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Abstract

In this paper we propose a model for coordinating teams of computational agents. This
model is especially aimed for coordinating agents performing in a simulated environment of
forest firefighting, although it may be used in other domains. We will start by introducing
the Pyrosim platform where we are carrying out our experiments. Pyrosim is a tool developed
in our laboratory that simulates a forest fire environment where software agents act under
the role of firefighters that have to cooperate in order to control the fire. We will proceed by
presenting a model for team coordination. With this model it is possible to define firefighting
tactics that originate different team approaches to the fire. These tactics are conducted by a
single agent (the Leader) that communicates high level tasks to the other agents. Agents have
local autonomy and are able of cooperating locally for carrying out their tasks without using
communication. Finally, we will present some results of our experiments using the proposed
coordination model in two different scenarios. We will use these results to address the problem
of automatic tactic selection where we are currently working on.

1 Introduction

Forest fires are an everyday problem of society. Considering South European countries only (Por-
tugal, Spain, France, Italy and Greece), in the year of 2005, forest fires burned more than 556
thousand hectares of forest [1]. This problem particularly affects Portugal where more than 325
thousand hectares of forest burned for the same year, which is more than an half of the total burned
area in the South European countries.

Despite the seriousness and challenges of this problem, there is not much work in this domain
in the area of Artificial Intelligence. In fact, we only found one work that uses a Multi-Agent
System (MAS) to tackle the problem of coordinating a firefighting team to attack a forest fire.
This work in being developed by Wiering et al. [10, 11] and is concerned with coordinating heavy
machinery (bulldozers) to build a line around the fire to prevent it from spreading. The authors use
machine learning to elaborate plans according to the scenario situation, which are distributed to
agents (bulldozers) at the beginning of the simulation. However, in Portugal and other countries,
using heavy machinery is most of the times impossible because of the terrain geography that is
highly irregular. Additionally, heavy machinery may not be always available, or may not be the
best solution (e.g. in small fires). Therefore, we choose to coordinate a team of firefighters that
use water jets to try putting out the fire, although we intend to include other kinds of firefighting
agents in the simulation platform.

In this paper we present a model for coordinating a Team of computational Agents that performs
in a Forest Firefighting simulator. Agents play the role of firefighters that have to combat fire
in an organized way in order to control it. With the proposed model it is possible to define
Firefighting Tactics similar (although simplified) to the ones that are used by real firefighting
teams. Additionally, it is possible to experiment new tactics or variations of commonly used tactics
for trying to understand the outcome of using that tactics in different scenarios. For accomplishing
this, the model provides a flexible structure that enables to define different approaches of the team
to the fire.



The remainder of this paper is structured in the following way: in section 2 we present the
forest firefighting simulator that we are using for our experiments. Then, in section 3 we describe
the proposed coordination model for controlling the overall team behaviour. We proceed to section
4 where we detail how agents are able to cooperate locally in order to execute shared tasks. We
continue to section 5 where we present some results of our experiments and point out future work
directions for automatic tactic selection. Finally, we present our conclusions about this work.

2 The Pyrosim Platform

Before we present the coordination model, we will introduce the Pyrosim Agent platform [7] that we
have been using in our experiments. The Pyrosim platform simulates a forest-fire environment where
a team of Agents (firefighters) cooperates to control and extinguish the fire, while simultaneously
trying to minimize the overall damage and losses. In Pyrosim, Agents have to deal with very
dynamic fire fronts, terrain constraints and their own physical and logistic limitations. Each Agent
needs to ensure its physical safeness while trying to fight the fire and, at the same time, help
colleagues to remain safe. Agents are equipped with a water jet with limited power that allows
them to put out the fire, but they are not normally able to do it individually so there is an obvious
need for cooperation. Agents may communicate with each other in order to organize team efforts
(broadcast and 1-to-1 messages). Agent’s Perception System provides information about his own
state (physical energy, speed, acceleration, position in the terrain, status of the personal water jet)
as well as several matrix structures named Visual Maps that describe close range and medium range
surroundings. Visual Maps contain information with different levels of detail and noise (depending
on the distance) about terrain, vegetation, level of destruction, and fire cells. Visual Maps may have
cells where no information is available because of the occlusion effect (for instance, when an agent
is climbing a hill it cannot see to the other side of the hill). Agents also receive information about
visible parameters of other Agents (location, approximate energy level and action). Figure 1 shows
a visualization of a simulation in the Pyrosim simulator. Pyrosim creates a complex environment
that may be used as testbed for team coordination models, and for simulating firefighting tactics
as well. Additional information about the Pyrosim platform and simulation model may be found
at [7].

3 Overall Team Coordination

In our approach, team coordination is centralized, although loosely coupled, which means that the
overall team behavior is controlled by one agent, the Leader, but every agent has local autonomy.
The Leader responsibilities include being aware of the global situation, reasoning about it, and
assigning specific tasks to agents in order to carry out a given plan. There are several reasons that
impelled us to use centralized coordination:

e Real firefighting teams use centralized coordination [3];

e One agent, the Leader, may have access to the global situation and make decisions based on
global knowledge. In a decentralized solution, the information would be dispersed, and no
agent would have a complete understanding of the situation. The alternative would be for
every agent to be aware of the other agents’ knowledge, but that would increase drastically
communications between agents.

e Centralizing tactical/strategic decisions let other agents to focus on their tasks execution.

e Using centralized coordination is not synonym of the Leader being a master ruling a set of
slaves. Agents may have local autonomy and are not obliged to carry out tasks that go against
their own goals.

Of course that centralizing decision has its drawbacks. First, there is the danger of creating
a bottleneck on the Leader agent. To avoid this, teams should not have too many agents, and
communication should be used only when needed. Additionally, when coordinating larger teams,
one should use a hierarchy of command to ensure that a Leader only controls directly a small set
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Figure 1: A visualisation of a simulation in the Pyrosim platform

of agents. Another problem with centralized coordination is that if communication fails or if the
Leader fails, the team coordination is lost. To prevent the team from losing its Leader we configured
the Leader agent’s "personality” in order to obtain a more cautious behavior. As result the Leader
keeps a higher distance from the flames and takes less chances during the firefight. Currently, there
is no mechanism in our implementation for replacing the Leader in case of Leader failure. However,
this is not a big issue because our goal is to simulate firefighting tactics and not to create a system
for using during real firefighting.

In the next subsections we will make a formal description of the proposed model and then we
will instantiate it to the forest firefighting domain.

3.1 Coordination Model

For developing the coordination model, we used the same principle that was used in the robotic
soccer teams by Stone and Veloso [8, 9], and by Reis and Lau [4, 5, 6]. Both approaches defined the
team spatial distribution using roles, which were then assigned to agents. Roles enable to define
generic team formations that may be used with any team of agents. Despite we are using the same
principle of these teams, we had to build a model that would be able to handle some issues that are
not present in the robotic soccer domain, such as the actuation area size is not delimited (on the
other hand, the soccer field has fixed dimensions), the number of agents that constitutes a team
is not fixed (on the other hand, soccer teams have fixed size), and the opponent may have very
different configurations (fire size, shape and properties may vary a lot).

We will now present a formal description of the proposed model. Every agent has a Role (3).
There is a predefined number of Roles (2) which define different agent behaviors. The number of
Roles is not related with the number of agents. Teams may be homogeneous (all agents have the



same Role), or heterogeneous (agents playing different Roles).

Agents = {Agent1, Agenta, Agents, ..., Agentnagents | (1)
Roles = {Roley, Roles, Roles, . .., Rolepnroles } (2)
AgentRole; € Roles Vi = 1..nagents (3)

There are several ways of organizing agents to attack fire. Fire may be attacked directly in the tail,
head or flanks, or it may be attacked indirectly by constructing lines outside the fire that limit its
progression. To implement these attacks we have defined a set of Attack Plans (4) that specify how
agents should approach fire.

AttackPlans = { AttackPlany, . . ., AttackPlansnattacks } (4)

In the proposed model, an Attack Plan defines a sequence of Tasks for a given Role (7). In this
way, agents that share the same role will have the same tasks to carry out. In general, an Attack
Plan may be carried out by one Role only, although there are Attack Plans that may be executed
by a given set of Roles (6).

Tasks = {Tasky, Taska, Tasks, ..., Taskntasks } (5)
AdmissibleRoles; C Roles Yi = 1..nattacks (6)

AttackPlan; = {Role;, AttackT asky, . .., AttackT asknatiacktasks |
Vi = 1..nattacks Role; € AdmissibleRoles; AttackTasky € Tasks (7)

A firefighting crew may perform different attacks simultaneously. To define the attacks distribution
among the team, the concept of Tactic was created (8). A Tactic defines for each Role how many
agents will play that Role, and which Attack Plan will be performed by those agents (9).

Tactics = {Tacticy, Tacticy, Tactics, . .., Tacticptactics (8)

Tactic; ; = {TacticAttack;, Agent Assignment;} Vi = l..ntactics
Vj = l..nroles TacticAttack; € AttackPlans

nroles
AgentAssignmet; € [0..1] Z AgentAssignment; = 1 9)
j=1

From (9), we gather that agent assignment to Roles is defined using relative quantities (e.g. allocate
half of the team to a given Role). However, in our implementation, it is also possible to define agent
distribution using absolute quantities (e.g. allocate 2 agents to a given Role). Additionally, agent
distribution may be defined dynamically at run-time, which enables to product more complex role
assignments.

It is also possible to define Tactics that change the team approach over time. We call these
tactics Dynamic Tactics (10), and they are composed by a set of Tactics with Activation Conditions
(11). Activation Conditions define when to switch to a given tactic.

DynamicTactics = { DynamicT acticy, . . ., DynamicT acticndynamictactics (10)

DynamicT actic; = { ActivationConditiony, SubTactic, ..

e
ActivationCondition,subtactics, SubT acticnsubtactics }

Vi = 1..ndynamictactics SubTactic; € Tactics (11)

All tactics are pre-defined at the Leader agent level, and therefore, only the Leader has knowledge
about tactical information. The other agents only know their Role and the tasks that they must
execute, which are assigned by the Leader using tactical information.



3.2 Defining Attack Plans for Firefighting

For instantiating the proposed model to forest firefighting, we start by defining Attack Plans. We
have divided Attack Plans in two major classes: (i) Direct Attacks, and (ii) Indirect Attacks. This
division is based on firefighting theory that differentiates Direct from Indirect Attacks [3]. Direct
Attacks involve fighting the fire directly in the flames using water or manual tools, like shovels, to
swat the flames. Therefore, this kind of Attack Plans specify tasks for approaching the fire and then
attack it directly. On the other hand, Indirect Attacks are used to fight fire at distance, especially
when the fire is too intense for firefighters to approach it. The most common technique is to build
a fireline. Firelines are built by dogging the ground to remove all the vegetation in front of the
fire to starve it out of fuel. In the current version of the fire simulator it is not possible to built
firelines. However, we implemented another kind of indirect attack that consists in creating a wet-
line. Instead of dogging the ground, firefighters wet the ground with large quantities of water. The
effect is similar to building a fireline, although this is just a temporary solution until the simulator
supports dogging operations.

Figure 2 illustrates a class diagram of the Attack Plans that we implemented, where the classes
with no coloring represent Attack Plans that may be instantiated, and the classes colored in grey
represent abstract classes that are used for structuring proposes only. In general terms, Direct
Attacks define how to attack a given part of the fire (e.g. the head, the tail or the flanks) and the
WetLineAttack defines how to create a Wet-Line in a given area.

HeadAttack
DirectAttack <]

FlankAttack [<]
e

| NearestFlankAttack

I WetLineAttack |

Figure 2: Implemented Attack Plans

Regardless of the kind of attack, Attack Plans always have two stages: the positioning and
the attack management. The positioning stage is concerned with placing the agents in positions
that enable them to start the attack in good conditions. Once agents are in position, the attack
management stage is activated. This stage is concerned with allocating tasks to agents that are
performing the attack. In the beginning, agents receive tasks to attack a given area. Every time
agents complete their tasks, they receive new tasks to attack a new target area. Every Attack
Plan has to define its preferences for positioning and managing the attack. For instance, in a Head
Attack it is defined that agents should start by approaching the Head of the fire in the opposite
direction to the fire propagation direction. Then, when they arrive to the target area, they should
start attacking the foremost burning cell. Finally, when they extinguish the current cell, they
should attack the foremost adjacent cell that is burning.

3.3 Defining Firefighting Tactics

As we have seen above, tactics define the Role of every agent and the Attack Plan that the agent
will carry out. Using the Attack Plans presented in the previous subsection we are able to build
a considerable set of tactics. In table 1 we present some examples of Static Tactics. These tactics
may be very simple like tactic ST1 that assigns the same Role and Attack Plan to every agent.
Moreover, we may have tactics with the team divided for performing different kind of attacks
simultaneously. If we need more flexibility we may define Dynamic Tactics that have the ability to
change the team configuration according to the current situation. For instance, tactic DT2 (table
2) defines that when the team arrives to the fire it should build a Wet-Line around fire, and when
the fire is controlled all firefighters should concentrate efforts to attack the tail. Additionally, it is



possible to specify Dynamic Tactics that select the best a approach automatically according to the
scenario evaluation.

| Tactic | Role | Attack | Distribution |
All in the Tail tail attacker Nearest Flank All
(ST1)
Split by Flanks left flank attacker Flank 1/2
(ST4) right flank attacker Flank Rest
Surrounding Wet-Line | left wet line builder Wet-Line 1/4
(ST6) right wet line builder | Wet-Line 1/4
tail wet line builder | Wet-Line 1/4
head wet line builder | Wet-Line Rest
Surrounding Wet-Line | left wet line builder Wet-Line 1/5
with Tail Attack right wet line builder | Wet-Line 1/5
(STT7) tail wet line builder | Wet-Line 1/5
head wet line builder | Wet-Line 1/5
tail attacker Nearest Flank Rest

Table 1: Examples of static tactics

An important issue regarding Dynamic Tactics is the process of role allocation when switching
from one tactic to another. Role allocation is done having in consideration (i) the current location
of firefighters and (ii) the target location associated to the positioning stage of the Attack Plan
associated to a given role. In this way, the role allocation algorithm tries to distribute roles by
firefighters in order to minimize the distance that firefighters have to run to get to their new target
location. The algorithm starts by doing a greedy allocation which is then optimized using a simple
local search. Currently, the local search tries to minimize the maximum distance that a firefighter
has to travel, but other approaches are possible like minimizing the total distance traveled by all
firefighters.

| Activation Condition —  Sub Tactic |

When simulation starts —  Surrounding Wet-Line
When fire stabilizes —  All in the Tail

Table 2: Example of a dynamic tactic: Wet-Line and then Attack Tail

4 Local Coordination

During an attack, agents that share the same Role also share the same tasks. To execute these tasks
efficiently they must coordinate their actions. For instance, when two firefighters are attacking two
adjacent cells simultaneously (one firefighter per cell) they have more difficulties putting the fire
down compared to when they first attack together one of the cells and then the other. To achieve
this cooperative behavior we implemented a Local Coordination mechanism for direct attacks. This
mechanism uses perception about other agents, and predefined Local Coordination rules.

When agents receive an assignment for directly attacking a given area, they must choose which
cell to attack first. This decision may depend on several factors, such as the distance to the target
cell, the fire intensity in that cell, the danger of attacking that cell, and if the cell is being attacked
by a teammate or not. When an agent enters in the target area, the first thing he does is to verify
if another agent is already attacking the cell. If there is, the agent goes to the teammate location
in order to help him fighting that fire. Otherwise, the agent selects the nearest cell inside that
area and attacks it. If two agents start attacking two different cells simultaneously, two problems
arise: (i) the agents are not coordinating efforts, and (ii) the other agents do not know which agent
to help. To solve these problems, agents have predefined rules for handling this kind of conflicts.
These rules define criterions for evaluating the quality of the agent position to determine which
agent to help. The quality of the position is calculated based on the agent progression inside the



target area. If two or more agents are in positions with the same quality, the agent’s name is used
to resolve the conflict.

5 Experimental Results and Tactic Selection

Currently, the developed system works as a platform to test tactics in different scenarios. However,
our next step is to enhance the platform in order to automatically determine the tactics that
work best in different scenarios. We have already made some experiments that show that there
are tactics that achieve positive results in situations where others fail, although the same tactics
achieve negative results in situations where others succeed [2]. We are able to observe this in the
following example where we present the results of experimenting two different tactics (ST1 and
ST6) in two different scenarios (A and B). Tactic ST1 tries to attack the fire by positioning all
agents behind the tail of the fire and giving them orders to attack the fire directly with water.
Tactic ST6 places firefighters around the fire perimeter and give them orders to wet the ground
in order to create a Wet-Line. We have selected these tactics in order to represent (i) tactics
mainly based in direct attacks (ST1), and (ii) tactics mainly based in indirect attacks (ST6), which
we know from firefighting theory that should be applied to fires with different dimensions (among
other factors such as the number of firefighters available, terrain properties and weather conditions).
We experimented both tactics in two scenarios with the same characteristics (in terms of terrain
geometry, vegetation and weather), but in scenario A agents received the warning sign sooner than
in scenario B, and therefore when firefighters arrived to the fire in scenario B they would face a fire
in a more advanced state than in scenario A. We observed that both tactics succeeded in scenario A
(figures 3 and 4) and that tactic ST1 achieved better results. This happened because in tactic ST1
firefighters start by attacking fire directly and therefore they are able to prevent it from spreading at
an earlier stage. However, in scenario B this same tactic (ST1) failed to control fire from spreading
(figure 5). ST1 tactic was a good choice for scenario A but that is not the case for scenario B. In
scenario B firefighters arrive to the fire at a later stage where using a direct attack is not enough
to control fire. On the other hand, tactic ST6 was able to achieve a more stable performance by
sacrificing the same area in both scenarios. In this tactic firefighters build a wet-line around the
fire area that prevents fire from spreading, instead of fighting the fire directly. Therefore, the total
burned area in both scenarios was nearly the same, but in scenario A the damage was excessive.
More information about this and other experiments may be found in [2]. An important output
from these experiments is that results are coherent with forest firefighting theory in terms of the
applicability of direct and indirect attacks.
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Figure 3: Scenario A: Burned area using the ST1 tactic (All in the Tail)

The experiment described above is just an example of the influence of the scenario configuration
in tactic selection. Much others factors like the terrain geometry, the type of vegetation in the
terrain, and the weather may influence tactical decisions. Therefore, one of our main lines for
future work is to use machine learning for figuring out which tactics are best according to the
scenario properties.



160

Fire not attacked --------
140 ST6 with 6 agents A
120} ]
M)
T ;
S 100 FE # Burned | Elapsed
g 8 | ) Agents Area Time
g 1 25.69 73
g e60f 1 6 25.57 473
@ 8 25.66 474
40 | ]
20 F i ]
0 . . : . . .
0 60 120 180 240 300 360 420 480
Time (s)
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Figure 5: Scenario B: Burned area using ST1 tactic (All in the Tail)
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Figure 6: Scenario B: Burned area using ST6 tactic (Surrounding Wet-Line)

6 Conclusions

In this paper we have presented a model for coordinating a team of agents. We have instantiated
this model to the forest firefighting domain where we were able to implement some tactics similar
to the ones that real firefighting teams use. The model we presented enables to define much other
tactics in a rather flexible way. In our implementation, the overall team coordination is controlled



by a single agent, the Leader, who is responsible for carrying out tactics. However, we have shown
that agents have local autonomy and are able to cooperate locally without the Leader intervention.

We also presented some results of our experiments that demonstrate that, like in reality, different
fire scenarios require different firefighting tactics in order to minimize fire damage. Additionally, the
tactics that performed best in the tested scenarios are the ones that we were expecting according
to firefighting theory. However, we are aware that we are still far from providing meaningful
information for real firefighting teams. For achieving this, the simulator should be properly validated
and more experiments should be done.

We also pointed out an interesting line of research regarding possible uses of machine learning
for automatic tactic selection based on the results of tactic experimentation in different scenarios.
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