CEUR-WS.org/Vol-2230/paper_03.pdf

Deep Learning for Archaeological Object
Detection in Airborne Laser Scanning Data

Bashir Kazimi'
Leibniz University of Hannover, Institute of Cartography and Geoinformatics
kazimi@ikg.uni-hannover.de

Frank Thiemann
Leibniz University of Hannover, Institute of Cartography and Geoinformatics
thiemann@ikg.uni-hannover.de

Katharina Malek

Lower Saxony State Service for Cultural Heritage, Mining Archaeology
katharina.malek@nld.niedersachsen.de

Monika Sester

Leibniz University of Hannover, Institute of Cartography and Geoinformatics
sester@ikg.uni-hannover.de

Kourosh Khoshelham

University of Melbourne, Department of Infrastructure Engineering
k.khoshelham@unimelb.edu.au

—— Abstract

It is important to preserve archaeological monuments as they play a key role in helping us
understand human history and their accomplishments for times with no or little written sources.
The first step for this purpose is an efficient method for collecting and documenting information
about objects of interest for archaeologists. Airborne laser scanning (ALS) is of great use in
collecting and documenting detailed measurements from an area of interest. However, it is
time consuming for scientists to manually analyze the collected ALS data. One possible way to
automate this process is using deep neural networks. In this work, we propose a hierarchical
Convolutional Neural Network (CNN) model to classify archaeological objects in ALS data. The
data is acquired from the Harz mining Region in Lower Saxony, where a high density of different
archaeological monuments including the UNESCO world heritage site Historic Town of Goslar,
Mines of Rammelsberg, and the Upper Harz Water Management System can be found. To
compare and validate our method, we run experiments on the same data set using two existing
deep learning models. The first model is VGG-16; an image classification network pretrained
on ImageNet? data. The second model is a stacked autoencoders model. The results of the
classification as analyzed in this paper show that our model is suitably tuned for this task as it
achieves the best classification accuracy of around 91 percent, compared to 88 percent and 82
percent accuracy by the pretrained and stacked autoencoders models, respectively.
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1 Introduction

Archaeology studies physical remains of objects in order to understand human history and
culture for times with no or little written sources. It helps us have a glance at the lives of
people in the past and how things have changed through time. While history uses written
records to analyze events and explain human life, archaeology investigates what humans made
and left behind and makes sense of how, where, and when they lived. Places with physical
remains of human activities in the past are called archaeological sites. Archaeological sites
can be of different types like settlements, cemeteries or depositions. They can be visible or
not visible above ground. Studying these materials informs us of unrecorded human history
in the past, and thus it is important to protect and conserve archaeological sites. To do so,
it is necessary to first identify and document such sites. Airborne laser scanning (ALS) is an
efficient remote sensing technique for collecting 3D data of large areas by measuring the range
and reflectance of objects on their surface. It can be used to capture data from archaeological
sites, but it needs to be manually analyzed by archaeologists for correct identification and
localization of archaeological objects. This could be very time-consuming, and needs an
automated process.

Deep learning has shown great potential in automating processes in many applications
and outperformed classical machine learning methods. It has performed well in image
classification, machine translation, speech recognition, image captioning, healthcare domain
applications, prediction of events, and many more [1]. It can work with 2D image data [2],
3D point cloud data [3], hyperspectral image data [4], and interpret sequence to sequence
data [5]. Among deep learning models, convolutional neural networks (CNN) have been
proved to work well on image data [2, 6], while stacked autoencoders are more suitable for
learning features from the input data and encoding them to a compressed vector, from which
a decoder learns to generate the original input data [7]. Deep learning models usually require
a lot of training data to be able to generalize well. In many applications where the amount
of training data is not sufficient, transfer learning can be applied. Transfer learning refers to
training a model on a large set of training data first, and then using the pretrained model
as a feature extractor for a new application with small dataset [8]. There are many models
pretrained on ImageNet data; Xception [9], VGG Net [10], ResNet [11], Inception [12], etc,
which are shown to perform well as feature extractors for other image-based domains.

In this work, we build a hierarchical CNN model to detect objects in archaeological sites
using digital terrain models (DTMs) generated from ALS data. The data is collected from
the Harz mining region in Lower Saxony, Germany. Objects to be detected are archaeological
objects such as hollow ways, streams, pathways, lakes, streets, ditches, heaps, mining shafts,
and more, but for this study, our model is fit to detect 4 classes of objects: natural streams,
lakes, tracks, and an ’others’ class which represents the rest of the objects for which enough
labeled data is not available yet. We also implement and use a stacked autoencoders model,
and the pretrained VGG16 model to compare the performance of our model. The rest of the
paper is arranged as follows. Section 2 explains previous work on deep learning for object
detection. Section 3 gives details of our model, explains the stacked autoencoder model,
and describes the pretrained VGG16 model used for comparison. Section 4 includes the
experiments performed and the results obtained, comparing our model with the other models
used in this study. Finally, Section 5 summarizes this work and points out open future
directions in this line of research.
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2 Related Work

Deep learning has been successfully used in many applications. Among the deep learning
methods, recurrent neural networks (RNNs) are good at dealing with sequential data as they
take into account temporal information. RNNs have been applied in speech recognition to
map acoustic sequences to phonetic sequences [13]. RNNs have also been used in natural
language processing to translate text from one language to another [14, 15, 16]. Another
famous method in deep learning is convolutional neural networks (CNNs). CNNs take into

account spatial correlation among data points and hence perform well in image-based data.

CNN s have been used in image classification [2] video classification [17], face recognition [18],
scene labelling [19], action recognition [20], pose estimation [21], and more. Autoencoders
are neural networks that take an input, map it to a latent space using a hidden layer, and
reconstructs the original input by the final output or decoding layer. Stacked autoencoders are
deep networks made of multiple autoencoders stacked together. Stacked autoencoders have
also been applied in many applications: feature extraction and classification of hyperspectral
data [22, 4], internet traffic prediction [23], classification and diagnosis of the parkinson
disease [24], and more. Even though deep learning models perform well in most applications,
they are highly dependent on a lot of data, and usually labeled data. In domains where
sufficient data is not available, transfer learning can be applied. First, a deep neural model
is trained on a domain with a high amount of labeled data, and the learned parameters
are saved. The learned parameters can then be transferred and used in a domain with a
smaller amount of data for feature extraction. The extracted features are used to train
a classifier directly, or in some cases, the transferred weights are further tuned for that
specific application [8]. There are many other deep learning methods with various fields of
applications, but that is out of the scope of this research.

Similar to other domains, deep learning methods have gained popularity and are used
in the field of remote sensing as well, such as scene classification in satellite imagery [25],
object detection in optical remote sensing images [26], 3D shape reconstruction [27], and
more. Some example applications of deep learning methods specifically on laser scanning
data include tree classification [28], road manhole covers detection [29], and road markings
detection [30]. Hu and Yuan [31] used CNNs to extract DTMs and filter out non-ground
points from ALS data, and claim that their method performs better than previous filtering
methods.

Generally, deep learning models are fit to work with image data or 3D point clouds where
the example objects have a complete 3D shape. In some cases, deep learning models need to
work with height information or DTMs extracted from ALS data as in the work of Politz
et al. [32]. In this study, we also work with ALS data. In order to leverage deep learning,
specifically convolutional neural networks, we build a hierarchical CNN model inspired by the
work of Palafox et al. [33], and preprocess our ALS point cloud data to generate a DTM, and
image-like inputs, 2.5D height maps, to train our model and detect objects in archaeological
sites.

3 Approach

To detect objects in archaeological sites, we propose a two-step approach. The first step
is to train classifier models that take height map data of size n x n as input and assign a
label to it. The second step is the detection process in which the input is height map data of
size hy x hy where hyi, hs > n, and the output is a heat map of size h; x hy for each class
showing the probability of the objects at each location. Since the objects to be detected
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Algorithm 1 Selecting optimal values of n for the input size n x n

NN NN NN NDND P R e

nList: list of possible values of n, in this research {8,10,...,98,100}

num__ optimal: number of optimal values to select (= 5 in this research)
trainData: DTM showing height maps from the training region.
testData: DTM showing height maps from the test region.

procedure TOPNSELECTION(nList, num_optimal, trainData, testData)

models <
accuracies < ()
losses + ()
topN < ()
for each item n in nlist do

models, < model trained with input size n x n clipped from trainData

accuracies,, < accuracy of the models,, on testData

losses,, < loss of the models,, on testData
sortedList]l <— nlList sorted based on accuracies in decreasing order
sortedList2 <— nList sorted based on losses in increasing order
141
while true do

first_i__acc < first i elements in sortedList1

first_i_loss < first i elements in sortedList2

common__Ns < list of common numbers in first_i_acc and first_i_loss

for each item ¢ in common__Ns do

if c is not already in topN then
append c to topN
if 7 > length of nList then
break

1< i+1

return topN|[: num__optimal] # first num__optimal elements

Algorithm 2 The detection process

1: classifiery: classifier model trained with input size n by n

2: H: Input matrix of size h; x hs, showing height maps from the region of interest.
3: M: Number of classes the the classifier model is trained to detect.

4: procedure DETECTOBJECTS(classifier,, H, M)

11:

O + 0 # a matrix of zeros of shape (M, hy, hs)
for each item 7 in range(0, hy - n + 1) do
for each item j in range(0, hg - n + 1) do
currentPatch <— H[i:i+n,j:j+n]
m < class predicted by classi fier,
O[m,i:i+n,j:j+n] += ones(n, n) # increment by 1

return O # a heat map of size hy x ho for each class
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Figure 1 Detection process. Heatmap matrices O are initialized to 0. Sliding one pixel at a
time, patches of size n x n are extracted from the DTM H, and fed to the classifier. Based on the
class label predicted by the classifier, the pixels on the same location on matrix O of the predicted
class are incremented by 1. At the end of the process, each object class 1 to M, will have their
corresponding heat maps O1 to O

are of different sizes and granularities - sometimes even within a single object class, we first
investigate and select 5 optimal size for the input to the classifier networks. The 5 optimal
values of n for the input size are selected using Algorithm 1.

After selecting 5 optimal values of n for the input size to the classifier models, the 5
corresponding trained classifiers are used in the second step, the detection process. The
detection process takes a big matrix of size hy x ho, height map data from the region of
interest, as input and returns one heat map of size hy x ho for each class, indicating the
probability of objects at each location of the heat map. The detection method is performed
using Algorithm 2, and illustrated in Figure 1.

To this end, we build a hierarchical CNN model and compare it with two of the existing
deep learning methods: the pretrained VGG16 model available in the Keras API [34], and
stacked autoencoders model implemented by ourselves. The following subsections describe
the three models.

3.1 Our CNN Model

Our CNN models are multi-class classifiers consisting of 4 Convolutional layers each of which
is followed by a max pooling function and a ReLLU operation which is defined in the following
equation.

ReLU(z) = max(z,0) (1)

In the end, there is one fully connected layer with a softmax function outputting the
probabilities for each class label. The structure used for the CNN models is depicted in
Figure 2. For this study, we train multiple CNN models that take as input matrices of size;
n x n, with n ranging between, and including 8 and 100, taking only even numbers. When
the models are trained, we check their performance based on the accuracy and loss obtained
from the test set and choose the best 5 for the second step, using Algorithm 1.
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Input
Convolutional layer + ReLU
Max-pooling

Flattening

2BVRAND

FC-layer with softmax

b

Figure 2 Structure of our CNN Model. The model takes an input matrix of shape n by n and
outputs a class label for it.

3.2 Pretrained VGG16 Model

VGG16 is a deep convolutional neural network for object recognition developed by Visual
Geometry Group at Oxford [10]. The model has been trained on ImageNet data, a database
of images where each image is labeled as one of the thousand classes consisting of concepts
included in the WordNet hierarchy. The learned training weights have been made available
online, making it possible for various deep learning frameworks, such as Keras, TensorFlow,
and Calffe to include the implementation of the model as an application, along with the pre-
trained weights. We use the Keras implementation of this model. The Keras implementation
allows for input images with height and width greater than 48 up to 224 and input channels
of 3. Since the input data in our study is height map data with a single channel, we triple
the number of channels by copying the same values for our single-channeled input data to
create 3-channeled inputs. The final classification layer of the model is replaced with our
own layer, a fully connected layer followed by a softmax function classifying 4 object classes.
The structure of the modified VGG16 model is depicted in Figure 3. The model is fine-tuned
for our task, keeping the weights in the original VGG16 model fixed, and only training the
weights in the newly added fully connected layer. The same approach is taken for this model.

Input: (nx nx 3)

Qutput; (Tx7Tx4)

input
convolution+RelLU
max pooling

fully connected+RelLU

softmax

Figure 3 Structure of the modified pretrained VGG16 Model, instead of 1000 classes as the
original model, we classify 4 objects, hence the modification in the final layer.

26



Kazimi et al.

We train the model with input sizes n x n, with n ranging between, and including 48 and
100, taking only even numbers. The range of values for n starts from 48, rather than 8 since
48 is the smallest possible value for the input size to the pretrained model. After selecting
top 5 models based on accuracy and loss on the test data using Algorithm 1, similar to our
own model, we scan the area of interest and generate heat maps of each object class for each
model using Algorithm 2.

3.3 Stacked Autoencoders (SAE) Model

The stacked autoencoders model takes as input a height map data of size n x n, learns to
encode it to a compressed, smaller matrix and is trained to decode and generate the original
input, a height map of size n x n. The encoder consists of 3 convolutional layers, each
followed by a ReLU operation, and a max pooling operation. Then follows a fully connected
layer whose output is the code, used by the following decoder. The decoder consists of 4
convolutional layers, each with a ReLU operation, and an upsampling function. The output
of the decoder has the same size as the original height map data that is given as input to
the encoder. The structure of the SAE model is illustrated in Figure 4. After training, only
the encoder model is used to extract features from the data. The training data is given to
the encoder as input, the resulting compressed, smaller vectors — referred to as code — are
then used as features to train a simple neural network to classify into 4 classes. The simple
classifier neural network that we have implemented consists of a fully connected layer with a
softmax function. Similar to the previous two methods, we try multiple values for n ranging
between, and including 48 and 100. The final top 5 models are then used for object detection
in the same manner as explained before.

Input: fnxnx 1) Output: (nx nx 1)

input

convolution+RelLU
max pooling / upsampling

fully connected+RelU

akaie

output

Figure 4 Structure of the SAE model trained to take an input of size (n x n), and regenerate it.

4 Experiments and Results

Our region of study is the western part of the Harz Mountains in the south of Lower Saxony,
Germany. The upper Harz was once one of the most important mining regions in Germany.
The major products of its mines were silver, copper, lead, iron, and zinc. The area is home for
the Upper Harz Water Management System, which together with the Mines of Rammelsberg
and the Historic Town of Goslar was declared as UNESCO World Heritage Site. The Upper
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Harz Water Management System is one of the largest and most important historic mining
water management systems in the world where dammed ponds, ditches, tunnels and drainage
adits were built for collecting, diverting, and storing surface runoff water during the 16th-19th
centuries. The area is also covered with plenty of mining relics such as mine shafts, hollow
ways, medieval heaps, and more. ALS data is acquired from the region of the interest, and
known objects are digitized using the ArcGIS software. Since our model and the other two
previous methods use 2D data as input, we first create a DTM with a 1-meter resolution
for the area of interest using the ALS point cloud data. Afterwards, the digitized labels are
used to buffer known objects and generate matrices of size 100 x 100 with the corresponding
label for the object, in order to create training and test datasets for our models. In this
study, our labeled data contains four object classes including streams, tracks, lakes, and an
‘others’ label representing everything else in the dataset. Streams and tracks are labeled
using continuous, linear-shaped buffers while lakes are labeled using closed areal buffers.
Areas excluding the three known object classes are all labeled as ’others’ The generated
matrices indicate height values and are used as input to our model and the SAE model. For
the pretrained VGG16 model, the matrices are tripled to create 3-channeled input data of
the same width and height from the 1-channel height map data. The resulting 3-channeled
matrices are then used for training and testing the pretrained models. To create training and
test data for models with input size n smaller than 100, matrices of size n x n are cropped
from the center of the original matrices generated earlier, and used by the corresponding
model. A small part of the region of study with an overlay of the classes used in this study
is shown in Figure 5, and the statistics for the generated training and test data used in this
study are shown in Table 1.

[ Tracks
B steons
Lakes
(a) Original DTM (b) DTM with Hillshad- (c) Digitization of the
ing classes on ArcGIS

Figure 5 Test area from the region of study, 2x2 kilometers squared area in the Harz Mountains
Region in Lower Saxony.

Train Test
Number of examples 20.000 (80 %) 5.000 (20 %)
Table 1 Dataset statistics

To have a fair comparison among them, extreme care has been taken to use as much
similar configuration for the 3 models as possible. Some of the hyperparameters used while
training the models are listed in Table 2. As explained in Section 3, the first method was
explored using input sizes n ranging from 8 to 100, but since 48 is the smallest possible n
value for the pretrained VGG16 model, the range of values used for n for this model and the
SAE model is 48 to 100. The 5 optimal filter sizes for each model is different. Therefore,
to compare the models, we extend our previous method of choosing optimal filter sizes,
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Epochs Batchsize Range of values for n Optimizer

Our CNN 10 32 8-100 Adam (Ir=0.001)
SAE 10 32 48-100 Adam (Ir=0.001)
VGG16 10 32 48-100 Adam (Ir=0.001)

Table 2 Settings used for the three models during training. Ir stands for learning rate

Algorithm 1, to select 5 common filter sizes for all the three models. The new method for
selecting optimal filter sizes, n, for the three models in common is shown in Algorithm 3.

Algorithm 3 Selecting optimal values of n for the three models in common
nList: list of possible values of n, in this section {48,50,...,98,100}

1:
2: num__common: number of common optimal values to select (= 5 in this research)

3: trainData: DTM showing height maps from the training region.

4: testData: DTM showing height maps from the test region.

5. procedure COMMONNSELECTION(nList, num_ common, trainData, testData)

6 len_nList < length of nList # Passed to Algorithm 1 as num__optimal instead of 5
7 optimalsCNN <+ TopN selection(nList,len_nList,trainData, test Data)

8 optimalsVGG16 < TopN selection(nList,len_nList, trainData, test Data)

9: optimalsSAE <+ TopN selection(nList,len_nList, trainData, test Data)
10: topN + ()

11: 1+ 1

12: while true do

13: i__cnn < first i elements in optimalsCNN

14: i_wvgg < first i elements in optimalsV GG16

15: i__sae < first i elements in optimalsSAE

16: common__Ns < common numbers in ¢_cnn, ¢_vgg, and i_ sae
17: for each item ¢ in common_Ns do

18: if c is not already in topN then

19: append c to topN

20: if i > length of nList then

21: break

22: 14— 1+ 1

23: return topN|[: num_common] # first num_common elements

In this experiment, the 5 common optimal filter sizes and the results obtained by the
corresponding models are listed in Table 3. As the filter size grows, VGG16 generalizes better
while our model and the SAE decreases generalization ability. This notion is visible in the
loss values obtained by the models on the test set. Confusion matrices for the smallest and
biggest optimal filters for each model are shown in Table 4. The evaluation metrics in Table
3 and the confusion matrices in Table 4 are based on the test data set, which similar to our
training data set, is located, labeled, and verified by archaeology experts. In general, as the
filter size grows, there is a decrease in prediction accuracy of the three models for linear
structures like tracks and streams, but an increase in prediction accuracy for areal structures
like lakes. It is also observed from the confusion matrices that the models confuse tracks
with streams and vice versa more than they confuse them with lakes. This is expected since
tracks and streams are linear and are somewhat more similar in structure. Additionally, a
higher number of lakes are confused by the three models with streams rather than tracks,
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Model Model
Z Z

5 2 Z g
: 5 & = g “
5§ = = 5§ = =
5 48 906 855 821 5 48 031 040 0.49
£ 64 902 859 80.7 = 64 031 037 0.54
M 76 89.8 87.1 76.2 ~ 76 031 036 0.63
82 89.7 86.7 78.3 82 0.32 0.38 0.58
98 90.7 88.0 80.9 98 0.33 0.35 0.57

(a) Accuracy in % obtained from the test set. (b) Loss obtained from the test set.

Table 3 Quantitative evaluation results for the three models using 5 common optimal filter sizes.

Predicted Predicted
wn wn
© o ﬁ % [ e ﬁ %
E &» O J E &» O 4
= Tracks 91.9 2.1 4.8 1.3 = Tracks 89.7 3.9 5.8 0.5
B Streams 4.1 89.3 4.9 1.7 k= Streams 3.3 89.8 5.5 1.4
& Others 81 66 830 22 & Others 81 81 826 1.1
Lakes 0.8 2.0 0.8 964 Lakes 0.7 1.0 0.6 97.6
(a) Our Model; Filter size n = 48 (b) Our Model; Filter size n = 98
Predicted Predicted
wn n
© o ﬁ % o] o ﬁ -;g
B &» O 4 B &» O A
= Tracks 73.5 121 124 19 = Tracks 72.1 147 13.1 0.1
B Streams 4.2 86.7 6.5 2.6 k= Streams 2.1 915 5.8 0.5
& Others 104 95 778 23 & Others 54 124 820 02
Lakes 0.7 1.4 09 970 Lakes 0.4 1.1 04 98.1
(c) VGG 16; Filter size n = 48 (d) VGG16; Filter size n = 98
Predicted Predicted
wn n
0 E n %) 0
E & & 3 & & O 3
= Tracks 70.0 19.9 8.2 1.8 = Tracks 77.9 120 8.4 1.6
B Streams 1.8 919 34 2.8 k= Streams 6.0 87.2 4.2 2.6
& Others 85 243 660 1.1 & Others 221 120 646 1.3

Lakes 1.8 72 14 89.7 Lakes 29 82 23 865
(e) SAE model; Filter size n = 48 (f) SAE model; Filter size n = 98

Table 4 Confusion matrices for the three models and the two filter sizes. Values are shown in

percent.
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which is also intuitive since some of the lakes with a smaller width could be confused with
larger streams.

In a subsequent step, the detection results are analyzed visually by inspecting the
generated heat maps. The final heat maps generated by the models for filter sizes n = 48 and
n = 98 are illustrated in Tables 5 and 6. The heat maps are generated for the four object
classes from the area shown in Figure 5. The colors from low to high show the certainty of
the model in detecting the object at that location. In the following, the visual analysis takes
into account, that potential features are represented with high confidence, and as connected,
continuous components with similar confidence.

Taking into account the resolution of the DTM, 1 meter resolution, using smaller values
for n while creating training data, the n x n patches include a good representation of tracks
and streams or other objects of smaller width. However, they yield poor results for lakes or
other objects of larger width. This is due to the fact that the patch represents just a small
part of the whole object, e.g. it would be a flat height map cropped from the middle of a lake.
On the other hand, using bigger values for n results in a better representation for objects of
larger width, such as lakes, since the training patches contain the full structure of lakes and
parts of their surroundings. However, it results in a poor representation of objects of smaller
width, since only a small section in the middle of the patch represents the object and the
majority of the patch includes other objects. The effect of this choice of values of n is clearly
seen in the heat maps shown in Tables 5 and 6. For models with smaller values of n, the
generated heat maps of narrow tracks and streams are more accurate, but those of lakes are
less accurate. Streams with larger widths appear to be labeled as lakes. For models with
larger values of n, the heat maps are more accurate for lakes, which are of a larger width,
but those of streams and tracks are less accurate. A larger portion in the surroundings of
tracks and streams are also labeled as streams and tracks.

While the variation in the filter size has the same effect for all the three models, there are
significant differences among the models using the same filter sizes. As illustrated in the heat
maps for filter size 48 in Table 5, the VGG16 model creates the best heat map for tracks while
the one generated by the stacked AE model is less accurate than our model. In generating
heat maps for the streams, our model performs better than the other two, and the Stacked
AE model is the worst among them again. While there are some similarities between our
model and the VGG16, after taking a closer look, one can realize that the streams heat map
by our model is more continuous and flowing, thus more accurate, compared to discontinuities
on the streams heat map by the VGG16 model. For example, the continuous stream on the
lower left corner is more apparent in our model than the VGG16 model. Finally, VGG16
performs better in generating heat maps for lakes, and our model generates a rather similar
heat map to that of stacked AE model. Comparing the results to the ground truth, it seems
that the flat areas in the upper part and the middle of the test area are detected as lakes by
our model and the stacked AE model.

Using filter size of 98 (see Table 6), the generated heat maps of our model and the stacked
AE model indicate a clear pattern of tracks on the upper section of the area, while the
VGG16 model is not as confident. In the lower part of the area, however, there is a better
pattern of tracks by the VGG16 model, even though the confidence values are still not high.
In the heat maps for the streams, our model is better than the other two. In the heat map
generated by our model, the streams are continuous and more similar to the actual streams,
while the VGG16 model produces discontinuous streams in the middle and upper section of
the area, and shows multiple tiny streams in the lower section of the area as one big stream,
rather than the detailed information on the heat map by our model. The stacked AE model

31

COARCH 2018



Deep Learning for Archaeological Object Detection in Airborne Laser Scanning Data

Ground thuth

Our CNN

Streams Tracks

Lakes

Table 5 Heat maps using filter size 48 x 48. Colors show the confidence of the models in detecting

objects at that location.

Our CNN VGG16 Ground Truth

Streams Tracks

Lakes

Table 6 Heat maps using filter size 98 x 98. Colors show the confidence of the models in detecting

objects at that location.
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produces a heat map with even more discontinuity, and with lower confidence values. The
heat maps for lakes are produced in a similar manner by our model and the VGG16 model.
The stacked AE model falsely labels some flat areas in the upper right and middle section of
the area as lakes instead of labeling them as ’'others’.

5 Conclusion and Outlook

In this study, we present a two-step approach to detect objects in archaeological sites,
leveraging deep learning, specifically CNNS and using ALS data. In the first step, we develop
a multiclass classifier CNN model and train multiple instances of the model with various sizes
as the input matrix. Based on their accuracy, the best models are then in the second step
applied to the DTM of the area of interest, to classify objects and generate a heat map for
each class. As a result of the experiments performed, it is concluded that smaller matrices as
training data result in better detection of objects with a smaller width, while bigger matrices
are good for objects of larger width.

Our model is compared with two existing methods, the pretrained VGG16 model and
a stacked AE model which are also trained with various sizes as the input matrix. The
evaluation matrices in Table 3 indicate that our model performs better than the two others.
The ultimate goal of the research is to provide a tool for archaeology experts that they could
load raw point cloud data acquired from an area of their choice, automatically see the results
of the detection algorithm and find out locations of each object.

The result of the current approach is given in terms of a heat map. However, ultimately,
we are interested in geometric delineations and description of the objects. In order to obtain
them, additional analysis steps are needed, e.g. region growing or line following methods.
We also plan to use parametric models in order to geometrically reconstruct objects such
as charcoal stack locations. Such approaches have successfully been used in the domain
of building reconstruction (e.g. [35]). Currently, we are able to detect only three classes:
tracks, streams, and lakes, but everything else is labeled as ’others’. We incrementally label
objects in the ’others’ class and plan to include them in the training when sufficient number
of instances are labeled for an object class.

The current approach uses a classification scheme where each pixel is classified with a
filter mask and the classification is assigned to the pixels under that mask. This approach
guarantees that appropriate environments of the individual pixels are taken into account
for the classification. Future research will exploit other networks, especially semantic
segmentation approaches, such as UNET (e.g. [36]). Such approaches have the advantage,
that each pixel is labeled in the classification process (e.g. [37]).
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