
Atlas: the Enterprise Cartography Tool

Pedro Sousa12, Ricardo Leal2, and André Sampaio2

1 Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal,
pedro.manuel.sousa@tecnico.ulisboa.pt,

2 Link Consulting SA, Av. Duque de Ávila 23, 1000 Lisboa, Portugal
ricardo.leal@linkconsulting.com

andresampaio@linkconsulting.com

Abstract. The need to maintain architectural representations of enter-
prises is an indescribable fact nowadays given their constant need evolve.
However, despite the large number of Enterprise Architecture tools avail-
able, enterprises are unable to maintain architectural models updated,
given the effort it entails. Atlas is an Enterprise Architecture tool con-
ceived to reduce the effort needed to keep architectural models updated,
in enterprises where changes are constant and design occurs in a de-
centralized, distributed and asynchronous process using multiple design
tools. Atlas uses Enterprise Cartography as the approach paradigm to be
able to generate architectural views automatically from the models and
information gathered from multiple sources, with a time bar allowing a
seamless navigation in time, from past to future models.

Key words: Enterprise Cartography, EA, Enterprise Architecture, Ar-
chitecture Visualization, Architecture tools

1 Introduction

The need to maintain explicit knowledge of the architecture of enterprises is an
indisputable fact nowadays given their constant need to evolve. Either for the
purpose of enterprise governance, engineering, compliance or maintenance, ar-
chitectural representations are an enterprise asset that must be governed[1]. By
explicit knowledge we consider both the existence of models of the Enterprise
Architecture, hereafter EA, kept in some repository as well as the capability to
present graphical representations of the enterprise artifacts and their dependen-
cies, also referred as architectural views[2, 3], here after referred as EA views for
space reasons.

We refer to enterprises and not to organizations since the first term has
a wider scope according to the the Open Group definition were ”enterprise is
any set of organizations that have a common set of goals”[2], and the approach
presented here applies to both. An example of an enterprise is the Portuguese
National Health System1, that includes more than one hundred health organiza-
tions.

1 Servio Nacional de Sade: https://www.sns.gov.pt

2 Pedro Sousa et al.

We also consider a distinction between enterprise transformation and evo-
lution, the difference being that the former is mostly related with top level
restructure and the later is related with the optimization of current state of
affairs[4]. Despite the differences, they both require EA as input data and they
both causes changes in enterprise, thus likely induces changes in the EA. Here
after we use the term change initiatives to refer to both transformation and
evolution initiatives. Since change initiatives are temporary, unique and a pur-
poseful activity, they correspond to the concept of projects as defined in the
project community[5].

Stefan[6] presents a list of 28 EA application scenarios and the corresponding
literature sources, making clear importance of knowing the EA for enterprise
maintenance, planning and evolution. In its simpler and basic from, information
about EA boils down to the list of enterprise artifacts and their dependencies.
Given the variability and quality of existing EA tools and their representation
capabilities[7], one could argue that enterprises could easily create and maintain
an EA repository where all models are kept updated so that core enterprise
activities could benefit from such information[6].

However, based on our experience of nearly two decades in organizations
from various countries and industry sectors, we found that this is not the case.
On the contrary, enterprises are far from being able to create and maintain an
EA repository updated, given the effort that such endeavor would entail. We
believe that a significant part of such extra effort results from the following
organizational aspects:

– Enterprise evolution uses multiple ”Enterprise Architecture” tools. Enterprise
evolution uses multiple tools for EA, being office tools commonly used ones.
Most of the times such tools are not integrated and do not provide coherent
information. For example, when the board of director of a company, acting
as an architect designing the company, decides to create a new department
they will not go to an EA tool to model the new department. Most likely, the
decision will appear the board meeting minutes (probably an office document)
a few weeks or months before the intended date. If the organization structure
is modeled in some EA tool, effort is required to update it in conformity with
this new design. The person that performs such update in the EA tool is not
designing but merely updating the model and its architectural representations.

– Enterprise evolution is mostly a distributed and asynchronous process. Enter-
prise evolution is planned and designed by different units in an asynchronous
and distributed process, involving many actors and many dimensions of con-
cerns without formal mechanisms of communication between the different de-
signers. For example, when a director decides to make changes in their de-
partment, it probably will conduct meetings with other departments to check
for possible dependencies and impacts. Directors of other departments can
do the same for their departments. Despite the number of face-to-face meet-
ings, there is no design process established so that the knowledge gathered in
such meetings is consolidated and shared across the enterprise, so that design
actually uses coherent and updated information.

Atlas: the Enterprise Cartography Tool 3

In such context, one can envisage the huge effort required to update the
models in the EA tools used. The fastest the enterprise changes, the more effort
is required to keep such models updated. When enterprises are already faced with
lack of resources for the day to day projects, they are not willing to allocate effort
to keep enterprise models updated.

But the problem is actually more complex because enterprises models are also
a moving target. In fact enterprises need models that refer to different points in
time, namely:

AS-WAS models. These models represent the enterprises past state of affairs, in-
cluding not only the past architecture but also the plans of change initiatives
of the past. They are most useful for auditing and accountability purposes
since they can hold justifications for the decisions taken in the past. For
example, the decision took in the past to acquire development capacities on
some technology could be sustained on the plans of a change initiative to
build new products using that technology, regardless the fact of that change
was actually put forward or dismissed.

AS-IS models. These models represent the current enterprise. AS-IS models are
required for current operations and for reacting to events.

TO-BE models. These models represent the future enterprise, and are critical
for planning the next change initiatives, as recognized both by EA[8, 9] and
project management[10, 11] communities. In fact, to plan a project that
will start in 6 months, you need to know how the enterprise will be when
the project starts, not what it is today, as many changes can come in the
meantime.

Naturally, AS-WAS models are just the old AS-IS and do not pose any
challenge. But AS-IS and TO-BE models are real challenges, since they must be
take into consideration the multiple ongoing change initiatives. This difficulty has
a substantial impact on the ability to plan change initiatives and, consequently,
has an impact on the costs, time and risks of achieving their expected outcomes[8,
11].

So, the focus of our research has been in finding a low effort method that
allows enterprise to have updated AS-WAS, AS-IS and TO-BE models and EA
views. To keep architectural models and views updated, one needs to address two
main issues: (i) how to gather information about the changes in the enterprise
models and views and, (ii) how to update the architectural models and views
based on the gathered information. Again, our experience in actual companies
has shown us directions for such questions.

– Gather information about the changes. Our finding is was that, in general, it
is easier to gather information about what people are currently doing than
about what they did in the past. Since what people are doing today is what
most likely will be enterprise TO-BE, this finding means that it is easier to
know the expected TO-BE than the AS-IS of the enterprise. So, since TO-BE
models will become AS-IS and AS-WAS, this finding tell us that the focus
should be target to TO-BE models.

4 Pedro Sousa et al.

– Update EA views. Our finding is that hand-draw EA views will likely remain
obsolete much longer than generated views. Hand-draw models requires plac-
ing symbols in a drawing canvas, where aesthetic aspects are one key concern
and time consuming factor. Therefore, to keep such views updated, one needs
both to update the contents as well as the aesthetic aspects. So, this finding
tell us to avoid hand-draw view and support only automatic generated views
from gathered models (information).

Atlas2 was designed to explore the findings presented above. It is an EA tool
conceived to reduce the effort needed to keep EA views updated in enterprises
designed in a decentralized, distributed and asynchronous process using multiple
design tools. In Atlas, EA views are generated automatically and have a time
bar allowing a seamless navigation in time, from past to future state of each EA
view. Information about changes is gathered by the observation of the plans of
ongoing change initiatives.

This approach was first presented in[12], initial implementation was described
in [13, 14], and results from first projects were presented in[15, 16]. The term
Enterprise Cartography was coined in[17]. In the next section we present the
concept of Enterprise Cartography, and then we present relevant aspects of the
Atlas tool in supporting the above ideas.

2 Enterprise Cartography

Simply put, EC is the process of abstracting, collecting, structuring and rep-
resenting architectural artifacts and their relations from the observation of en-
terprise reality. The expression ”enterprise reality” refers to the present state
of the enterprise. Traditionally, the observation of this reality is a subjective
perception of an observer, and consequently it is probable that there are differ-
ent actors that perceive different realities of the same enterprise. However, as
we propose and will become clear along the text, the perception of the present
state of the enterprise (the reality) is sustained on relevant facts captured in logs
and models, and represented through artifacts based on previously defined and
agreed upon models.

We refer to ”architectural artifacts” as the enterprise’s observable elements
whose inter-dependencies and intra-dependencies express the architecture of the
enterprise. Naturally, different institutions may consider various sets of artifacts
as part of their architecture. To abstract, structure and represent the architecture
related artifacts, one needs the whole set of knowledge and concepts implied
in architecture visualization and representation. For example, the concepts of
semiotic triangle[18, 19], the model of architecture description presented in ISO
IEEE 1471[3] and a symbolic notation, such as the one used in ArchiMate[20],
are concepts necessary to the production of EA views.

Ongoing change initiatives and their plans are an essential part of enterprise
reality because they define the near future TO-BE of the enterprise if no further

2 www.linkconsulting.com/atlas

Atlas: the Enterprise Cartography Tool 5

decisions are taken that might have an impact on them. This is a fundamental
concept that we call emerging AS-IS, which we define as the state of the enter-
prise after successful completion of ongoing change initiatives. This corresponds
to the inertia of a body; if no contrary action is taken, inertia determines the
body future position and speed. Similarly, if no opposite actions are done, on-
going initiatives determine the future of the institution and thus the TO-BE of
models and architecture.

Given that in today enterprises, change initiatives are omnipresent, the con-
cept of Emerging AS-IS is not only an essential capacity for the planning of
new change initiatives, but also for the monitoring of the enactments of ongoing
change initiatives. When driving a car the faster the car is moving, the farther
ahead one should focus our eyes to match the longer time and distance context
within which we need to steer it. Likewise, when steering an enterprise, the faster
the enterprise is changing, the more important is to know the emerging AS-IS,
as time flows.

Enterprise cartography is a purely descriptive perspective, since it does not
explicitly incorporate the purposeful design of the new enterprise artifacts, as
one expects in EA. Such a difference is also evident in the definitions of the
architect and cartographer roles. According to the IEEE Standard Glossary of
Software Engineering Terminology[21], the term architect is defined as ”The
person, team, or organization responsible for designing systems architecture”,
and in the Merriam-Webster dictionary[22], the term cartographer is defined as
the person who makes maps. So, an architect is essentially a person that designs
and shapes intended changes to the architecture of the present enterprise reality,
while a cartographer is essentially a person that aims at representing reality as
it happens, including such changes as they are occurring.

2.1 Enterprise Cartography Principles

Principle 1: Change initiatives are enterprise artifacts.
A change initiative is an enterprise artifact. This statement is in line with
most architecture guidelines such as the Work Package concept in both
TOGAF[2] and ArchiMate[20]. However, we go further and also state that
their plans can be observed as part of the enterprise AS-IS models. We as-
sume that change initiatives have plans because they purposefully aim at
some desire goals and therefore should have plans to achieve them. Further-
more, these plans and goals includes TO-BE models of the enterprise .

Principle 2: Changes in the set of productive artifacts are planned ones.
This principle states that artifacts do not become productive or non-
productive randomly, but only as a result of change initiative. Since change
initiatives are also enterprise artifacts (principle 1), an artifact becomes pro-
ductive or non-productive only by the action of another productive artifact
(the change initiative). Notice that the assumption that ongoing change ini-
tiatives are productive artifacts, is sustained by the purposefulness aspect of
the change initiative, by which the enterprise becomes more valuable after
the purposeful changes than before.

6 Pedro Sousa et al.

Principle 3: All enterprise artifacts have a five-state life-cycle: con-
ceived, gestating, alive, retired and removed.
Despite the fact that common EA notations (e.g.[20] do not formalize ar-
tifacts states, it is many convenient to have models that mix existing and
not existing artifacts, to express model changes. In this principle we say
that existing artifacts with an enterprise do not ”fell from the sky”, but go
through an evolution process instead. Let us first consider as productive the
artifacts as the ones that are somehow involved in the enterprise business
processes that produces values. In figure 1 we present these five states, their
fundamental transitions and there classification with productiveness: Non
Productive Yet , Productive and No Longer Productive states.

Fig. 1. Existence Artifact life-cycle

– Conceived state, as the first state of existence. It corresponds to a state
where the artifact is planned but its materialization into a productive
artifact did not started yet. A conceived artifact is an idea that exists
TO-BE models (or plans) of some change initiative, even if itself is still in
the conceived state.

– Gestating is the state when an artifact is being constructed or acquired
to become productive. As conceived artifacts, gestating ones do not play
a role in the enterprise transactions and processes. This state only differ-
entiates from the conceived state by the fact that the change initiative
that aims at putting the artifact into production has already started. An
ongoing change initiative is necessarily a productive artifact, since it can
have an impact on other productive artifacts and is expected to produce
value after its completion.

– Alive. An alive artifact plays purposeful roles in the enterprise to create
value. Conceived and Gestation artifacts might have an relationship on
life objects, namely in the ones that are conceiving or creating them. But
their relation is a passive one, not a purposeful role as alive objects must
have to create value. From Principle 2, it is clear that an artifact cannot

Atlas: the Enterprise Cartography Tool 7

be brought into existence as alive; it always exists first as conceived before
being alive.
Notice that in this paper we only consider Alive as the only productive
state. However, one can consider other productive states, such as for ex-
ample the Deprecated state. However, it is not relevant for the purpose of
this paper and we continue with the case of alive as the only productive
state.

– Retired3. is when an alive artifact no longer plays a role in the enterprise
transactions and processes to create value. As in the conceived and gesta-
tion states, a Retired artifact may still have an impact on alive artifacts.
In fact, even if it does not create behavior or value to the enterprise, it
may be the target of several housekeeping activities that are necessary
after being dead.
The dead state can be achieved directly after gestating state, without
becoming alive. An artifact planned to become alive by a given change
initiative might never be alive either because the initiative was canceled
or because it simply changed plans and decided to no longer put that
artifact into production.

– Removed. Represents the post-Retired state where the artifact has no im-
pact in the remaining artifacts. A removed artifact is unable to interact
with alive enterprise artifacts. An artifact can move from conception di-
rectly to removal when it never materialized in a gestation, meaning that
it never went beyond an idea.

Principle 4: The TO-BE state precedes the AS-IS state.
This principle states that productive artifacts in the AS-IS model existed
before in the TO-BE models of some changing initiative. Furthermore, such
models were part of the enterprise observed AS-IS at some point in time
prior to the current time.

Principle 5: The emerging AS-IS can be inferred by observing the AS-
IS of an enterprise.
The emerging AS-IS state differs from the AS-IS state by the artifacts
planned to be brought into production/retirement by ongoing change ini-
tiatives. Since ongoing initiatives are alive artifacts, their plans (TO-BE
models) are in the scope of the cartographer observations of the enterprise
reality.
Therefore, one can foresee the set of productive artifacts at some point in
time in the future by consolidating the AS-IS with the TO-BE models of
the ongoing change initiative whose completion date precedes the desired
moment in time[12]. This can be stated as:

P (tm) = P (t0) ∪NY P (CItn) \NLP (CItn)∀t0 ≤ tn ≤ tm (1)

Where P (t) represents Productive artifacts at time t, NY P (CIt) and NLP (CIt)
represents respectively Not Yet Productive and Not Longer Productive arti-
facts in plans of Change initiatives that produces results at time t.

3 In previous publications the Retired stated was named as Dead.

8 Pedro Sousa et al.

3 Atlas Overview

Altas is a web based EA tool providing all functionality one could expect from
such a tool. It allows the full configuration of the meta model, i.e. the classes and
references types whose instances are used to express models of the organization.
Users can also configure in and out data both in format as well in contents for
integration with other tools and systems.

Atlas supports custom configured user interfaces. Given the wide scope of us-
age of EA tools within organizations, it will likely be used by employees without
basic modeling concepts. So, besides allowing the configuration of elements in
Atlas default interfaces (e.g, tabs in object edition properties), it allows users to
configure specific forms, where users only see the desired properties, even if they
are from different objects. Atlas also provides analytic elements such as charts,
dashboards and EA views that we called blueprints.

Atlas also supports the configuration of behavior associated with EA views,
validation rules, state propagation between objects in the repository, among
others. Such behavior can be stated both in queries and rules that run directly
on the selected repository as well as in jobs and batch’s that run on a dedicated
sandboxes.

Fig. 2. Atlas collecting AS-IS and TO-BE models and produce AS-WAS, AS-IS and
TO-BE EA views

We now focus the description of how Atlas supports enterprise cartography.
A typical scenario is presented in figure 2 where information from several sources,
including office tools, is processed and feeds the generation of AS-WAS, AS-IS
and TO-BE EA views and analysis. In this scenario, enterprise artifacts and
their relationships exist in multiples sources, and each source will likely have its
own meta model. Furthermore, information in each source may be related with
the past, present or future of EA.

Atlas: the Enterprise Cartography Tool 9

3.1 Model transformation

Model transformation occurs whenever data flows between sources with different
meta models, as is the case when Atlas gathers information from other sources,
and has been a relevant topic in software development and integration[23].
Among the different technologies to handle model transformation[23], in At-
las we adopted a two step approach, each with its own technology. The first step
deals with the format transformation and is based on XSLT[24] which is very
common and convenient for processing XML files. The second step deals with
the actual model transformation, and uses a high level type-based rules that
operates on types, instances and relationships.

Consider the case where one wants to import a BPMN[25] model and that
Data Stores must be imported as Applications in the Atlas repository. To con-
figure such rule, one assigns a batch to the desired source or file extension and
then defines three jobs. The first job is configured with the XSLT script that
converts the BPMN tool format into Atlas XML format. The second job is con-
figured with text file script with the transformation rules, that transforms the
source model and objects into Atlas model and objects. Finally the third job
imports the transformed objects into the Atlas repository. In the example given,
the transformation rules script is a ”rename data type Data Store to Applica-
tion”. The names of the Data Stores in the BPMN model are matched against
Applications in the Atlas repository, and unmatched Data Stores will yield the
creation of new Applications, as discussed in the next section.

If several batchs are assigned to the same source or file extension, the user
is requested to select one to upload the file. This is a very useful feature since
within the same enterprise, different teams or departments may use the same
notation differently and different rules might be required.

Another rather important aspect is to be able to perform different a behaviour
in case of the imported artifacts match with objects that already exist in the
Atlas repository or if new objects were created during the importation. The
rules allows the importation behaviour to be dependent of any state in the Atlas
repository, but the match for existing objects is done solely on the object names,
as discussed next.

3.2 Object Names

In the scenario presented in figure 2 one needs to establish a mechanism to
match objects existing in different sources that correspond to the same enterprise
artifact. In other words, one needs an identification mechanism valid throughout
the different sources to match imported objects against the ones that already
exist in the Atlas repository.

The use of 128 bits Object Identifiers (OIDs, also known as UUIDs) ensures
uniqueness for most practical purposes even when generated by different and
independent tools. However, these system-generated OIDs are not useful in the
scenario presented in figure 2, since the same enterprise artifact would have
objects with a different OID in each source.

10 Pedro Sousa et al.

Change is also a factor against the use of OIDs. Consider that a process
modeling tool holds a model of the sales process in which the CRM application
is used to inquire the status of the client payments. Later, the process changes
and instead of using the application CRM, it now uses the application ERP for
the same purpose. This change can be done simply by change the application
name, from CRM to ERP. However, in this case, the name has change but the
OID in the process modeling tool is the same, despite the enterprise artifact
has changed. This leads to a situation where the same object now referrers to
a different enterprise artifacts, breaking the existing biding between OIDs and
enterprise artifacts even in the context a single tool.

User defined object names can easy the task of matching objects between
sources, if object names correspond to the names of the artifacts have in the
enterprise. However, in most cases, object names are used defined and normally
are not unique, since uniqueness is assured by OIDs. In Atlas, we took a differ-
ent approach where identification and denotation is established by user defined
object names[26] and OIDs are not disclosed to user, except for audit traces.
This approach implies that, from the user perspective, objects of the same class
cannot have the same name.

In practice this can be a strong restriction in large enterprises where one
could expect to have several organizations with different business processes or
actors with the same name. For example, in the case of Portuguese National
Health System, one could expect to have Actors with the same name in different
hospitals. To support this scenario, users can define composite object names,
by selecting object properties to be used for its identification, as primary keys
in relational databases. In this case, the name of the object could be defined
by both hospital and Actor names.Notice that users can change the name of
objects, given that they are object editable properties.

Despite the fact that in most situations users deal with a flat object name
space, full object names are unique URLs composed as follows:

serverURL/RepositoryName/ClassName/ArtifactNameField N. ..
.ArtifactNameField 0.

The concatenation of the fields ArtifactNameField N to ArtifactNameField 0
must be unique within the objects of the same ClassName. All fiels but the last
are optional (i.e can be null), except the last one (ArtifactNameField 0) that
cannot be null.

3.3 Object State

In Atlas, object state is defined as a set of properties values, whose types are user
defined. A time bar in the object edition interface allows users to visit properties
past states, up to the time of its creation. Basic types as Numeric, Text, Rich
Text, Hyperlink, Boolean are available. Users must define their own reference
types for reference properties

Object properties do not change type (structure) over time, this means that,
for example, a numeric property cannot not become a reference property. How-
ever, object sate, as a collection of properties, can change structure over time

Atlas: the Enterprise Cartography Tool 11

since properties may be added or removed from its class over time as discussed
in the next section. Therefore, objects of the same class can have an entirely
different set of properties.

References properties are assured to be either null or to refer to one or more
objects. There are no dangling references, since reference value assignment trig-
gers object creation and object deletions nullify references. In Atlas, object are
created when their names are registered thus, by assigning a new name (value)
to a reference properties a new object is created with that name. Such created
object has no state yet, only a name.

By default reference properties have no state associated besides besides the
name of the denoted object. However, in some situations it is very convenient
to add properties to references. This is done by binding a class with a reference
property, whose structure becomes the structure of the class. Any class defined
in the meta model can be bound to a reference property, and the same class can
be bounded to different reference properties.

3.4 Meta model Co-Evolution

As described earlier, classes also change over time whenever users remove or add
properties. By moving back the time bar in the class edition interface, one can
see the class properties at any point in time, up to time the class was created.
Property creation and removal does not affect the state of the objects in the
repository. If a property is deleted from a class at a given time, it will no longer
be visible in the object’s structure after that time, however, as soon as the time
bar goes back in time the deleted property will appear in object state history
with the corresponding values.

Besides adding and removing properties, Atlas also provides support for com-
plex operations in meta-model and is able to propagate the necessary changes
to objects in the repository. For example, the Property to Class meta model
operation promotes a textual property to a reference property to a class created
from the original text property. An example could be promoting the Home Ad-
dress text property of a Client class into a reference property to a new class
Home Address, so that clients with the same address could share the same ob-
ject. A meta-model evolution primitive catalog, with primitives such as Flatten
Hierarchy, Merge Class, Split Class, Property to Class, Class to Property, among
others[27, 28] is available.

These type of changes in the meta model requires the changes on existing
objects in the repository according with the changes made to the corresponding
classes. To support such operations, Atlas is able to inform the impact that each
change has in the objects existing in the repository and execute them if the
necessary actions can be performed automatically [29, 30, 31].

3.5 Object life-cycles

Object life-cycle is defined over a set of object user defined properties of type,
one for each life-cycle state. Users can define several life-cycles for the same class.

12 Pedro Sousa et al.

For example, for the application artifact, one may define the existence life-cycle
and technical quality life-cycle. For each life-cycle, users can define any number
of states, and assign a color to each one, so that objects are shaded with the
color corresponding to the state of the object at the selected date in the EA
view.

As explained in the next section, Atlas has specific built-in behavior asso-
ciated with the visualization of object life-cycles that requires uses to classify
them as Not Yet Productive, Productive or No Longer Productive. Users define
life-cycle states in order and some sates may be declared as Productive. The
states prior to the first Productive state are considered Not Yet Productive and
states after the last Productive state are considered No longer Productive.

3.6 Visualizing AS-WAS, AS-IS and TO-BE EA views

In atlas, EA graphical views are generated on-the-fly given its unique name, in
the form of an URL as serverURL/RepositoryName/EAViewName?arguments.
This means that, by placing hyperlinks to EA views, users that access and in-
teract with them outside the Atlas tool in documents or in other web interfaces.

EA views are defined in a simple XML language, where one can define con-
tainers that can hold others containers or a content query whose result set de-
termines the objects that will be displayed inside that container. Containers can
be set in a hierarchy and grow and shrink within user defined limits according
to the number of objects of the query result set. Objects can also be containers,
whenever one wants other results sets to be presented inside.

Once generated, EA views are interactive interfaces where users can navigate
in time, run predefined analyses, jump to another EA views and drag objects
between containers, triggering containers out-query and in-query to do the nec-
essary state update associated with the object movement between containers.
For example, dragging an object of actor John from a container representing
Sales Unit to a container representing Legal Unit will trigger the corresponding
out-query on the Sales Unit and in-query on the Legal Unit containers with the
actor John as argument.

In what concerns time navigation capability of EA views, in Atlas each and
every EA view is as a movie, where one can see its contents from the minimum
to the maximum date found among all objects that encompass the EA view. As
presented in figure 3, the time bar has two handlers, one on the left for the lower
date and another in the right for the upper date.

Fig. 3. EA view Time bar

By moving the time bar handlers back and forward one can see the architec-
ture view in the selected time. The visualization can occur either in Absolute

Atlas: the Enterprise Cartography Tool 13

Mode or Gap Mode. In the Absolute Mode, the view presents the contents that
corresponds to the time selected. Two options can be selected:

– Default: Only productive objects at selected time are presented. Symbols are
presented in their default color.

– life-cycle: All objects are presented, but their symbols is shaded with the life-
cycle colors. For example, a typical life-cycle configuration is to shade in grey
the artifacts that are Not Yet Productive at the selected time, and to shade in
red the objects that are No Longer Productive objects at the selected time.

In Gap Mode, the Visualize the view presents the gap between two points
in time Ti and Tf , by shade the objects symbols according to the difference of
life-cycle state of each object on the selected Times Ti and Tf [32]. In this mode,
artifacts are marked as:

– Introduced. An artifact is considered to be introduced between Ti and Tf if
it is Not Yet Productive at Ti but it is Productive at Tf .

– Withdraw. An artifact is considered to be withdraw between Ti and Tf if it
is productive in Ti and is No Longer Productive in Tf .

– Changed. An artifact is considered to be changed between Ti and Tf if it is
Productive in both Ti and Tf and if at least one artifact with which it has
a reference to as been introduced or removed between Ti and Tf . The users
can select the depth of the graph traversal analysis and for each step, the
references to be used.

In the next three figures (4 to 6) we present the same EA view with different
options and dates of visualization. The first figure presents the architecture at
10/05/2018 in absolute mode with life-cycle option on. The container in the
middle show the components of application Account Management App, that
consume services in the container on the middle left, that in turn and provided
by applications in the leftmost container. Likewise, the Account Management
App components provide the services presented in the middle right container
that are consumed by the applications in the rightmost container. Bellow, one
presents the data objects used in each service. Objects shaded in grey or red are,
respectively, Not Yet Productive or No Longer Productive at 10/05/2018.

By switching the life-cycle mode off, the shaded objects (both introduced
and Withdraw) disappear from the EA view, leaving only the objects that were,
are or will be4 productive at 10/05/2018. The corresponding figure is not shown
since it can be easily perceived.

By moving the left part of the time handle back in time to 05/04/2014, the
visualization switches to Gap mode between 05/04/2014 and 10/05/2018, as
presented in figure 6, where introduced objects appear in green and withdraw
ones appear in red.

Next, we set the life-cycle mode on again, mixing the Gap and life-cycle
modes, as presented in figure 5, where the evolving objects are shaded in two

4 Both the dates used in this example (05/04/2014 and 10/05/2018) could refer to
the past, present of future.

14 Pedro Sousa et al.

halves: On the left side, with the color associated with the life-cycle state at the
first date (05/04/2014) and, on the right side, with the color associated with the
life-cycle state at the second date (10/05/2018).

Fig. 4. EA view at 10/05/2018 with object life-cycle

Fig. 5. EA view Gap between 05/04/2014 and 10/05/2018

The time bar presented in these three figures show four markers, excluding
the extremes, revealing the dates of change in that EA view. These dates cor-
respond to object life-cycle evolution but can also be traced back to the change
initiatives that have produced such evaluations, as explained next.

Atlas: the Enterprise Cartography Tool 15

Fig. 6. EA view Gap between 05/04/2014 and 10/05/2018 with life-cycle

3.7 Change Initiatives

According to cartography principles, enterprise artifacts evolve in its life-cycle
as a result of some planned change initiatives. In Atlas, used defined class may
be a change initiative class, and more than one change initiative class may exist.
For example, one may define the Project class as change initiative of Technology
artifacts, and the Work-Package class for business changing initiatives.

For simplicity, Atlas assume that change initiatives produce the expected re-
sults at the very end, meaning on the date they become non-productive. To model
a situation where a change initiative produces results before its non productive
date, one must use a hierarchy of change initiatives, where the top one has a
child for each result it has to produce with the non productive date matching
the desired date.

The relationship between change initiatives and object life-cycle states is a
key factor to simplify the update and management of enterprise artifacts life-
cycle dates. For example, if a project, that is replacing one application by a new
one delays one month, this delay should be reflected in the life-cycle of both
applications, specifically in the old application retirement date and in the new
application alive date.

In Atlas this relationship is established by a user defined reference property
declared at the class level, either at the change initiative class or at the object
class. For example, in a typical scenario, one may define the Alive List and the
Retired List reference properties in a project class to identify the objects that
will become alive and retired. Such relationships allow the update of objects life-
cycle according to the life-cycle of the corresponding change initiative. In this
scenario is, the kickoff and completion of change initiatives yields the following
behavior:

– When the change initiative starts: propagate the current date to both change
the initiative alive date and gestation date of objects in the Alive List.

16 Pedro Sousa et al.

– When the conclusion date of a change initiative has a new forecast: propagate
the forecast date to the retired date of the change initiative, to the alive date
of objects in the Alive List and to the retired date of objects in the Retired
List.

Such state propagation is not a built-in behaviour in Atlas and must be con-
figured in state propagation rules associated to object life-cycle. This provides
more flexibility and independence regarding to the actual life-cycle states the
user can define for each class. A more advanced usage of these dependencies and
rules is to perform repository coherency validation analysis, in particular based
on the time dependent relationships[33].

4 Conclusion

The goal we pursuit with Atlas and Enterprise Cartography is to be minimize
the effort required to provide updated and trustful EA views, in enterprises
where their architecture is the result of many local architectures, each designed
with different drivers and optimization factors. So far, we can say that achieving
this goal is fundamentally dependent on the enterprise’s ability to provide good
enough plans and descriptions of their change initiatives. Using the scenario
presented in previous section, this boils down to having the Alive List and the
Retired List of change initiatives completed. In such case the effort required to
keep AS-IS and TO-BE EA views updated is non-existent in practical terms.

Since the Alive List and the Retired List of a given change initiative represent,
for all practical matters, what needs to be done in that change initiative and
what impact it has in the enterprise, they are also related with the cost, time
and risk of that change initiative. In other words, the can conclude that the more
the enterprise is willing to manage cost, time and risk of their change initiatives,
the more likely will be the success of our proposal.

However, we also conclude that we still miss a clear and easy mapping be-
tween project management practices and standards with the EA artifacts and
their life-cycle evolution to easy the completeness of change initiatives. For ex-
ample, if a project intends to create and deploy a new application service on a
given date on a given infrastructure, then these facts should be stated somehow
in the project plan and deliverables, so that they can be subsequently imported
to complete the Alive List and the Retired List of the corresponding change
initiative.

The Project Management Body of Knowledge[5] defines the work-breakdown
structure as a ”A hierarchical decomposition of the total scope of work to be
carried out by the project team to accomplish the project objectives and cre-
ate the required deliverable.” Since enterprise artifacts life-cycle is by defini-
tion a result (deliverable) of a project, they are likely to appear in project
work-breakdown structure. We are currently working in the establishment of
a more formal mapping between enterprise artifact life-cycle and project work-
breakdown structure[11]. The idea is to integrate Atlas with the project man-
agement tools used in the enterprise and capture the information needed for

Atlas: the Enterprise Cartography Tool 17

completion of change initiatives and make enterprise cartography a more simple
and accessible capability to enterprises.

Acknowledgements

This research was supported by the Link Consultings project IT-Atlas (n 11419),
under the IAPMEI, 2020 Portuguese PO CI Operational Program.

References

1. Hoogervorst J. A. (2009) ”Enterprise governance and enterprise engineering”.
Springer.

2. The Open Group. (2011). ”TOGAF Version 9.1”. (10th ed.). Zaltbommel, the
Netherlands, Van Haren Publishing.

3. 1471-2000 - IEEE Recommended Practice for Architectural Description of Software-
Intensive System. Replaced by ISO/IEC 42010.

4. Proper, H.A., Winter, R., Aier, S., de Kinderen, S. (Editors)(2017) ”Architectural
Coordination of Enterprise Transformation”, Springer.

5. Project Management Institute (2017). ”A Guide to the Project Management Body
of Knowledge” (PMBOK Guide)Sixth Edition Newtown Square, Pa, September 22.

6. Bischoff, S., (2017). ”The Need for a Use Perspective on Architectural Coordination”
pp 87-98, in Proper, H.A., Winter, R., Aier, S., de Kinderen, S. (Editors)(2017)
”Architectural Coordination of Enterprise Transformation”, Springer.

7. Roth, S., Zec, M., Matthes, F., (2014): Enterprise Architecture Visualization Tool
Survey 2014. Technical Report. Sebis, Technische Universit at Munchen.

8. Ugwu, K. (2017). ”Understanding the complementary relationship between enter-
prise architecture and project management”. in Architecture and Governance Mag-
azine (online version, accessed in May 2018).

9. Labusch, N., (2017). ”Information Requirements for Enterprise Transformation”
pp 111-117, in Proper, H.A., Winter, R., Aier, S., de Kinderen, S. (Editors)(2017)
”Architectural Coordination of Enterprise Transformation”, Springer.

10. Schomburg, K., Barker, T. (2011). ”Integrating the IT PMO with enterprise archi-
tecture for better government”. In proceedings of PMI Global Congress 2011North
America, Dallas, TX. Newtown Square, PA: Project Management Institute.

11. Bernardo, M., Sousa, P., (2018) ”Portfolio Management. Enabling a dynamic Or-
ganization IS representation”. 22nd International Congress on Project Management
and Engineering (ICPME 2018), Madrid, Spain.

12. Sousa, P., Lima, J., Sampaio, A., Pereira, C., (2009). ”An Approach for Creating
and Managing Enterprise Blueprints: A case for IT Blueprints”. The 21st Inter-
national Conference on Advanced Information Systems, Lecture Notes in Business
Information Processing, vol. 34, pp. 70–84, Springer-Verlag, The Netherlands .

13. Sampaio, A. (2010) An Approach for Creating and Managing Enterprise
Blueprints. Master Thesis in University of Lisbon - fenix.tecnico.ulisboa.pt

14. Leal, R., (2010) Navigation model between Architectural Views: ”An approach for a
new paradigm: Navigation in Enterprise Architecture”, Master Thesis in University
of Lisbon - fenix.tecnico.ulisboa.pt

18 Pedro Sousa et al.

15. Sousa P., Gabriel R., Tadao G., Carvalho R., Sousa P.M., Sampaio A. (2011). ”En-
terprise Transformation: The Serasa Experian Case.” In: Harmsen F., Grahlmann
K., Proper E. (eds) Practice-Driven Research on Enterprise Transformation. PRET
2011. Lecture Notes in Business Information Processing, vol 89. Springer, Berlin.

16. Sousa P., Sampaio, A. Leal, R. (2014). ”A case for a Living Enterprise Architec-
ture in a Private Bank”, In proceedings of the 8th Workshop on Transformation &
Engineering of Enterprises (TEE 2014), July, Geneva.

17. Tribolet, J; Sousa, P.; and Caetano, A. (2014). The Role of Enterprise Governance
and Cartography in Enterprise Engineering. Enterprise Modelling and Information
Systems Architectures, 9 (1): 38-49.

18. Morris, C.W., (1938). ”Foundation of the Theory of Signs”, International Ency-
clopedia of Unified Science, Vol. 1, No. 2.

19. Dietz, J. (2006). ”Enterprise Ontology - Theory and Methodology”, Springer.
20. The Open Group. (2015). ”ArchiMate 2.1 Specification”. Van Haren Publishing,

Zaltbommel, www.vanharen.net.
21. IEEE. (2010). ”Systems and software engineering – Vocabulary”, in

ISO/IEC/IEEE 24765:2010(E) , pp.1-418, Dec. 15
22. https://www.merriam-webster.com, accessed in September 2017.
23. Tratt, L. (2205) ”Model transformations and tool integration”, Software and Sys-

tems Modeling, May 2005, Volume 4, Issue 2, pp 112122.
24. W3C (1999) XSL Transformations (XSLT).
25. Grosskopf, Decker and Weske (2009). ”The Process: Business Process Modeling

using BPMN”. Meghan Kiffer Press.
26. Sousa, P., Rito, A., Alves Marques, J. (1995). ”Object Identifiers and Identity : A

Naming Issue”, In IEEE Proceedings of the 4th International Workshop on Object
Orientation in Operating Systems, Lund, Sweden.

27. Wachsmuth, G. (2007). Metamodel adaptation and model co-adaptation. In The
European Conference on Object-Oriented Programming 2007 (ECOOP) (Vol. 4609,
pp. 600624).

28. Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio, A. (2008). Automating
co-evolution in modeldriven engineering, in Proceedings of the 12th IEEE Inter-
national Enterprise Distributed Object Computing Conference, IEEE Computer
Society, pp. 222231.

29. Silva, N., Ferreira, F., Sousa, P., Mira da Silva, M. (2016). ”Automating the Mi-
gration of Enterprise Architecture Models”. In International Journal of Information
System Modeling and Design (IJISMD) 7.2 pp 72-90.

30. Silva, N., Mira da Silva, M., Sousa, P., (2018). ”A Tool for Supporting the Co-
Evolution of Enterprise Architecture Meta-models and Models”, In 27th Interna-
tional Conference on Information Systems Development, August 22-14, Lund, Swe-
den.

31. Silva, N., Sousa, P., Mira da Silva, M.(2018).”CO-EVOC: An Enterprise Archi-
tecture Model Co-Evolution Operations Catalog”. In 24th Americas Conference on
Information Systems, August 16-18, New Orleans, USA.

32. F.,Carolina, P. Sousa, A. Sampaio. (2016) ”Visualiazação da Evolução da Ar-
quiteturas Empresariais”, 16 Conferênçia Associação Portuguesa de Sistemas de
Informação (CAPSI), 22 September, Porto.

33. Xavier, A., Vasconcelos, A., Sousa, P. (2017) ”Rules for Validation of Models of
Enterprise Architecture-Rules of Checking and Correction of Temporal Inconsisten-
cies among Elements of the Enterprise Architecture”. International Conference on
Enterprise Information Systems ,2, 337-344.

