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Abstract. Increasingly, governments, corporations, and scientific organizations
need to extract complex information from highly technical documents. While lin-
guistic resources exist in some technical domains, they are largely unavailable
for the oil and gas domain. We applied natural language processing tools with
minimum domain adaptation to extract information from 155 annotated text pas-
sages from geological reports. In recognizing oil field entity names, we achieved
a precision of .94 and recall of .43 (F1=.59) without supervised learning. We
describe the impact of errors found in the output, including incorrect segmen-
tation, part-of-speech tags, multiword expressions, word sense disambiguation,
numeric quantities, and other issues leading to incorrect entity classifications.
These mistakes could be reduced with a domain-specific dictionary that includes
part-of-speech tags.

Resumo. Cada vez mais governos, corporações e instituições cientı́ficas pre-
cisam extrair informações complexas de documentos técnicos. Enquanto re-
cursos linguı́sticos existem em alguns domı́nios técnicos, estes estão em grande
parte indisponı́vel para o domı́nio de petróleo e gás. Nós aplicamos ferramen-
tas de processamento de texto com mı́nima adaptação ao domı́nio para extrair
informações de 155 passagens de texto de relatórios geológicos anotados. Ao
reconhecer os nomes das entidades dos campos de petróleo, alcançamos uma
precisão de .94 e um recall de .43 (F1 = .59) sem aprendizagem supervision-
ada. Nós descrevemos o impacto dos erros de segmentação de sentenças, tag-
ging, identificação de expressões multi-palavra, desambiguação do sentido das
palavras, e outras questões, na classificação incorreta das entidades. Os er-
ros encontrados poderiam, em sua maioria, serem evitados com um dicionário
especı́fico de domı́nio.

1. Introduction

Oil exploration and production companies annually invest billions of dollars gathering
and processing data contained within documents, including reports, scientific articles,
business intelligence articles etc. These documents include critical information that drives
important decisions such as whether to drill exploratory wells, bid or buy, and production
schedules. Additionally, this unstructured data is growing exponentially each year and
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organizations are finding the management of unstructured data to be one of their most
critical challenges [Antoniak et al. 2016, Palkowsky 2005, Feblowitz 2013].

Information extraction from unstructured text requires a sequence of natural lan-
guage processing steps, a linguistic pipeline, including the text segmentation in tokens
and sentences, definition of the entities of interest, detection of mentions of these entities
in the text (mention detection), linking mentions that refer to the same thing in the world
(co-reference resolution), and extracting relations between the detected entities (relation
extraction). There has been considerable work on mention detection, particularly de-
tection of named entities [Ratinov and Roth 2009], including development of algorithms
in specific technical domains, such as biomedical, finance, and chemistry. In oil and
gas (O&G), named entities include named oil fields, basins, rock formations, and so on.
Basic techniques include regular expressions and similarity based approaches. Regular
expressions can take advantage of regularities in language often introduced in technical
domains. Similarity-based techniques, such as Statistical Character-based Syntax Sim-
ilarity (SCSS), can handle character-level, word-level and word order variations when
matching text to dictionary entries [Tohidi et al. 2014]. However, adapting these algo-
rithms to a new domain requires significant work. Thus, in recent years, researchers have
turned to supervised machine learning methods.

With supervised learning approaches, people annotate a set of documents (the
training data) manually, often using an annotation tool with a user interface, providing
labels for text segments, used to train a statistical model. Afterwards, the model can be
used to annotate similar documents, assigning the correct labels to new text segments.
There are many weaknesses in this approach. The most important limitation is that the
training data must be similar to the data that will be annotated with the model. Text
annotation is also very time-consuming, and in specialized domains it requires domain
expertise, making it impossible to use less expensive crowdsourcing approaches.

The cost of developing a model for a new domain, such as O&G, can be mitigated
by reusing annotations from a different domain, but also correcting those annotations
using rule-based transformations informed by known differences in the lexicon and lin-
guistic constructs special to the new domain.

This article describes an approach to information extraction that is informed by
linguistics. We developed a workbench of tools to understand the shortcomings of a
current statistical entity and relation extraction system. Our goal is to achieve competitive
results without the significant cost of creating an annotated training corpus.

The shortcomings of current NLP methods on the highly complex, domain-
specific language in the O&G domain are not well described. This article elucidates
some of the reasons why statistical methods, while generally outperforming rule-based
methods, still have challenges in this difficult domain. We argue that with the right invest-
ments in the construction of lexical resources and corpora, we can improve results and the
ability to reuse, adapt and replicate resources from other domains.

2. The statistical-based approach

Regarding supervised learning approaches for named entities or mention extraction, there
are many tools available. Tools such as GATE [Cunningham et al. 2011] or IBM Wat-



son Knowledge Studio (WKS)1 provide a rich set of document annotation tools along
with the core component to train models based on annotated data. IBM WKS is based
on the Statistical Information and Relation Extraction (SIRE) toolkit [Florian et al. 2004]
for building trainable extractors for new applications and domains. SIRE provides com-
ponents for mention detection using Maximum Entropy models [Berger et al. 1996] that
can be trained from annotated data, a trainable co-reference component for grouping de-
tected mentions in a document that correspond to the same entity, and a trainable relation
extraction system.

The first step in using WKS is to define the type system. A type system repre-
sents the salient things in the target domain content that a human annotator or machine
annotator should label with an annotation. The type system controls how content can
be annotated by defining the types of entities that can be labeled and how relationships
among different entities can be labeled. The annotator process manager typically works
with subject matter experts in the domain to define the type system.

In this article, we use an O&G type system developed in an earlier project at our
institution. It defines 31 entity types, drawn from the GeoSciML standard2, and expanded
with petroleum system and exploration concepts. The entity types can be broadly catego-
rized as physical (earth materials, organic materials), geographical, geological including
geological time, petroleum system, field development, and property/measurement. The
type system also defines 653 relations between these entity types, such as ‘formedDur-
ing’, ‘causedBy’, and ‘composedOf’. This paper focuses on mention detection of the
entity types and relations will not be further discussed.

This type system was used to annotate a set of scientific documents in the O&G
domain; these serve as a ‘golden set’ against which different information extraction meth-
ods can be compared.

3. The ‘golden set’ from human annotations
The source documents for the ‘golden set’ (GS) were randomly selected from a corpus
of 1298 publicly available English language geological reports, published by the United
States Geological Survey (USGS), Geological Survey of Canada (GSC), and British Geo-
logical Survey (BGS). 155 text passages relevant to petroleum systems were extracted
from the selected documents and annotated with entities and relations from the type
system. Multiple occurrences of the same entity in a document were annotated as co-
references.

The documents were annotated by a team of individuals with a background in ge-
ology, all with oil industry experience. In total, 38,322 mentions of the 31 entity types
were annotated. Inter-annotator agreement for entity mentions reached 0.84, and docu-
ments annotated by more than one annotator were adjudicated to arrive at a final version.
Despite document cleaning, some documents contained text recognition noise.

The goal of the annotation was to gather training data to build WKS models to
extract information about the entities and the relationships between them. The guidelines
followed by the annotators were designed to minimize noise in the extracted data, and to

1http://ibm.co/2kDFWph
2http://schemas.geosciml.org/



focus on real-world information. Considering the examples below:

(1) The Wargal has produced oil at the Dhurnal f.eld.

(2) The Point Thomson and Kavik accumulations seem anomalous given their hydro-
carbon phases and maturity levels.

(3) The USGS estimated a mean of 19.10 million bar-rels of oil, 50.585 trillion cubic
feet of gas (TCFG), and 148.37 million barrels of natural gas liquids of undiscov-
ered resources.

(4) Depth to production in the Aspen, Frontier, and Bear River in these field ranges
from 100 to 2,000 ft, and oil gravity ranges from 22◦to 48◦API.

The annotations have the following characteristics:

• Entities containing text extraction noise such as “f.eld” for “field” in Example 1,
or “bar-rels” for “barrels” were not annotated.
• Only mentions of real-world physical entities and their properties were annotated.

Abstract concepts and definitions (e.g. “a reservoir is . . . ”) were not annotated.
One has to be careful here. We didn’t just do named entities - we did nominals.
For example, one might annotate “fault” talking about a specific fault, not just the
San Andreas Fault.
• Annotators were able to use their background and context knowledge in deciding

the type of an entity. For example, if the preceding document context made it clear
that “Point Thompson” and “Kavik” in Example 2 are oil or gas fields, as opposed
to rock formations, basins or geographical areas, then they would be annotated as
FIELD even though the sentence has no explicit use of any variation of the word
‘field’.
• Units and abbreviations are included in the annotations of measurements where

present. A specific set of 43 properties are included, and all measures of other
properties are left unmarked. Annotators were instructed to mark ranges of val-
ues expressed as “from X to Y ft” with separate mentions for the low and high
ends of the range, to facilitate downstream processing of the information. Ranges
expressed with a dash, in the form “x-y ft” were annotated as a single mention.

Annotations are provided for ungrammatical sentences. Notice the strange syntac-
tic structure of sentence 4, including the wrong singular of “field”. These GS annotations
reflect the complexities of the real world and its linguistic encoding. Recovering these
annotations poses a significant challenge to automated systems. In Section 5, we will take
these 155 as a golden set and apply our pipeline to measure the difficulty of recognizing
the human annotated entities. We focus our analysis on the FIELD entity type, which
represents oil and gas fields. The GS contains 918 annotated mentions of FIELD.

4. A rule-based NLP pipeline
Our rule-based pipeline is composed of two main macro processes: linguistic analysis and
fact extraction via Prolog rules. For the linguistic analysis we are using a combination of:
1) sentence segmentation; 2) tokenization, POS tagging, named entities recognition and
parsing using English Slot Grammar (ESG, described in Section 4.1); and 3) a graph
based word sense disambiguation (WSD).



We use the Apache OpenNLP 3 for sentence segmentation. OpenNLP imple-
mented a supervised method for text segmentation using a model trained with the Bosque
Corpus [Freitas et al. 2008]. The UKB [Agirre and Soroa 2009] algorithm performs an
alignment between the words in the text and any semantic lexical database, in particular,
we are using the Princeton English Wordnet (PWN, [Fellbaum 1998]). UKB is an imple-
mentation of the graph-based method for WSD. Graph-based techniques find and exploit
the structural properties of the graph underlying the PWN (or any other lexical resource).
Because the graph is analyzed as a whole, these techniques have the property of being able
to find globally optimal solutions, given the relations between entities. Graph-based WSD
methods are particularly suited for disambiguating word sequences, and they manage to
exploit the interrelations among the senses in the given context.

Similar to [Fodor et al. 2008], we combine the linguistic analysis into a set of
Prolog facts over sentence ids and token ids. For example the POS tag of a token is
converted into nlp POS(s,i,POS), where s is the sentence id, i, the token id, and
POS is the POS tag, represented as a string. Dependency relations between tokens are
converted into three-argument predicates that range over tokens of a single sentence, for
example: nlp conj(s,i1,i2). Here, s is the sentence id, and i1 and i1 are token
ids. This works since there is no cross-sentence relation, but might need to be revisited
once this support is added. Also, on a more practical note, using different predicates for
the different dependency types (as opposed to a single relation where the dependency
type is given as another parameter) allows a Prolog interpreter to properly index those
predicates and thus having a large corpus of facts will not slow down the processing of
rules later on. Next we apply several detection rules (Section 4.2) that match patterns on
the facts to enhance the parse tree.

4.1. English Slot Grammar

English Slot Grammar (ESG) [McCord 1990] is a deep parser in the sense that the parse
trees it produces for a sentence (or segment) show a level of logical analysis (deep struc-
ture). However, each parse tree also shows a surface-level grammatical structure (surface
structure), along with the deep structure. The parse trees for a segment are ranked ac-
cording to a parse scoring system. The system is divided into a large language-universal
shell and language-specific grammars for English, German, French, Spanish, Italian, and
Portuguese. The main steps of SG parsing are (A) tokenization and segmentation, (B)
morpholexical analysis, and (C) syntactic analysis. Unlike some parsers, SG uses no part-
of-speech (POS) tagger; the corresponding information simply comes out of syntactic
analysis.

As the name suggests, Slot Grammar is based on the idea of slots. Slots have
two levels of meaning. On the one hand, slots can be viewed as names for syntactic
roles of phrases in a sentence. On the other hand, certain slots (complement slots) have a
semantic significance. They can be viewed as names for argument positions for predicates
that represent word senses. Figure 1 shows an example of slots, and the phrases that fill
them. It shows for example that ‘Wargal’ fills the subj (subject) slot for the verb ‘has‘,
‘Blue Creek‘ fills the nadj slot for the word ‘field‘ etc. One can see then that the slots
represent syntactic roles.

3https://opennlp.apache.org



.----- ndet the1(1) det sg def the ingdet
.------- subj(n) Wargal(2) noun propn sg notfnd
o------- top have_perf(3,2,4) verb vfin vpres sg vsubj auxv
‘------- auxcomp(ena) produce1(4,2,5,6) verb ven vcreate (nform production)

‘----- obj(n) oil1(5,u) noun cn sg physobj massn ent material
‘----- comp(p) at1(6,4,9) prep pprefv staticp

| .- ndet the1(7) det sg def the ingdet
| .- nadj Blue Creek(8) noun propn sg capped notfnd
‘--- objprep(n) field1(9,u,u) noun cn sg location geoarea ent

Figure 1. ESG parse of “The Wargal has produced oil at the Blue Creek field.”

To illustrate the semantic view of slots, consider that there is a word sense
of ‘produce’ which, in logical representation, is a predicate, say produce1, where
produce1(e,x,y,z) means “e is an event were x produces y at z”. Slots that represent
predicate arguments in this way are called complement slots. Such slots are associated
with word senses in the Slot Grammar lexicon - in slot frames for the word senses. All
other slots are called adjunct slots (e.g. ‘ndet‘).

Given this dual role of slots, Slot Grammar parse trees show two levels of analysis
– the surface syntactic structure and the deep logical structure. The two structures are
shown in the same parse data structure. So on each line of the parse display, you see a
head word sense in the middle section, along with its logical arguments. To the left of the
word sense predication, you see the slot that the head word (or node) fills in its mother
node, and then you can follow the tree line to the mother node. To the right, you see the
features of the head word (and of the phrase which it heads). The first feature is always
the part of speech (POS). Further features can be morphological, syntactic, or semantic.
For instance, Figure 1 shows that ‘oil‘ was recognized as a material and a mass noun
while ‘field‘ was recognized as a geoarea and location. The semantic features are more
open-ended, and depend on the ontology and what is coded in the lexicon.

Regarding the arguments given to word sense predicates in the parse, the first ar-
gument is just the node index, which is normally the word number of the word in the
sentence. This index argument can be considered to correspond to the event argument
(with a broad interpretation of ‘event’). The remaining arguments correspond to the com-
plement slots of the word sense – or rather to the fillers of those slots. They always come
in the same order as the slots in the lexical slot frame for the word sense. So for a verb,
the first of these complement arguments (the verb sense’s second argument) is always the
logical subject of the verb. Generally, all the arguments are logical arguments.

By using ESG, we are able to generate amalgamated tokens such as ‘Blue Creek’
that are treated as a single word in the next steps of the pipeline, thus possibly simplifying
not only the dependency analysis, but also the necessary rules. We feel that this is a
healthy approach from an engineering point of view, as this makes the rules much simpler
to implement and maintain, as well as making the best use of what each NLP tool has
to offer. This process is not only used for named entities but also for other multi-word
expressions such as ‘more than‘. In one of its many options for names detection, ESG
recognize sequences of capitalized words as multi-word proper nouns, taking into account
some functional words, the dictionary entries and capitalization at sentence beginnings.
Nevertheless, ESG fails sometimes, as we will discuss in the following sections.



4.2. Prolog rules

A subset of the implemented Prolog rules for handling mentions of type FIELD follows.
Recall from Section 4.1 that we expect all proper names to have been retokenized into
single tokens, thus simplifying the complexity of the rules. The rules from Figure 2
rely on the existence of an anchor word that will give semantic meaning to the words
connected to it. The basic idea (lines 14-20 in Figure 2) is to find proper nouns that are
connected to this anchor word via a nadj dependency (noun adjunct slot) which will
indicate that this word is a field name (e.g. ‘Blue Creek field‘ in Figure 1).

1 connected_to_anchor(S,ConnectedNouns,AnchorLemma) :-
2 nlp_lemma(S,AT,AnchorLemma),
3 nlp_nadj(S,EntryPoint,AT),
4 graph_conj(S,G),
5 reachable(EntryPoint,G,ConnectedToEntry),
6 Tmp1 = [EntryPoint|ConnectedToEntry],
7 exclude(cord(S),Tmp1,Tmp2),
8 include(propn(S),Tmp2,ConnectedNouns).
9

10 anchor(S,[X],A) :-
11 connected_to_anchor(S,CN,A),
12 member(X,CN).
13
14 anchor(S,[X],A) :-
15 propn(S,X),
16 nlp_lemma(S,AT,A),
17 nlp_nadj(S,X,AT).
18
19 field(S,TL) :-
20 anchor(S,TL,’field’).
21
22 basin(S,TL) :-
23 anchor(S,TL,’basin’).

Figure 2. Example of rules

A more complex version of this rule would use synonyms and hypernyms of the
world ‘field’ in line 4, like ‘oilfield’, ‘gas field’. A more concise solution would be to
use senses related to oil fields and thus capturing all possible words related to them. The
word ‘field‘ has 17 senses in PWN, but, unfortunately, in the word sense disambiguation
provided by UKB, the most frequent sense selected was {05996646-n: a branch of
knowledge} (510 times) followed by the sense {14514039-n: a particular environment
or walk of life} (64 times). The two expected senses were never selected. The first one is
the {08659446-n: a geographic region (land or sea) under which something valuable
is found.}, and the second one, its hyponym, {08659861-n: a region rich in petroleum
deposits (especially one with producing oil wells)} which doesn’t contain the word ‘field‘
but only ‘oilfield‘, justifying the result. This is one of the gaps in PWN (see other cases in
Section 7) that we are solving with its adaptation to the O&G domain [Muniz et al. 2018].

We can also handle more complex phrasal structures, such as conjunctions (lines
1-8). The predicates graph conj and reachable are used to handle sentences such
as “Active exploration is now focused in Blue Creek, White Oak Creek, and Short Creek
fields in the northern part of the basin”. ESG annotates conjunctions using a linked list
style (see Figure 3) and the rules have to collected two or more elements in coordination.

We have also rules (not presented in Figure 2) to deal with more complex struc-



...
‘--------------- vprep in1(6,3,108) prep staticp

| .----------- lconj Blue Creek2(8) noun propn sg location
‘-+----------- objprep(n) ,(108) noun cn pl location cord

| .------- lconj White Oak Creek3(11) noun propn sg location
| .-+------- nadj and1(12) noun propn pl location cord
| | ‘------- rconj Short Creek4(14) noun propn sg location
‘-+--------- rconj field1(15,u,16) noun cn pl location geoarea

...

Figure 3. The fragment of an coordination.

ture. For example, “Fields that are along this zone of low percent sulfur are the Bretana,
Dorrisa, Huayuri, Huayuri Sur, Sun, Tetete, and Valencia”. Here, we have a copula fol-
lowed by several conjunctions where the word ‘fields‘ is the subject of the copula.

In practice we have eight rules: six rules to deal with three different types of
conjunction, and two rules for single compounds. These rules are reused (lines 22-23) for
any type of entity that is associated with an anchor word (basins, wells etc.).

5. The experiment
In this section we describe the main experiment we conducted. We took the 155 scientific
articles manually annotated by specialists in the O&G domain (the golden set) with the
type system described in Section 2 and ran them in our rule-based pipeline described in
Section 4. The idea is to evaluate the performance of our rule-based method in detecting
all entities mentioned and annotated by humans in the documents. We have focused our
analysis on comparing the ability of our pipeline to detect the mentions of type FIELD.
At this time, we have not addressed the identification of relations.

In the golden set documents, there are 918 annotations of type FIELD. Of those,
489 are variants of the word “field”. Given that, the remaining 429 annotations are poten-
tial names of fields. After removing known suffixes such as “field”, “oil field”, and “gas
field” we have 239 distinct names for fields in the golden set.

Running the ruleset over the 155 documents produces 109 distinct field names,
102 of which match the golden set. This gives a precision of .94 and recall of .43
(F1=.595). The statistical model trained with the annotated documents achieved preci-
sion of .62 and recall of .76 for the FIELD type. However, this value includes all 918
FIELD annotations, so cannot be directly compared.

6. Some qualitative analysis
Our approach for information extraction relies on a robust linguistic analysis. In this
section we present some evaluation in sentence segmentation, parsing, and word sense
disambiguation that we encountered in the technical documents. Dealing with scientific
articles impose many difficults. Since most of the text passages were retrieved from PDF
files, non ASCII characters generate garbage characters (i.e. “106/∆t f t/s”). We have
to manually clean the files removing around 20% of the sentences that contain some
unknown symbol or broken words.

Regardings the recognition of sentences bounderies, for better evaluate the pars-
ing, we manually fixed the sentence splitting step. We found around 100 cases of erro-



neous splitting of sentences caused by uncommon abbreviations such as “unpub. data”,
“[...] is located in sec. 29, T. 25 N., R. 91 W.” or “fig. 38” and citations.

One of the most problematic issues for the parser is the detection of multiword
expressions (MWE). MWEs such as “depositional environments”, “clastic units”, “de-
positional basin” and “shoreface sandstone” were generally recognized as constructions
where the first word is an adjective modifying a noun but they are actually lexicalized
or institutionalized phrases in the O&G domain [Sag et al. 2002]. Conversely, we also
have constructions that are not MWE but are recognized as so: “gas liquids”, “reservoir
objectives” etc. Sentence 5 shows an error in the analysis of the expression “vitrinite re-
flectance”, which should be considered an MWE (a method for measuring the maturity of
the rock), but it was tagged as separated nouns “vitrinite” and “reflectance”, generating
the wrong analysis and a nonsense interpretation that “reflectance data” is “vitrinite”.

(5) At the northern end of the section, however, vitrinite reflectance data from the
Eocene and Oligocene sections are from higher stratigraphic positions and indi-
cate only small amounts of previous burial.

MWEs that are proper nouns also pose a challenge to the parser in several ways,
since the amalgamation of the tokens is not uniform. In the sentences 6 and 7, ESG
correctly identified the proper nouns ‘Molina’ and ‘Piceance’ despide the capitalization
that would suggest the terms ‘Member’ and ‘Basin’ as part of the names. On the other
hand, ESG erroneously broke the proper nouns ‘Piceance Creek Dome’ and ‘Sulphur
Creek’ given that their parts are also in the ESG dictionary as common nouns. In the first
case, only the word ‘Piceance’ is consider a proper noun.

(6) At the Piceance Creek Dome field in the central part of the Piceance Basin . . .

(7) The Molina Member and “Wasatch G” sandstone reservoirs produce gas at
Piceance Creek Dome and Sulphur Creek fields in the central part of the Piceance
Basin . . .

Since every mistagged word has a cascading effect on the syntactic analysis of
the phrase, these errors suggested us to implement workarounds in our rules to consider
both types (common and proper nouns), which is not ideal. On the other hand, the ad-
dition of entity names in the ESG lexicon is easy and directly impacts the results. A
method for proper names acquisition from corpora is necessary and some previous work
on combination of named entities recognition with deep parsing was already developed
[Teufel and Kan 2011, Copestake et al. 2006].

There were also instances where no anchor word was present, as in example 8.
Here, the human annotator likely used background knowledge or the preceding document
context to infer that those highlighted names were mentions of fields.

(8) In the deepest parts of the province at the Adobe Town, Eagles Nest, and Wagon
Wheel locations (figure 5B), the generation of gas from the cracking of oil began
at about 56 Ma, within about 6 m.y.



(9) Outside this arcuate trend, cumulative production exceeding 300 MMCFG of gas
has a patchy distribution; in the Little Sandy Creek, Moundsville, Little Buck
Creek, and Taylor Creek fields, for example, only one well has produced more
than 100 MMCFG (Pashin and others, 2004).

(10) The eight oil fields in the upper Sunniland Formation that have produced, or have
EUR’s, more than 1 MMBO are Bear Island, Corkscrew, West Felda, Lehigh
Park, Mid-Felda, Raccoon Point, Sunniland, and Sunoco-Felda.

In one case, sentence 9 mentioned the ‘Taylor Creek’ field but was not annotated
in the golden set. Our pipeline found it. More complex phrasal structures, as in sen-
tence 10, were also supported (see Section 4.2). However some of the proper nouns were
not identified properly.

The identification of numbers, ranges of numbers and quantities is also challeng-
ing. In the analysis of the sentence 11 we obtain two separated propositions with nothing
directly relating the “trillion” word to the numbers.

(11) Nonassociated gas resources range between 23.9 and 44.9 trillion cubic feet
(TCF) (95% and 5% probabilities), with a mean of 33.3 TCF.

(12) Mavor and others (2003) report TOC varies from 0.5 to 2.5 percent with an aver-
age TOC of 1.3 percent.

Citations are very common in scientific articles (approx. 10 per document in the
GS). The sentence 12 has it citation analysed as a conjunction by ESG, Figure 4, making
the post-processing much more complicated than necessary. Unfortunately, adapting ESG
to handle citations as MWEs, amalgamating the words, is not trivial. In the future, we are
considering a pre-processing step to deal with citations before the parser.

.--------- lconj Mavor(1) noun propn sg capped notfnd
.-+--------- subj(n) and1(2) noun cn pl detr cord
| | .------- lconj other1(3,u) noun cn pl detr
| ‘-+------- rconj ((103) noun cn pl detr cord yr
| ‘------- rconj 2003(4,u) noun num sg pl sgpl yr
o----------- top report2(5,2,7,u,u,u,u) verb vfin vpres pl vsubj sayv
...

Figure 4. Fragment of a citation.

7. Pipeline evaluation
For better evalutation of our pipeline, we have experimented with other tools
comparing the results of intermediate steps. For parsing, we compared ESG to
the statistical-based parser UDPipe [Straka and Straková 2017] and the open-source
HPSG [Pollard and Sag 1994] grammar for English [Flickinger 2000]. For word sense
disambiguation, we compared UKB to JIGSAW [Basile et al. 2007].

UDPipe is a trainable pipeline for tokenization, tagging, lemmatization and de-
pendency parsing of CoNLL-U files. UDPipe is language-agnostic and can be trained
given annotated data in CoNLL-U format. UDPipe is on the top 10 best parsers in the last



UD shared task. 4 We are using the UDPipe dependencies model trained with the English
corpus released by the Universal Dependencies project, version 2.2 [Nivre 2018]. Uni-
versal Dependencies (UD) [Nivre et al. 2016] is a recent approach to dependency parsing
that tries to maximize the sharing of structures between languages. UD has a set of de-
pendency labels and POS tags that are designed to fit many languages, and a series of
annotation manuals that guide treebank builders to use the labels and tags in a uniform
way. The advantages of using UD compared with the ESG annotation are: (1) it is being
widely adopted as a standard dependencies schema with comprehensive documentation
and examples; and (2) some of its principles, such as, “the primacy of content words”
[Nivre et al. 2016] facilitate the task of information extraction.

Similar to UKB, the JIGSAW algorithm [Basile et al. 2007] disambiguates each
(noun, verb, adjective, adverb) word of the sentence by assigning it the sense with the
highest probability. Different from UKB, JIGSAW exploits the WordNet senses and uses
a different disambiguation strategy for each part of speech, taking into account the context
of each word.

The parsing task is notably the most important part of our pipeline. To evaluate the
accuracy of ESG, we first compared it to ERG. In general, grammar-based parsers produce
many parse trees for a sentence. During the experiment, we asked both tools to give us the
best of the possible trees. Recall that the corpus contains 5,591 sentences with an average
of 28 words per sentence. Most of the sentences contain between 10 and 40 words. ESG
was more robust, parsing 4,770 sentences (85%) compared to ERG that parsed only 3,528
sentences (63%). In total, both parsers failed to parse 517 (9%) sentences and 3,224
sentences (58%) were parsed by both tools. In contract, statistical parsers usually produce
one parse tree for every input, even when the analysis does not make sense at all. Given
that, for evaluating the relative performance of the grammar-based parsers compared to
the statistical parser, we would need to manually compare each parse tree. But for a first
approximation, we opted to use an evaluation tool that, although still in the first stages
of development, tries to detect possible inconsistencies in the syntactic analysis given
the UD guidelines formalized in an ontology [Paulino Passos 2018]. This tool detected
2,593 sentences with at least one possible error (e.g. a token verb cannot be the head of
another token in an ‘appos’ dependency relation), which gives us an approximation for
the performance of UDPipe: 3,005 sentences (53%) seems to be parsed in a meaningful
way by UDPipe. So far, we are talking about the capability of the parsers to produce a
parse tree for a given sentence, in respect of time spent for the analysis, ESG processed
the corpus in 1.26 minutes, UDPipe took 1.51 minutes, and ERG needed approximately
3 hours.

From the results presented in the previous paragraph, we can conclude that ESG
has not only a high-grade performance but it is the best option between the alternatives
presented here. Nevertheless, ERG is a product of a consortium. The partners have
adopted HPSG and Minimal Recursion Semantics (MRS), two advanced models of formal
linguistic analysis. They have also committed themselves to a shared format for gram-
matical representation and to a rigid scheme of evaluation, as well as to the general use
of open-source licensing and transparency. That means, syntactic and semantic represen-
tations are well documented and modular, theoretical results have many implementations

4http://universaldependencies.org/conll17/results.html



that learn from each other. For instance, one can use more than one parser with the ERG
grammar. Each parser has its own capabilities. in particular, the combination of statistical
POS tagger with deep parsing makes the parser PET [Callmeier 2000] a very attractive
tool for solving many issues related to recognition of MWEs described here. In contrast,
ESG techniques and theoretical principles are implemented in a single tool, developed
over the years by a tiny group of experts. Not all decisions are well documented and the
interaction with other tools is not easy. For instance, although the lexicon is easy to ex-
pand, it is not easy to deal with citations without affecting the parser algorithm. Finally,
the low quality of the statistical parser is easy to explain, the model used was trained with
corpus from a News domain, with a very different lexicon and style. The problem is the
cost to annotate a domain specific corpus for training a better model.

Finally, to evaluate the WSD we opted to check the aggrement between UKB
and JIGSAW. As expected, after the elimination of the stop words (e.g. prepositions,
determinants) not present in PWN, we found many domain specific words missing in
PWN. Considering the top most frequent ones by part-of-speech:

adjectives ‘stratigraphic’ (171), ‘eocene’ (86), ‘permian’ (76) and ‘paleocene’ (67) .
nouns the abbreviations ‘bcfg’ (115), ‘tps’ (105), and ‘mmbo’ (105) and the words ‘fa-

cies’ (112), ‘mudstone’ (91), ‘anticline’ (83), and ‘ellesmerian’ (81) .
verbs ‘rift’ (21), ‘overmature’ (7), ‘overpressure’ (6), and ‘recomplete’ (5).
adverbs ‘termally’ (33), ‘unconformably’ (23), ‘stratigraphicly’ (22), and ‘seismically’

(6).

Table 1 summaries some of our finds by lemmas aggregated by part-of-speech. In
the second and third columns we show the number of times UKB/JIG aggre (eq, percent
relative to column freq) and disagree (neq). In the column ‘freq’ we show the number of
tokens. Column ‘sum senses‘ is the sum of the number of senses in PWN for each lemma.
Column ‘mean senses‘ is the average of senses per lemma. Finnaly, the column ‘distinct‘
shows the number of distinct lemmas. That is, the first line says that we found 10,225
tokens annotated as nouns (1,898 distinct lemmas) that have at least one sense in PWN.
The average of senses per lemma for nouns is 3.54 and the total number of senses for all
lemmas of nouns from the corpus in PWN is 33,629.

pos eq neq freq sum senses avg senses distinct
n 23404 (69%) 10225 33629 6724 3.54 1898
v 10619 (77%) 3154 13773 4121 5.79 711

adv 2816 (87%) 391 3207 612 1.84 332
a 9422 (82%) 2067 11489 2654 3.17 837

Table 1. Numbers of WSD results by lemma.

It is well-known that the verbs have high polysemy. In PWN, for example, the
average number of senses for verbs is 2.17 (with 36 verbs with over 20 senses), and for
nouns is 1.22 (with only five nouns with over 20 senses). Despide that, Table 1 helps us
to conclude that in this corpus, given the restricted number of different verbs used by the
authors of scientific articles, the WSD of nouns is amost 10% harder than the WSD of
verbs. This could, for instance, justify a different approach for WSD, based on the idea
of selectional restrictions [Allen 1995] combined with UKB.



8. Conclusion and future work
For information extraction tasks, approaches that rely exclusively on human annotations
can be prohibitively expensive and the required experts may not always be available. Hu-
man annotators require a significant investment in guidance, coordination, and evaluation.
This paper has described a workbench for linguistic and rule-based information extrac-
tion. We applied natural language processing tools trained on the news domain to 155
annotated text passages from geological reports. Our pipeline includes sentence segmen-
tation, parsing, word sense disambiguation. We developed a set of rules that matched the
linguistic annotations to recognize entities. This approach can provide standalone infor-
mation extractor components that do not require expensive training data, and can help
pre-annotate texts prior to human annotation5.

In our experiment with oil field names, our pipeline emits strings that were found
to be field names, and we measured the system performance against distinct string val-
ues after a normalising step that removes well known suffix variations such as (field and
gas field), achieving a precision of .94 and recall of .43 (F1=.595) without supervised
learning. Future work will include mentions found against those that were annotated.

Rule-based approaches are well known and explored in several other
projects [Chiticariu et al. 2010, Fagin et al. 2015], but we feel that there is opportunity
for improvement by mixing several different pipelines (to use what each pipeline can
contribute better) and taking advantage of recent developments in dependency annota-
tions [Schuster and Manning 2016, Stanovsky et al. 2016, Reddy et al. 2016]. A better
software engineering approach to rules can lead to significant reduction in complexity in
managing the rule base.

Our experiments also reveal challenges in integrating linguistic information from
different NLP pipelines. For statistical based modules, such as POS tagging and depen-
dency parsing, the input tokens should be compatible with the training data. Multiword
expressions could be improved through better word sense disambiguation. Similarly,
numbers, dates and quantities are recognized in different ways across NLP pipelines.

We conclude that despite these challenges, high quality NLP tools developed and
tested on data from other domains can be adapted for entity extraction in technical do-
mains without requiring domain-specific supervision.
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