AGENT CAPABILITY: AUTOMATING THE DESIGN TO CODE
PROCESS

Loris Penserini * Anna Perini ? Angelo Susi # John Mylopoulos P

& [TC-irst, Via Sommarive 18 I-38050, Trento, Italy, {penserini,perini,susi} @itc.it
> Univ. of Trento, Via Sommarive, 14, 1-38050, Trento, Italy

Abstract

Current IT application domains such as web services and autonomic computing call for
highly flexible systems, able to automatically adapt to changing operational environments as
well as to user needs. We are conducting research on how to build these complex systems in
the context of agent-oriented software. This short paper gives an overview of our approach
(described in details in [3]) which rests on a tool-supported, development process, and aims
at linking stakeholder needs, elicited during domain analysis, to agent capabilities coded into
a MAS.

1 Approach Overview

Developing distributed software systems that operate in open, evolving and heterogeneous environ-
ments is becoming a critical issue in IT application domains such as web services and autonomic
computing. Multi-Agent System (MAS) are offering both technological solutions as well as an effec-
tive paradigm for the development of this type of complex systems. Agents behavior at run time is
influenced by the environment within which they operate [6], so designing agents able to behave in
an effective way should benefit from a deep knowledge of that environment, including the stakehold-
ers who have specific needs and expectations from the agents being designed. The specification of
agents behavior is typically addressed during detail design, a step which precedes implementation.
Analysis of the environment, on the other hand, is performed earlier, during domain and system
requirements modelling, which rest on environment- and problem-oriented abstractions.

Our goal is to address the problem of supporting traceability between requirements, design
and code artifacts, borrowing ideas and standards proposed by the Model Driven Architecture
(MDA) initiative [2]. In particular, we conceives system development in terms of a chain of model
transformations, namely, from a domain and stakeholder requirements model (Computationally
Independent Model CIM, in MDA terminology) to a detailed design models of agents behavior,
which provides a Platform Independent Model (PIM), and from a PIM to a Platform Specific Model
(PSM), from which code and other development artifacts can then be straightforwardly derived.

To this aim, we extended the Tropos [1] agent-oriented methodology by introducing agent capa-
bility modeling since requirements analysis [4], and provided a tool-supported process. The Tropos
methodology rests on a conceptual framework which includes the notions of agent, goal, plan and
social dependency between agents for goal achievement. These knowledge level concepts are uni-
formly used throughout the software development process which is organized along five main phases:
Early Requirements, Late Requirements, Architectural Design, Detailed Design and Implementation.
We adopted a revised definition of the agent capability notion which distinguishes the concept of
ability from the concept of opportunity [4]. The ability part represents a way to achieve a given
goal. The opportunity part represents user preferences and environmental conditions, which may
enable or disable the execution of the ability part, at run time.

An high level view of the development process we are proposing can be summarized as follows.
Step 1. Capability modeling starts during requirements analysis by identifying agent capabil-
ities as a way to accomplish stakeholder needs (CIM model). Ability part of capabilities are
specified in Tropos by a means-end relationship between the goal and the plan. Goal/plan OR-~
decomposition allows to describe alternative capabilities that can achieve a goal. The opportunity
part is described via plan/softgoal contributions (e.g. see Fig. 1, (a)), (plan, softgoal, metric)

& solve (b) myDF-DF provider-Provider -
search desired query

products

| arch
El
automatically L L request
Search T
Manager
interpret ACL | get the deal with 2
performatives

performatives | query matching

search for new
cosbisnliidond (b")

provide deal with
results cooperation
= LD MAS-outputStructure
) Agent_myDF_source
() Agent_Provider_source
) Agent_RepositoryManager_source
negotiate || search for new = O Agent_searchManager_source
new offers | acquaintances) buid
) IProtocols
D il
() Agent_WebServer_source

OR-AND decomposition
P
contfibution link meahs-end link

o oQe®

task

()

Figure 1: Fragments of development artifacts: (a) Tropos goal model of the Search Manager actor;
(b) and (b’) UML Detailed Design specification of a capability; (¢) MAS generated structure.

(metric € {+,—,++, ——}) and domain constraints as model annotations.

Step 2. Further refinements of capability models are provided during architectural and detailed
design where capability dynamic properties are specified by a set of UML 2.0 activity and sequence
diagrams. These requirements analysis and design phases are supported by a Tropos modeler, based
on the Eclipse platform, which uses a MOF [2] compliant implementation of the Tropos language
metamodel and of the UML metamodel.

Step 3. Agent code generation results from a transformation of these PIM specifications to the
target platform specific model (PSM). PIM to PSM transformation is implemented using auto-
matic transformation techniques: for the ability part [4] while, for the opportunity part, a two
steps process is adopted. The first step consists in a mapping from Tropos specification to Jadex,
through the Jadex/JADE adapter [5], the second step goes from UML specification of capabilities
to JADE. The output of this process is a skeleton of the code of JADE agents which execute plans,
correspondingly to the ability specification. The choice of which plan to execute is performed by
the agent according to BDI mechanisms which implement the opportunity specification.

Basic features of the resulting MAS implementation, are: a) each agent can play different roles
according to special request-messages, related to target goals. That is, an agent can sense the
environment and consequently switch to a specific role, execute the most appropriate capability,
chosen by using the knowledge coded into the opportunity part; b) the ability part of a capability
is implemented as a specialization of the class jade.core.behaviours. FSMBehaviour, namely it rep-
resents a final states machine (automaton). This allows to exploit monitoring mechanisms during
capability execution with the aim of making the agent aware of failures and able to react to them.

References

[1] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Systems,
8(3):203-236, July 2004.

S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled. Addison-Wesley, 2004.

EORS)

L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From Capability Specification to Code
for Multi-Agent Software. In Proceedings of the 21st Conference IEEE/ACM International
Conference on Automated Software Engineering (ASE’06). IEEE Press, 2006.

[4] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From Stakeholder Intentions to Soft-
ware Agent Implementations. In Proceedings of the 18th Conference On Advanced Information
Systems Engineering (CAiSE’06). LNCS, Springer-Verlag, 2006.

[5] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In R. Bordini
et al., editor, Multi-Agent Programming, 2005.

[6] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2001.

