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o}�fe.up.ptAbstra
tIn this paper we propose a model for 
oordinating teams of 
omputational agents. Thismodel is espe
ially aimed for 
oordinating agents performing in a simulated environment offorest �re�ghting, although it may be used in other domains. We will start by introdu
ingthe Pyrosim platform where we are 
arrying out our experiments. Pyrosim is a tool developedin our laboratory that simulates a forest �re environment where software agents a
t underthe role of �re�ghters that have to 
ooperate in order to 
ontrol the �re. We will pro
eed bypresenting a model for team 
oordination. With this model it is possible to de�ne �re�ghtingta
ti
s that originate di�erent team approa
hes to the �re. These ta
ti
s are 
ondu
ted by asingle agent (the Leader) that 
ommuni
ates high level tasks to the other agents. Agents havelo
al autonomy and are able of 
ooperating lo
ally for 
arrying out their tasks without using
ommuni
ation. Finally, we will present some results of our experiments using the proposed
oordination model in two di�erent s
enarios. We will use these results to address the problemof automati
 ta
ti
 sele
tion where we are 
urrently working on.1 Introdu
tionForest �res are an everyday problem of so
iety. Considering South European 
ountries only (Por-tugal, Spain, Fran
e, Italy and Gree
e), in the year of 2005, forest �res burned more than 556thousand he
tares of forest [1℄. This problem parti
ularly a�e
ts Portugal where more than 325thousand he
tares of forest burned for the same year, whi
h is more than an half of the total burnedarea in the South European 
ountries.Despite the seriousness and 
hallenges of this problem, there is not mu
h work in this domainin the area of Arti�
ial Intelligen
e. In fa
t, we only found one work that uses a Multi-AgentSystem (MAS) to ta
kle the problem of 
oordinating a �re�ghting team to atta
k a forest �re.This work in being developed by Wiering et al. [10, 11℄ and is 
on
erned with 
oordinating heavyma
hinery (bulldozers) to build a line around the �re to prevent it from spreading. The authors usema
hine learning to elaborate plans a

ording to the s
enario situation, whi
h are distributed toagents (bulldozers) at the beginning of the simulation. However, in Portugal and other 
ountries,using heavy ma
hinery is most of the times impossible be
ause of the terrain geography that ishighly irregular. Additionally, heavy ma
hinery may not be always available, or may not be thebest solution (e.g. in small �res). Therefore, we 
hoose to 
oordinate a team of �re�ghters thatuse water jets to try putting out the �re, although we intend to in
lude other kinds of �re�ghtingagents in the simulation platform.In this paper we present a model for 
oordinating a Team of 
omputational Agents that performsin a Forest Fire�ghting simulator. Agents play the role of �re�ghters that have to 
ombat �rein an organized way in order to 
ontrol it. With the proposed model it is possible to de�neFire�ghting Ta
ti
s similar (although simpli�ed) to the ones that are used by real �re�ghtingteams. Additionally, it is possible to experiment new ta
ti
s or variations of 
ommonly used ta
ti
sfor trying to understand the out
ome of using that ta
ti
s in di�erent s
enarios. For a

omplishingthis, the model provides a �exible stru
ture that enables to de�ne di�erent approa
hes of the teamto the �re.



The remainder of this paper is stru
tured in the following way: in se
tion 2 we present theforest �re�ghting simulator that we are using for our experiments. Then, in se
tion 3 we des
ribethe proposed 
oordination model for 
ontrolling the overall team behaviour. We pro
eed to se
tion4 where we detail how agents are able to 
ooperate lo
ally in order to exe
ute shared tasks. We
ontinue to se
tion 5 where we present some results of our experiments and point out future workdire
tions for automati
 ta
ti
 sele
tion. Finally, we present our 
on
lusions about this work.2 The Pyrosim PlatformBefore we present the 
oordination model, we will introdu
e the Pyrosim Agent platform [7℄ that wehave been using in our experiments. The Pyrosim platform simulates a forest-�re environment wherea team of Agents (�re�ghters) 
ooperates to 
ontrol and extinguish the �re, while simultaneouslytrying to minimize the overall damage and losses. In Pyrosim, Agents have to deal with verydynami
 �re fronts, terrain 
onstraints and their own physi
al and logisti
 limitations. Ea
h Agentneeds to ensure its physi
al safeness while trying to �ght the �re and, at the same time, help
olleagues to remain safe. Agents are equipped with a water jet with limited power that allowsthem to put out the �re, but they are not normally able to do it individually so there is an obviousneed for 
ooperation. Agents may 
ommuni
ate with ea
h other in order to organize team e�orts(broad
ast and 1-to-1 messages). Agent's Per
eption System provides information about his ownstate (physi
al energy, speed, a

eleration, position in the terrain, status of the personal water jet)as well as several matrix stru
tures named Visual Maps that des
ribe 
lose range and medium rangesurroundings. Visual Maps 
ontain information with di�erent levels of detail and noise (dependingon the distan
e) about terrain, vegetation, level of destru
tion, and �re 
ells. Visual Maps may have
ells where no information is available be
ause of the o

lusion e�e
t (for instan
e, when an agentis 
limbing a hill it 
annot see to the other side of the hill). Agents also re
eive information aboutvisible parameters of other Agents (lo
ation, approximate energy level and a
tion). Figure 1 showsa visualization of a simulation in the Pyrosim simulator. Pyrosim 
reates a 
omplex environmentthat may be used as testbed for team 
oordination models, and for simulating �re�ghting ta
ti
sas well. Additional information about the Pyrosim platform and simulation model may be foundat [7℄.3 Overall Team CoordinationIn our approa
h, team 
oordination is 
entralized, although loosely 
oupled, whi
h means that theoverall team behavior is 
ontrolled by one agent, the Leader, but every agent has lo
al autonomy.The Leader responsibilities in
lude being aware of the global situation, reasoning about it, andassigning spe
i�
 tasks to agents in order to 
arry out a given plan. There are several reasons thatimpelled us to use 
entralized 
oordination:
• Real �re�ghting teams use 
entralized 
oordination [3℄;
• One agent, the Leader, may have a

ess to the global situation and make de
isions based onglobal knowledge. In a de
entralized solution, the information would be dispersed, and noagent would have a 
omplete understanding of the situation. The alternative would be forevery agent to be aware of the other agents' knowledge, but that would in
rease drasti
ally
ommuni
ations between agents.
• Centralizing ta
ti
al/strategi
 de
isions let other agents to fo
us on their tasks exe
ution.
• Using 
entralized 
oordination is not synonym of the Leader being a master ruling a set ofslaves. Agents may have lo
al autonomy and are not obliged to 
arry out tasks that go againsttheir own goals.Of 
ourse that 
entralizing de
ision has its drawba
ks. First, there is the danger of 
reatinga bottlene
k on the Leader agent. To avoid this, teams should not have too many agents, and
ommuni
ation should be used only when needed. Additionally, when 
oordinating larger teams,one should use a hierar
hy of 
ommand to ensure that a Leader only 
ontrols dire
tly a small set



Figure 1: A visualisation of a simulation in the Pyrosim platformof agents. Another problem with 
entralized 
oordination is that if 
ommuni
ation fails or if theLeader fails, the team 
oordination is lost. To prevent the team from losing its Leader we 
on�guredthe Leader agent's "personality� in order to obtain a more 
autious behavior. As result the Leaderkeeps a higher distan
e from the �ames and takes less 
han
es during the �re�ght. Currently, thereis no me
hanism in our implementation for repla
ing the Leader in 
ase of Leader failure. However,this is not a big issue be
ause our goal is to simulate �re�ghting ta
ti
s and not to 
reate a systemfor using during real �re�ghting.In the next subse
tions we will make a formal des
ription of the proposed model and then wewill instantiate it to the forest �re�ghting domain.3.1 Coordination ModelFor developing the 
oordination model, we used the same prin
iple that was used in the roboti
so

er teams by Stone and Veloso [8, 9℄, and by Reis and Lau [4, 5, 6℄. Both approa
hes de�ned theteam spatial distribution using roles, whi
h were then assigned to agents. Roles enable to de�negeneri
 team formations that may be used with any team of agents. Despite we are using the sameprin
iple of these teams, we had to build a model that would be able to handle some issues that arenot present in the roboti
 so

er domain, su
h as the a
tuation area size is not delimited (on theother hand, the so

er �eld has �xed dimensions), the number of agents that 
onstitutes a teamis not �xed (on the other hand, so

er teams have �xed size), and the opponent may have verydi�erent 
on�gurations (�re size, shape and properties may vary a lot).We will now present a formal des
ription of the proposed model. Every agent has a Role (3).There is a prede�ned number of Roles (2) whi
h de�ne di�erent agent behaviors. The number ofRoles is not related with the number of agents. Teams may be homogeneous (all agents have the



same Role), or heterogeneous (agents playing di�erent Roles).
Agents = {Agent1, Agent2, Agent3, . . . , Agentnagents} (1)

Roles = {Role1, Role2, Role3, . . . , Rolenroles} (2)
AgentRolei ∈ Roles ∀i = 1..nagents (3)There are several ways of organizing agents to atta
k �re. Fire may be atta
ked dire
tly in the tail,head or �anks, or it may be atta
ked indire
tly by 
onstru
ting lines outside the �re that limit itsprogression. To implement these atta
ks we have de�ned a set of Atta
k Plans (4) that spe
ify howagents should approa
h �re.

AttackP lans = {AttackP lan1, . . . , AttackP lansnattacks} (4)In the proposed model, an Atta
k Plan de�nes a sequen
e of Tasks for a given Role (7). In thisway, agents that share the same role will have the same tasks to 
arry out. In general, an Atta
kPlan may be 
arried out by one Role only, although there are Atta
k Plans that may be exe
utedby a given set of Roles (6).
Tasks = {Task1, T ask2, T ask3, . . . , T askntasks} (5)
AdmissibleRolesi ⊆ Roles ∀i = 1..nattacks (6)

AttackP lani = {Rolej, AttackTask1, . . . , AttackTasknattacktasks}

∀i = 1..nattacks Rolej ∈ AdmissibleRolesi AttackTaskk ∈ Tasks (7)A �re�ghting 
rew may perform di�erent atta
ks simultaneously. To de�ne the atta
ks distributionamong the team, the 
on
ept of Ta
ti
 was 
reated (8). A Ta
ti
 de�nes for ea
h Role how manyagents will play that Role, and whi
h Atta
k Plan will be performed by those agents (9).
Tactics = {Tactic1, T actic2, T actic3, . . . , T acticntactics} (8)

Tactici,j = {TacticAttackj, AgentAssignmentj} ∀i = 1..ntactics

∀j = 1..nroles TacticAttackj ∈ AttackP lans

AgentAssignmetj ∈ [0..1]

nroles∑

j=1

AgentAssignmentj = 1 (9)From (9), we gather that agent assignment to Roles is de�ned using relative quantities (e.g. allo
atehalf of the team to a given Role). However, in our implementation, it is also possible to de�ne agentdistribution using absolute quantities (e.g. allo
ate 2 agents to a given Role). Additionally, agentdistribution may be de�ned dynami
ally at run-time, whi
h enables to produ
t more 
omplex roleassignments.It is also possible to de�ne Ta
ti
s that 
hange the team approa
h over time. We 
all theseta
ti
s Dynami
 Ta
ti
s (10), and they are 
omposed by a set of Ta
ti
s with A
tivation Conditions(11). A
tivation Conditions de�ne when to swit
h to a given ta
ti
.
DynamicTactics = {DynamicTactic1, . . . , DynamicTacticndynamictactics} (10)
DynamicTactici = {ActivationCondition1, SubTactic1, ...,

ActivationConditionnsubtactics, SubTacticnsubtactics}

∀i = 1..ndynamictactics SubTacticj ∈ Tactics (11)All ta
ti
s are pre-de�ned at the Leader agent level, and therefore, only the Leader has knowledgeabout ta
ti
al information. The other agents only know their Role and the tasks that they mustexe
ute, whi
h are assigned by the Leader using ta
ti
al information.



3.2 De�ning Atta
k Plans for Fire�ghtingFor instantiating the proposed model to forest �re�ghting, we start by de�ning Atta
k Plans. Wehave divided Atta
k Plans in two major 
lasses: (i) Dire
t Atta
ks, and (ii) Indire
t Atta
ks. Thisdivision is based on �re�ghting theory that di�erentiates Dire
t from Indire
t Atta
ks [3℄. Dire
tAtta
ks involve �ghting the �re dire
tly in the �ames using water or manual tools, like shovels, toswat the �ames. Therefore, this kind of Atta
k Plans spe
ify tasks for approa
hing the �re and thenatta
k it dire
tly. On the other hand, Indire
t Atta
ks are used to �ght �re at distan
e, espe
iallywhen the �re is too intense for �re�ghters to approa
h it. The most 
ommon te
hnique is to builda �reline. Firelines are built by dogging the ground to remove all the vegetation in front of the�re to starve it out of fuel. In the 
urrent version of the �re simulator it is not possible to built�relines. However, we implemented another kind of indire
t atta
k that 
onsists in 
reating a wet-line. Instead of dogging the ground, �re�ghters wet the ground with large quantities of water. Thee�e
t is similar to building a �reline, although this is just a temporary solution until the simulatorsupports dogging operations.Figure 2 illustrates a 
lass diagram of the Atta
k Plans that we implemented, where the 
lasseswith no 
oloring represent Atta
k Plans that may be instantiated, and the 
lasses 
olored in greyrepresent abstra
t 
lasses that are used for stru
turing proposes only. In general terms, Dire
tAtta
ks de�ne how to atta
k a given part of the �re (e.g. the head, the tail or the �anks) and theWetLineAtta
k de�nes how to 
reate a Wet-Line in a given area.
Attack

WetLineAttack

DirectAttack

HeadAttack

FlankAttack

NearestFlankAttackFigure 2: Implemented Atta
k PlansRegardless of the kind of atta
k, Atta
k Plans always have two stages: the positioning andthe atta
k management. The positioning stage is 
on
erned with pla
ing the agents in positionsthat enable them to start the atta
k in good 
onditions. On
e agents are in position, the atta
kmanagement stage is a
tivated. This stage is 
on
erned with allo
ating tasks to agents that areperforming the atta
k. In the beginning, agents re
eive tasks to atta
k a given area. Every timeagents 
omplete their tasks, they re
eive new tasks to atta
k a new target area. Every Atta
kPlan has to de�ne its preferen
es for positioning and managing the atta
k. For instan
e, in a HeadAtta
k it is de�ned that agents should start by approa
hing the Head of the �re in the oppositedire
tion to the �re propagation dire
tion. Then, when they arrive to the target area, they shouldstart atta
king the foremost burning 
ell. Finally, when they extinguish the 
urrent 
ell, theyshould atta
k the foremost adja
ent 
ell that is burning.3.3 De�ning Fire�ghting Ta
ti
sAs we have seen above, ta
ti
s de�ne the Role of every agent and the Atta
k Plan that the agentwill 
arry out. Using the Atta
k Plans presented in the previous subse
tion we are able to builda 
onsiderable set of ta
ti
s. In table 1 we present some examples of Stati
 Ta
ti
s. These ta
ti
smay be very simple like ta
ti
 ST1 that assigns the same Role and Atta
k Plan to every agent.Moreover, we may have ta
ti
s with the team divided for performing di�erent kind of atta
kssimultaneously. If we need more �exibility we may de�ne Dynami
 Ta
ti
s that have the ability to
hange the team 
on�guration a

ording to the 
urrent situation. For instan
e, ta
ti
 DT2 (table2) de�nes that when the team arrives to the �re it should build a Wet-Line around �re, and whenthe �re is 
ontrolled all �re�ghters should 
on
entrate e�orts to atta
k the tail. Additionally, it is



possible to spe
ify Dynami
 Ta
ti
s that sele
t the best a approa
h automati
ally a

ording to thes
enario evaluation.Ta
ti
 Role Atta
k DistributionAll in the Tail tail_atta
ker Nearest Flank All(ST1)Split by Flanks left_�ank_atta
ker Flank 1/2(ST4) right_�ank_atta
ker Flank RestSurrounding Wet-Line left_wet_line_builder Wet-Line 1/4(ST6) right_wet_line_builder Wet-Line 1/4tail_wet_line_builder Wet-Line 1/4head_wet_line_builder Wet-Line RestSurrounding Wet-Line left_wet_line_builder Wet-Line 1/5with Tail Atta
k right_wet_line_builder Wet-Line 1/5(ST7) tail_wet_line_builder Wet-Line 1/5head_wet_line_builder Wet-Line 1/5tail_atta
ker Nearest Flank RestTable 1: Examples of stati
 ta
ti
sAn important issue regarding Dynami
 Ta
ti
s is the pro
ess of role allo
ation when swit
hingfrom one ta
ti
 to another. Role allo
ation is done having in 
onsideration (i) the 
urrent lo
ationof �re�ghters and (ii) the target lo
ation asso
iated to the positioning stage of the Atta
k Planasso
iated to a given role. In this way, the role allo
ation algorithm tries to distribute roles by�re�ghters in order to minimize the distan
e that �re�ghters have to run to get to their new targetlo
ation. The algorithm starts by doing a greedy allo
ation whi
h is then optimized using a simplelo
al sear
h. Currently, the lo
al sear
h tries to minimize the maximum distan
e that a �re�ghterhas to travel, but other approa
hes are possible like minimizing the total distan
e traveled by all�re�ghters. A
tivation Condition → Sub Ta
ti
When simulation starts → Surrounding Wet-LineWhen �re stabilizes → All in the TailTable 2: Example of a dynami
 ta
ti
: Wet-Line and then Atta
k Tail4 Lo
al CoordinationDuring an atta
k, agents that share the same Role also share the same tasks. To exe
ute these taskse�
iently they must 
oordinate their a
tions. For instan
e, when two �re�ghters are atta
king twoadja
ent 
ells simultaneously (one �re�ghter per 
ell) they have more di�
ulties putting the �redown 
ompared to when they �rst atta
k together one of the 
ells and then the other. To a
hievethis 
ooperative behavior we implemented a Lo
al Coordination me
hanism for dire
t atta
ks. Thisme
hanism uses per
eption about other agents, and prede�ned Lo
al Coordination rules.When agents re
eive an assignment for dire
tly atta
king a given area, they must 
hoose whi
h
ell to atta
k �rst. This de
ision may depend on several fa
tors, su
h as the distan
e to the target
ell, the �re intensity in that 
ell, the danger of atta
king that 
ell, and if the 
ell is being atta
kedby a teammate or not. When an agent enters in the target area, the �rst thing he does is to verifyif another agent is already atta
king the 
ell. If there is, the agent goes to the teammate lo
ationin order to help him �ghting that �re. Otherwise, the agent sele
ts the nearest 
ell inside thatarea and atta
ks it. If two agents start atta
king two di�erent 
ells simultaneously, two problemsarise: (i) the agents are not 
oordinating e�orts, and (ii) the other agents do not know whi
h agentto help. To solve these problems, agents have prede�ned rules for handling this kind of 
on�i
ts.These rules de�ne 
riterions for evaluating the quality of the agent position to determine whi
hagent to help. The quality of the position is 
al
ulated based on the agent progression inside the



target area. If two or more agents are in positions with the same quality, the agent's name is usedto resolve the 
on�i
t.5 Experimental Results and Ta
ti
 Sele
tionCurrently, the developed system works as a platform to test ta
ti
s in di�erent s
enarios. However,our next step is to enhan
e the platform in order to automati
ally determine the ta
ti
s thatwork best in di�erent s
enarios. We have already made some experiments that show that thereare ta
ti
s that a
hieve positive results in situations where others fail, although the same ta
ti
sa
hieve negative results in situations where others su

eed [2℄. We are able to observe this in thefollowing example where we present the results of experimenting two di�erent ta
ti
s (ST1 andST6) in two di�erent s
enarios (A and B). Ta
ti
 ST1 tries to atta
k the �re by positioning allagents behind the tail of the �re and giving them orders to atta
k the �re dire
tly with water.Ta
ti
 ST6 pla
es �re�ghters around the �re perimeter and give them orders to wet the groundin order to 
reate a Wet-Line. We have sele
ted these ta
ti
s in order to represent (i) ta
ti
smainly based in dire
t atta
ks (ST1), and (ii) ta
ti
s mainly based in indire
t atta
ks (ST6), whi
hwe know from �re�ghting theory that should be applied to �res with di�erent dimensions (amongother fa
tors su
h as the number of �re�ghters available, terrain properties and weather 
onditions).We experimented both ta
ti
s in two s
enarios with the same 
hara
teristi
s (in terms of terraingeometry, vegetation and weather), but in s
enario A agents re
eived the warning sign sooner thanin s
enario B, and therefore when �re�ghters arrived to the �re in s
enario B they would fa
e a �rein a more advan
ed state than in s
enario A. We observed that both ta
ti
s su

eeded in s
enario A(�gures 3 and 4) and that ta
ti
 ST1 a
hieved better results. This happened be
ause in ta
ti
 ST1�re�ghters start by atta
king �re dire
tly and therefore they are able to prevent it from spreading atan earlier stage. However, in s
enario B this same ta
ti
 (ST1) failed to 
ontrol �re from spreading(�gure 5). ST1 ta
ti
 was a good 
hoi
e for s
enario A but that is not the 
ase for s
enario B. Ins
enario B �re�ghters arrive to the �re at a later stage where using a dire
t atta
k is not enoughto 
ontrol �re. On the other hand, ta
ti
 ST6 was able to a
hieve a more stable performan
e bysa
ri�
ing the same area in both s
enarios. In this ta
ti
 �re�ghters build a wet-line around the�re area that prevents �re from spreading, instead of �ghting the �re dire
tly. Therefore, the totalburned area in both s
enarios was nearly the same, but in s
enario A the damage was ex
essive.More information about this and other experiments may be found in [2℄. An important outputfrom these experiments is that results are 
oherent with forest �re�ghting theory in terms of theappli
ability of dire
t and indire
t atta
ks.
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Figure 6: S
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 (Surrounding Wet-Line)6 Con
lusionsIn this paper we have presented a model for 
oordinating a team of agents. We have instantiatedthis model to the forest �re�ghting domain where we were able to implement some ta
ti
s similarto the ones that real �re�ghting teams use. The model we presented enables to de�ne mu
h otherta
ti
s in a rather �exible way. In our implementation, the overall team 
oordination is 
ontrolled



by a single agent, the Leader, who is responsible for 
arrying out ta
ti
s. However, we have shownthat agents have lo
al autonomy and are able to 
ooperate lo
ally without the Leader intervention.We also presented some results of our experiments that demonstrate that, like in reality, di�erent�re s
enarios require di�erent �re�ghting ta
ti
s in order to minimize �re damage. Additionally, theta
ti
s that performed best in the tested s
enarios are the ones that we were expe
ting a

ordingto �re�ghting theory. However, we are aware that we are still far from providing meaningfulinformation for real �re�ghting teams. For a
hieving this, the simulator should be properly validatedand more experiments should be done.We also pointed out an interesting line of resear
h regarding possible uses of ma
hine learningfor automati
 ta
ti
 sele
tion based on the results of ta
ti
 experimentation in di�erent s
enarios.A
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