Another interesting finding in this paper is that for
a small group of attributes in which either vision or
language generally dominate, adding the other modal-
ity may lower the final performance. For example,
the attribute eats in the motion type for which vi-
sion tends to perform better than language (Collell
and Moens, 2016), the performance of the mixture
of both visual and textual representation is lower than
the monomodal visual representation. Ultimately, our
findings provide insights that can help building better
multimodal representation by taking into account to
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what degree should the visual and textual knowledge
be mixed with respect to different tasks.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research 12(Aug):2493–
2537.

Lawrence Davis. 1991. Handbook of genetic algorithms .

Golnoosh Farnadi, Jie Tang, Martine De Cock, and Marie-
Francine Moens. 2018. User profiling through deep
multimodal fusion. In WSDM. pages 171–179.

Christiane Fellbaum. 1998. WordNet. Wiley Online Li-
brary.

Juan Carlos Gomez, Stijn Hoskens, and Marie-Francine
Moens. 2017. Evolutionary learning of meta-rules for
text classification. GECCO.

Andrej Karpathy, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. 2014.
Large-scale video classification with convolutional neu-
ral networks. In CVPR. IEEE, pages 1725–1732.
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