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Abstract. In order for the entire potential promised by the semantic web to be
achieved,  applications  must  be  able  to  integrate  knowledge  from multiple
sources.  This  requires reliable  ways  of  relating  disparate ontologies  to  be
found. Category theory and its morphisms represent a possible solution to this
problem, but careful definition of morphisms is required. This paper analyzes
several category theoretical approaches to ontologies, focusing on the chosen
morphisms and the semantic consequences thereof. Criteria for semantically
evaluating  morphisms  are  then  discussed  and  standing  challenges  are
identified.

1. Introduction

The Semantic Web was envisioned as a mean to allow computers to access, process and
make inferences over decentralized information [Berners-Lee et al. 2001]. In order to
achieve this, the concepts and the relations between them must be specified formally in
computational objects called ontologies.

Individual ontologies, however, are not enough to provide the full functionalities
conceived by the semantic  web, given the distributed nature of the information and
intended applications. These applications must access knowledge spread across multiple
ontologies. In order for this to be possible, semantically sound methods must be found
to integrate information from different ontologies with heterogeneous specifications.

Category  theory  is  a  mathematical  formalism  that  focuses  on  the  relations
(referred to as morphisms in related literature) between entities (objects)  rather than
emphasizing the entities themselves. Through this emphasis in relations, category theory
abstracts  from  the  representational  aspects  that  hinder  the  integration  of  disparate
ontologies.  Thus,  it  provides  a  formal  and  sound  foundation  upon  which  relations
between ontologies can be studied. Category theory also allows operations over these
relations, as investigated by [Zimmermann et al. 2006], easing the effort necessary to
associate  indirectly  related  ontologies.  Analogously,  [Seremeti  and  Kougias  2013]
indicate the composition of morphisms as a powerful tool to easily assimilate a new
ontology into a previously existing network of ontologies.

Nevertheless,  this  expressiveness  power  depends  on  the  morphisms  used  to
express the relations between ontologies. An adequate selection of morphisms must be
made  in  order  to  guarantee  that  the  knowledge  contained  in  the  ontologies  is  not
rendered useless by translation  failures.  This  selection  can only be done properly if
criteria  can be found for  the  identification  of  suitable  morphisms.  In this  paper  we
discuss a possible set of guidelines to fulfill this role.



The remainder of this paper is organized as follows: Section 2 introduces the
fundamentals of category theory, Section 3 discusses works from the literature that deal
with  category  theoretical  approaches  to  ontology  and  their  respective  morphisms,
Section 4 presents an analysis on what it means for a morphism definition to be good in
a  semantic  sense  and  propose  criteria  for  evaluating  such  definitions,  Section  5
discusses challenges that are still  faced in the definition of ontology morphisms, and
Section 6 contains a brief conclusion.

2. Category Theory Fundamentals

According to [Adámek et al.,  1990], a category is a quadruple A = (O,  hom,  id,  ◦),
consisting of:

1. a class O, whose members are called A-objects,

2. for each pair (A, B) of A-objects, a set hom(A,B), whose members are called A-
morphisms from A to B,

3. for each A-object A, a morphism idA: A→A, called the A-identity on A,

4. a composition law associating each A-morphism f : A→B and each A-morphism
g : B→C to an A-morphism g ◦ f : A→C, called the composite of f and g,

subject to the following conditions:

a) composition is associative, i.e., for morphisms  f:  A→B,  g:  B→C and  h:C→D,
the equation h ◦ (g ◦ f) = (h ◦ g) ◦ f  holds,

b) A-identities act as identities with respect to composition, i.e., for any morphism
f: A→B we have idB ◦ f = f = f ◦ idA,

c) the sets hom(A,B) are pairwise disjoint.

A diagram in a category A is a functor (a structure preserving morphism between
categories) D: I→A. A source for a diagram is a pair (A,(fi)i  I∈ I ), consisting of an object A
and a family of morphisms fi : A→Ai with domain A, indexed by I. A cone (also called a
natural  source)  is  a  source such  that  for  each  I-morphism  d:i→j the  triangle
A→ Di →Dj ←A commutes, i.e., d ◦ fi = fj. A limit is a terminal cone, i.e., it is a cone (A,
(fi)i  I∈ I ) such that for every other cone (Aj,(fi)j

i  I∈ I ) there is a unique morphism gj : Aj →A in
order that the resulting diagram commutes. A limit for a diagram with two objects and
no morphisms (other than identities) is called a product; a limit for a diagram of the
form B→A←C is called a pullback; and a limit for a diagram of the form A ⇉ B is called
an equalizer.

In category theory, the concept of duality plays an important role. A dual for a
categorical  construct  is  obtained  by  reversing  the  domain  and  codomain  of  its
morphisms. Thus, for a category A = (O,  hom,  id,  ◦),  the dual category of A is  the
category Aop = (O,  homop,  id, ◦op), where  homop(A,B) = hom(B,A) and  f ◦op g  =  g ◦ f.
Similarly,  the concepts previously introduced also present their  own dual constructs.
The  duals  of  sources,  cones,  limits,  products,  pullbacks  and  equalizers  are  called,
respectively,  sinks,  cocones,  colimits,  coproducts,  pushouts  and  coequalizers.  These
categorical  structures  have  different  interpretations  (with  similar  properties)  over
distinct domains.

Figure 1 shows a product (the object  A and associated morphisms) and a cone
(A’ and associated morphisms) over a diagram containing only objects A1 and A2 (1), a
coproduct and a cocone over the same diagram (2), a pullback and a cone over the



diagram  A1  →  A0  ←  A2 (3),  a  pushout  and  a  cocone  over  the  diagram
A1 ← A0 → A2 (4), and an equalizer and a cone over the diagram A1 ⇉ A2  (5).
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Figure 1. Categorical constructs: product (1), coproduct (2), pullback (3),
pushout (4), and equalizer (5).

3. Related Works

In one of the earliest  works to  define a category of ontologies  with its  morphisms,
[Bench-Capon and Malcom 1999] base their specifications on morphisms outlined by
[Goguen and Meseguer 1992] between order-sorted theories, i.e., theories that classify
the objects in the universe in different sorts (types) that may be related by sub-sorting.
These morphisms are monotonic in relation to the ordered sorts, preserving the sub-sort
relations. It should be noted that this definition of morphism does not account for any
non-hierarchical  relation  in  the  ontologies.  In  the  same work relations  between two
ontologies  O1 and  O2 are defined as structures composed of a third ontology  O and
morphisms xi  : O→Oi   for i  = 1,2. This structure is a cone for the diagram containing
only O1 and O2, therefore a limit for the same diagram (a product) would represent the
maximum possible alignment between the two ontologies.

[Zimmerman  et  al.  2006]  expand  on  these  relations,  renaming  them  as  V-
alignments  due  to  their  shape  and  defining  the  operations  of  ontology  merging  (a
pushout over the alignment),  alignment  composition,  union and intersection.  The V-
alignment is found lacking the expressive power needed for complex alignments, such
as  between ontologies  that  contain  concepts  related  not  by equivalence  but  through
subsumption relations. Two solutions are then proposed, the first using W-alignments,
which  are  similar  to  V-alignments  with  the  addition  of  a  bridge  ontology,  and the



second  with  the  use  of  morphisms  capable  of  expressing  relations  other  than
equivalence between concepts, namely strict inclusion, strict containment, disjointness
and overlapping with partial disjointness. A composition table for such relations is also
provided. Similar morphisms were later used by [Euzenat 2008]. V- and W-alignments
were also used in posterior works by [Wang et al. 2008] and [Codescu et al. 2014].

The work of [Cafezeiro and Haeusler 2007] defines morphisms that preserve
relations,  both  taxonomical  (being  monotonic  in  this  regard)  and  otherwise.  These
morphisms are understood as mappings between ontologies, and used to build ontology
operations based on categorical constructions: the product and pushout represent, as in
previous  works,  alignment  and  merge  operations,  respectively,  while  the  pullback
denote a search for similarities between two ontologies in the context of a third, broader
ontology. It  is  also shown how categorical equalizers may be used to hide sensitive
information in an ontology. These operations, with the exception of component hiding,
were  used  in  the  work  of  [Seremeti  and  Kougias  2013]  with  the  same  categorical
interpretations.  These morphisms were  later  expanded by [Cafezeiro  et  al.  2014]  to
include mappings between the axioms of each ontology, where each axiomatic sentence
is translated to its correspondent in the target ontology.

Several works ([Healy and Caudel 2006], [Zimmermann et al. 2006], [Cafezeiro
and Haeusler 2007], [Seremeti and Kougias 2013]) indicate that morphisms are directed
from the less informative ontology to the more informative one. This agrees with the
intuitive notions behind the understanding of categorical product as ontology alignment,
pushout as merge and pullback as similarity search.

Although  no  morphism  definition  is  provided,  [Hitzler  et  al.  2005]  present
possible  conditions  for  suitable  morphisms,  however  without  much  clarification  or
analysis. The presented conditions are:

1. The preservation of class hierarchies,

2. The preservation of types,

3. The taking into account of model-theoretic logical properties, if featured by
the underlying ontology representation language 

4. The taking into account of proof-theoretic properties, and

5. The preservation of language classes.

These criteria will be further analyzed in the next section, where we discuss what
makes a good ontology morphism and propose our own set of conditions.

4. What is a Good Morphism?

The  main  goal  that  should  be  achieved  by  an  ontology  morphism  is  relating
meaningfully the concepts present in source and target ontologies. This requires loss of
information not being allowed, or at least severely restricted. A morphism definition
that, for example, allows all concepts in a source ontology to be mapped to a single
concept in the target ontology is not advisable, and also probably not useful at all.

The ability to represent complex relations is also desirable, for it entails greater
expressiveness and semantic power. Without such capabilities, any alignment between
two ontologies with related but not equivalent concepts is doomed to be represented as
some particularly complicated  categorical structure,  such as the W-alignment.  These
intricate  structures require greater effort  to be operated on: the merge through a W-



alignment,  for  example,  is  performed  through  three  successive  pushouts  with  the
requirement of a bridge ontology, while the same operation is performed with a single
pushout over a V-alignment.

From the criteria  outlined  by [Hitzler  et  al.  2005] and listed  in  the previous
section,  the condition (1), while satisfied by most ontology morphisms found in the
literature due to  monotonicity,  is  arguably not  strong enough. By itself,  it  does not
prevent multiple concepts of the same hierarchical level in the source ontology from
being projected onto a single concept in the target ontology. This causes information to
be lost when traversing the morphism, contradicting our initial assumptions on what a
morphism should achieve, as well as the commonly found belief that morphisms should
point to the more informative ontology.

Meanwhile, condition (2) needs to be better specified about what is the intended
meaning of “type”. One possible way to define these types is through the use of meta-
properties (that is, properties of properties) such as the ones utilized by [Guarino and
Welty 2009] in their OntoClean methodology, which bases its ontological analysis in
the meta-properties of rigidity, identity, unity and dependence.

Conditions (3) and (5) are dependent on the ontology representation language
used, and thus are not useful guidelines for more general, implementation independent
morphisms. Condition (4) requires a deeper discussion on proof-theoretic properties that
is  beyond  the  scope  of  this  paper.  None  of  these  five  conditions  account  for  the
representation of complex relations.

In the following subsections, we discuss and propose desirable aspects for good
morphisms, regarding the preservation of information and the capability of representing
complex relations, and present our criteria for the identification of suitable morphisms.

4.1. Information Preservation

As previously discussed, one of the most common expectations on ontology morphisms
is  that  they  are  directed  from  a  less  informative  source  ontology  towards  a  more
informative target ontology. This means that a good definition of ontology morphisms
should not allow information to be lost when transitioning between ontologies through
morphisms. This entails the preservation of multiple forms of ontological information.
Bellow, we discuss three of these forms:  the preservation of concepts,  relations and
meta-properties.

4.1.1. Concept Preservation

If an ontology models two concepts as separate entities, this knowledge should not be
muddled by the morphism. That is, two different concepts in the source ontology must
be mapped to two different concepts in the target ontology, i.e., the morphism should be
injective in regard to concepts. Mathematically, given a morphism f : O→O’ and C1, C2

concepts in O,

f(C1) = f(C2) →  C1 =  C2

4.1.2. Relation Preservation

Similarly,  if  an  ontology  models  two  relations  separately,  the  ontology  morphism
should translate the relations from the source ontology to different relations in the target



ontology,  even  if  both  relations  share  domains  and  codomains.  That  is,  given  a
morphism f : O→O’ and two relations R1, R2 in O,

f(R1) = f(R2) →  R1 =  R2 

Additionally,  morphisms  should  not  confuse  domains  nor  codomains  of
relations. Thus, given a morphism f : O→O’, a relation R relating two concepts C1  and
C2 in O and a relation R’ in O’ such that f(R) = R’,

R(C1, C2) → R’(f(C1), f(C2))

4.1.3. Meta-property Preservation

While concept and relation preservation should cover a great part of the information
contained in ontologies, there are still  pieces of ontological knowledge that could be
confused  if  morphisms  are  modeled  without  additional  care.  This  is  the  case  of
ontological  arranges that  are similar structurally,  but carry deeply different semantic
meanings. One example of such structure (shown in figure 2) would be the relations
between a Car and the Factory where it  was built  and a Student and the University
where he or she studies. While both the Car and the Student depend respectively on the
Factory and on the University, this dependence takes a different form for each of these
cases. The Student’s dependence to the University is a relational one, i.e., the Student
can only exist as such while there exists a University to which he is related. Otherwise,
the Car’s dependence to the Factory is purely historic, meaning that for the Car to exist,
there once must have existed a Factory to build it, but if the Factory ceases to exist in
any posterior moment it makes no difference to the existence of the Car [Guizzardi and
Wagner 2010].
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Figure 2. A morphism f relating concepts Student and Car

Another  difference between the two concepts  is  due to  the meta-property  of
rigidity: the concept Car is rigid, while Student is not. This means that a Car cannot
cease to be a Car without ceasing to exist, while someone who is a Student can simply
terminate their relation to the University and stop being a Student while keeping its
existence.

Mismatches  such as  the  one  presented  here  can  be  avoided with  the  use  of
morphisms that preserve meta-properties of concepts.



4.2. Representation of Complex Relations

As previously noted, the limitation of associating concepts only through equivalence
relations  results  in additional  efforts when dealing with ontologies that do not share
equivalent  concepts,  but  contain  ones  that  are  otherwise  related.  [Zimmerman et  al.
2006]  perceived  this  issue  and  proposed  a  solution  through  the  expansion  of  the
definition of morphisms to accept also relations of strict inclusion, strict containment,
disjointness and overlapping with partial disjointness.

This  solution,  nevertheless,  is  limited  only  to  subsumption  relations,  which,
despite  covering  the  main  taxonomical  backbone  upon  which  ontologies  are  built,
disregards many other possible relations. It would be desirable to define morphisms that
deal  with  mereological,  dependence  or  even  temporal  relations,  in  addition  to  the
already  covered  subsumption.  For  this,  a  set  of  relations  must  be  chosen  to  be
represented  by  the  morphism,  and  the  composition  operation  needs  to  be  defined
between each of these relations.

4.3. Criteria for Suitable Morphisms

The reasoning presented thus far can be summed up by five rules that should ideally be
satisfied by adequate morphisms:

1. Concepts should be associated injectively;

2. Relations should also be associated injectively;

3. Domains and codomains of relations should be preserved;

4. Meta-properties of concepts should be preserved;

5. Morphisms should be able to represent relations other than equivalence between
concepts.

The inspected morphisms do not fulfill most of these conditions. In particular,
conditions (1), (2) and (4) are not satisfied in any of the reviewed works. Condition (3)
is completely met only in the work of [Cafezeiro and Haeusler 2007] while partially met
in the remainder works, where it is only true for taxonomic relations. Condition (5) is
contemplated only by [Zimmermann et al. 2006] and [Euzenat 2008], but even in these
works  the  expressiveness  of  morphisms  has  been  expanded  only  to  subsumption
relations.

5. Future Challenges

Though many works in the area have been published, some challenges still remain to be
faced when defining ontology morphisms. The first and most evident is relative to the
definition of ontology on which the morphisms are based. Many of the works discussed
here  ([Bench-Capon  and  Malcom  1999],  [Healy  and  Caudel  2006],  [Cafezeiro  and
Haeusler 2007]) provide their own definitions of ontology and build their morphisms
accordingly. These definitions are not necessarily compatible; hence the same is true for
the morphisms. Additionally, these ontology definitions may not be fully reconcilable
with available ontology representation languages.



Another  challenge  refers  to  these  languages.  Apart  from the  two  conditions
presented  by  [Hitzler  et  al.  2005]  that  explicitly  deal  with  ontology  representation
languages, the problem surfaces also in relation to meta-property preservation, since it
depends  on  the  support  of  said  meta-properties  being  provided  by  the  underlying
representation language.

A third  challenge,  and maybe of  even greater  concern,  is  related  to  another
important  yet  often  overlooked  part  of  ontologies,  the  axioms.  For  an  ontology
morphism definition to be complete, it is necessary for it to describe how the morphisms
deal with these axioms, yet such descriptions are seldom found in the literature.

Finally,  there  remains  an  open  problem  on  the  representation  of  complex
relations, that is, the finding of a finite set of relations to be represented by morphisms
and the definition of all possible compositions between them. A compromise must be
reached, since the morphism expressiveness grows with the number of relations that can
be represented, but so does the work needed to investigate the compositions between
them.

6. Conclusion

While  many  works  proposing  category  theoretical  approaches  to  ontologies  can  be
found in the literature,  the studies on establishing meaningful morphisms have been
scarce  and  rare.  Several  works  have  been  presented  which  defined  morphisms  for
ontologies,  and  a  discussion  was  made  on  criteria  for  evaluating  their  semantic
soundness and expressiveness. We have proposed five conditions to be met by suitable
ontology  morphisms.  None  of  the  morphisms  analyzed  fulfills  satisfactorily  these
conditions.

Thus,  much  work  is  still  needed  on  the  search  for  meaningful  ontology
morphisms,  and  this  work  will  face  challenges  related  to  the  chosen  definition  of
ontology, the underlying ontology representation language, how ontology axioms are to
be dealt with and the composition rules on ontology relations.
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