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Abstract. The era of models as executable entities rather than descrip-
tive pictures is on the rise. Nowadays modeling languages provide a va-
riety of additional features like transformation, simulation, or code gen-
eration and the consumers of models are persons as well as machines.
This development brings about the necessity to make models machine-
processable, i.e. to formalize modeling languages. The goal of this re-
search project is to find a suitable formalism for this purpose. This for-
malism will be grounded on mathematical theories, adopting their un-
ambiguity and expressiveness and enabling the application of established
mathematical methods. Therefore the plan for this research project is to
examine several promising mathematical theories regarding their possi-
bilities and limitations. A first result of this examination is presented in
this paper: the formalization of the semantics of a metamodel based on
model theory, a branch of mathematical logic. We outline the analogy
between the concepts of metamodeling and model theory and describe
how a metamodel can be formalized with this approach. A proof of con-
cept is given by applying the formalism on a simple example, namely the
entity-relationship modeling language.

Keywords: Metamodeling · Formalization · Formal Semantics · Model
Theory

1 Introduction

In the past decade modeling languages have evolved from mere instruments for
pictures supporting human understanding to highly specialized tools with value
adding mechanisms like transformation, simulation or code generation. An in-
creasing number of models are in fact not created for human consumption but
for computational processing and execution. The most significant requirement
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evolving from this fact is the inevitable need for appropriate and complete for-
malization of the underlying modeling languages, as machines cannot understand
semi-formal or natural language specifications. Yet there is no commonly used
approach or language to unambiguously define a modeling language much less a
formalism which suffices for these needs. Thalheim [27] states in his reevaluation
of notions of conceptual models that the establishment of formal foundations is
one of the open research challenges in conceptual modeling. According to Bork
and Fill [2] formalization enables an unambiguous intersubjective understanding
of modeling methods and it enables models to act “... as machine-processable
knowledge bases for answering queries, simulation behavior, performing reason-
ing, verification & validation, or generating executable code ...” (p. 3400). They
analyze in their work six established modeling methods with respect to their
degree of formalization. Their findings show that there exist several attempts to
formalize modeling languages or at least parts thereof, but these attempts do
not follow a common procedure or use a common formalism. This leads us to
our first research question:

RQ1: How can a suitable formalism for comprehensive applicability to describ-
ing metamodels, conceptual modeling languages and modeling methods be con-
structed?

When talking about rigorous formalization the first things that come to mind
are concepts from mathematics as these theories are formal, complete, and un-
ambiguous by definition. Furthermore mathematical structures admit the ex-
ploitation of metamodels through the application of well elaborated algorithms
or the discovery of hidden properties and connections by transforming them to
related structures. A goal of this research project is therefore to examine ap-
propriate theories that project concepts of metamodeling in a natural way to
mathematical concepts.

RQ2: Which mathematical concepts can serve as a formal foundation for mod-
eling methods? Which opportunities do the different concepts provide? What are
their limitations?

Fill, Redmond and Karagiannis [8] develop a formal framework based on set
theory and first order logic to describe the implementation of a modeling lan-
guage on the ADOxx metamodeling platform. The difference to the approach at
hand is that we do not aim at formalizing how a modeling language is imple-
mented on a specific platform but at finding mathematical structures building
the basis of a model with no limitations imposed by an implementation.

The mathematical concept that is most self-evident as a basis of a diagram-
matic model is graph theory [1] which is also applied in a variety of existing
research areas e.g. software engineering or language engineering [18]. The inter-
pretation of models as graphs will serve as a starting point for our research.
Furthermore, established techniques such as graph grammar and graph trans-
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formation are promising for supporting mechanisms on models. Moreover, to
support the conceptualizations of models we will also examine suitable struc-
tures to describe concepts and combine them with graph theory so that we can
use the interdependency between them. A first selection of theories we want to
investigate are conceptual graphs [24, 25], pattern theory [11], model theory [4]
and formal concept analysis [9]. Category theory [13] may serve as the connecting
link between them. In a first approach we build a bridge between graph theory
and model theory, a concept from logic, and use the power of formal languages
for modeling languages.

Another emerging demand in metamodeling which guides us in this research
question is agility, a requirement modeling languages nowadays have to meet,
see Karagiannis [15]. A suitable formalism for modeling methods has to be mod-
ifiable to the same extent as the metamodel is agile. Furthermore, modeling
methods must be extensible and combinable.

At this quite early stage of the research project we address the specific ques-
tion of finding ways to formalize semantics, similar to established approaches
like formal semantics for programming languages. The aim is to enable model
checking against the metamodel as well as checking the satisfiability of meta-
model constraints.

RQ3: How can the semantics of a modeling language be formalized in order to
enable automated processing?

Here we explicitly aim at a structurally founded formalism. In view of existing
work on formalizing semantics, e.g. ConceptBase [14], we stress that our goal
is not to develop a programming language. We want to describe a modeling
language in a way that any program able to process the chosen mathematical
structure can understand it. At this point in time we already started an attempt
with the mathematical concepts of model theory, a branch of logic, which in
contrast to several other approaches is not restricted to first-order logic a priori.

The rest of this paper is structured as follows: we start with an outline of the
research plan. Then we provide a summary of the results achieved so far. We give
an attempt to formalize the semantics of a modeling language with tools from
mathematical logic. We do so by exhibiting an analogy between metamodels, the
structure and concepts of graphs and formal and logical languages. We reason
the parallelism of models and graphs and how the concepts of metamodeling can
be mapped to the concepts of graph theory. Then we give a short introduction
to model theory so that we can show the applicability of formal languages and
models to metamodeling. As a final point we give a proof of concept by apply-
ing the approach to a simple example, namely the entity-relationship modeling
language.

63



2 Methodology

Phase 1: We start with a literature review to identify and study other existing
approaches in metamodeling focusing in particular on their formal foundations.

Phase 2: We study the concepts of metamodeling and abstract patterns and
structures which can be described mathematically. We will proceed iteratively,
concept by concept, component by component, and add a phase of review and
consolidation after each iterative step. For the concepts of metamodels we fol-
low the definitions of Kern, Hummerl and Kühne [17] and assemble them to
components of modeling methods as described in the modeling framework of
Karagiannis and Kühn [16]. The first iteration addresses RQ3 and is in progress.
First results are presented in the next section.

Phase 3: We examine mathematical theories standing to reason and try to
match the discovered patterns from phase 2. Due to the iterative approach this
phase will to some extent be executed simultaneously to the second one. We
try to elaborate a formalism for the concept or component under study and
moreover try to consolidate or at least link the mathematical approaches used in
former iterations. For proof of concept we will implement prototypes whenever
this is meaningful.

Phase 4: We finally consolidate the results from the iteration steps in a holistic
approach. The aim is to establish a final formalism comprising possibilities to
formally define modeling languages or at least the most important components.
This formalism will be a construct of structures, languages, methods and algo-
rithms with high coherence and interoperability.

Phase 5: To validate our approach we will apply the constructed formalism on
the diverse modeling languages available at the OMiLAB platform [20].

3 Preliminary Results

In this chapter we present the preliminary results of our ongoing work on RQ3.
The goal is to find a mathematical formalism to describe a modeling language
in a way that enables the definition of semantic constraints of the language.
The approach is inspired by the research area of formal semantics in software
engineering [22, 23].

3.1 Formal Semantics

Following the metamodeling framework of Karagiannis and Kühn [16] a mod-
eling language consists of syntax, semantics and notation. Whilst the syntax
is usually well defined by a metamodel semantics is often described in a vague
manner. Even the term semantics is not used consistently in the literature. Some
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authors stress that semantics is the assignment of meaning for the purpose of
human understanding and communication [18], others consider semantics as the
expression of meaning in a way well understood by the intended consumer in-
different if human or machine [16]. Some authors include context conditions and
constraints under the heading of static semantics [10] others deny these aspects
as part of semantics and allocate them in the syntax [12]. We stick to the first,
less restrictive notion.

Nevertheless, all authors agree that semantics is a crucial but challenging
thing to deal with and many approaches have been devised to formalize seman-
tics for different areas. Especially for programming languages there are already
well elaborated theories on how to assign meaning to expressions and programs.
Historically the most important approaches are denotational semantics, oper-
ational semantics, translational semantics, axiomatic semantics and algebraic
semantics [18, 22, 23]. Our approach using model theory for defining semantic
constraints of modeling languages is a variant of algebraic semantics. We chose
model theory because by definition its aim is to describe the semantics of a
given structure as well as instances satisfying these semantical constraints. For
the definition of metamodels we use the concepts identified by Kern, Hummerl
and Kühne [17].

3.2 Models ↔ Graphs ↔ Formal Languages

In order to use the formal power of mathematical model theory in metamodeling
we have to justify the analogy of the concepts on both sides, i.e. the validity of the
red arrows in Figure 1. To do so we use as interim stage the concept of graphs as
well as colors and labels on graphs. The procedure of creating a formal language
for the structure of colored, labeled graphs is already established in model theory.
The feasibility of representing models as graphs and the most important concepts
of metamodeling, object types and relationship types, as concepts of colors and
labels gives us the second analogy and closes the circle. The main benefit we gain
by this mapping is the possibility to formally define the semantics of the modeling
language in the unambiguous syntax of the specifically defined formal language
L and logic, see Figure 2. The body of sentences representing the semantics of L
form a so called L-theory. A valid model according to the semantics is represented
by an L-structure satisfying all the sentences of the L-theory. Tellingly in model
theory an L-structure with this property is called a model of the L-theory.

Once we have derived a formal language from our metamodel, defined the
semantic constraints, and expressed the models in the new language, the prereq-
uisites for automated model checking are satisfied, see Figure 3.

3.3 Models as Graphs

When looking at diagrammatic models from a mathematical point of view it
is natural to interpret them as graphs. Models consist of objects and relations
between objects; graphs are defined as sets of vertices and edges i.e. ordered pairs
of vertices. A mapping of subtler concepts, namely object types and relationship
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Formal
Language L

Graph Structure
Colors & Labels

Metamodel

L-Structure
Colored &

labeled Graph

Model

Fig. 1. The analogy of concepts from metamodeling, graph theory and model theory.

L-Theory

Semantics of
Modeling Language

Model of
L-Theory

Valid Model

Fig. 2. The correspondence between the informal semantics of a modeling language
and the formal semantic constraints in model theory.

Formal Language &
Constraints

Model Checker

Model 1 Model 2 ... Model n

Fig. 3. The formal definition of the modeling language on the top layer and the formal
description of the models on the bottom layer allow the automatic check of the latter
one against the former one.
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types, can be achieved through the concepts of colored vertices for the former
ones or labeled edges for the latter ones.

Definition 1 (Graph). A directed graph consist of a set of vertices V and a
set of edges E ⊆ V × V .

To begin with this definition is sufficient. For more complex models with multiple
edges between vertices we need the concept of multigraphs.

Definition 2 (Multigraph). A directed multigraph consist of a set of vertices
V , a set of edges E and two functions s : E → V and t : E → V , where s assigns
a source vertex to an edge and t assigns a target vertex.

Definition 3 (Colored Graph). A colored graph is a graph with an additional
map p : V → P, P a set of colors, which assigns a color to each vertex.

Definition 4 (Labeled Graph). A labeled graph is a graph with an additional
map l : E → L,L a set of labels, which assigns a label to each edge.

Often authors use the terms vertex-labels and edge-labels instead of colors and
labels, but for emphasizing the difference between object types and relationship
types we prefer this terminology. The assigned color of a vertex symbolizes the
object type of the corresponding object in the model, the assigned label of an
edge the relationship type. Usually mathematicians consider graph colorings
where no adjacent vertices have the same color. This is a restriction we do not
follow.

3.4 Model Theory

Model theory is the study of mathematical structures from the viewpoint of
mathematical logic. On the one hand its aim is to define a formal language and
to describe a given structure with axioms. The axioms or sentences are written
in the well known syntax of logical expressions and represent the semantics of
the structure under study. On the other hand model theory aims at the study of
structures fulfilling these axioms, the so called models. Model theory is a powerful
tool for describing a multitude of mathematical structures such as rings, ordered
groups or graphs and to define their semantics. In general, model theory is not
confined to a specific type of logic. Nevertheless in the introduction and the
example below we restrict ourselves to first-order logic.

Definition 5 (Language L and L-Structure). A language L is a collection
of symbols, which are divided in three groups: function symbols denoted by f ,
relation symbols denoted by R and constant symbols denoted by c. Each function
symbol and each relation symbol has associated a number in N, which defines the
arity.

L = {fi, Rj , ck | i ∈ I, j ∈ J, k ∈ K}

An L-Structure M is a set M , called the universe of M, and the interpretations
of fi, Rj and ck in M:
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– An interpretation of a function symbol f is a function fM : Mn →M where
n is the arity of f .

– An interpretation of a relation symbol R is a subset RM ⊆ Mp where p is
the arity of R.

– An interpretation of a constant symbol c is an element cM ∈M .

The structure M is denoted by

M = {M,fMi , RM
j , cMk | i ∈ I, j ∈ J, k ∈ K}

Example 1 (Graphs). The language L for graphs contains only one symbol, a
binary relation C representing the edge or connection between two vertices.

L = {C}

Example 2 (Colored Graphs). The language L′ for colored graphs contains ad-
ditionally several unary relations Pi, the colors of the vertices.

L′ = {C,Pi | i ∈ I}

Remark 1 (Formulas, Sentences and Satisfaction). We forgo a precise definition
of the from mathematical logic well-known terms formula and sentence. The
interested reader can find them in [4]. Just recall that a formula is a construct
of the symbols of the language together with the logical operators =,∧,∨,¬,→
,↔,∀,∃, (, ) as well as infinitely many variable symbols following the well known
syntactical rules for logical expressions.
A sentence is a formula with no free variables, i.e. it is a formula with no variables
or it is of the form Q1x1...Qmxmφ(x1, ..., xn) with φ a quantifier-free formula,
Qi ∈ {∀,∃} and m = n.
If an L-Structure M satisfies a sentence φ we write

M |= φ.

Definition 6 (L-Theory, Model of an L-Theory). An L-Theory T is a set
of sentences of the language L. A Model of an L-Theory T is an L-Structure,
which satisfies all sentences of T .

Example 3. Consider the language L for graphs from Example 1. Then the the-
ory

T = {∀x∀y(C(x, y)→ C(y, x))}

has as models all undirected graphs.

For a detailed introduction into model theory see [4]
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4 Proof of Concept based on Entity-Relationship Models

A simplified version of the entity-relationship modeling language will serve as an
example for the definition of the language inherent semantics with the presented
approach. The simplified version under study comprises three concepts, namely
entity, relation and attribute, only one undirected relationship type to connect
any of the three types and does not admit multiple relationships between the
same two objects. This example shows the simplicity and expressiveness of the
presented approach.

4.1 The Language ER

First we define the language for this special case of colored graphs or the meta-
model of ER-models respectively:

ER = {C,E,R,A}

where C is the binary relation of connections between the objects, E is the color
or type of entities, R is the color or type of relations and A is the color or type of
attributes. Now we can define the sentences for our Theory T for the language
ER:
The first three sentences ensure that every object has exactly one type, that
the relation C is bidirectional (i.e. for every directed relation, also the inverse
direction is element of the relation subset) and that no element is connected to
itself.

∀x((E(x) ∨R(x) ∨A(x))∧
(¬(E(x) ∧R(x)) ∧ ¬(E(x) ∧A(x)) ∧ ¬(R(x) ∧A(x)))) (1)

∀x∀y(C(x, y)→ C(y, x)) (2)

∀x(¬C(x, x)) (3)

The following sentences are specific for ER-models:

∀x∀y((A(x) ∧ C(x, y))→ ¬A(y)) (4)

∀x∀y((E(x) ∧ C(x, y))→ ¬E(y)) (5)

∀x∀y((R(x) ∧ C(x, y))→ ¬R(y)) (6)

∀x∃y∃z(R(x)→ (E(y) ∧ E(z) ∧ C(x, y) ∧ C(x, z) ∧ ¬(y = z))) (7)

∀x∀y∀z((A(x) ∧ C(x, y) ∧ C(x, z))→ y = z) (8)

Sentences (4) - (6) ensure that no element is connected to an element of the
same type. Sentence (7) forces an element of type relation to have at least two
connections to objects of type entity. Sentence (8) ensures that attributes are
connected to only one other element.
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Fig. 4. A valid ER-model according to T

4.2 The Models

Example 4. The ER-Structure M1 for Figure 4 looks as follows (the elements
of CM1 should be read as unordered pairs) :

M1 = {M1, C
M1 , EM1 , RM1 , AM1} (9)

M1 = {Author, writes,Book,Name, T itle, ISBN} (10)

CM1 = {(Author,Name), (Author, writes), (writes,Book),

(Book, T itle), (Book, ISBN)} (11)

EM1 = {Author,Book} (12)

RM1 = {writes} (13)

AM1 = {Name, T itle, ISBN} (14)

The ER-StructureM1 is a Model for the ER-Theory T , it fulfills all the sentences
(1) - (8).

Fig. 5. A non valid ER-model according to T
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Example 5. The ER-Structure M2 for Figure 5 is a substructure of M1:

M2 = {M2, C
M2 , EM2 , RM2 , AM2} (15)

M2 = {writes,Book, T itle, ISBN} (16)

CM2 = {(writes,Book), (Book, T itle), (Book, ISBN)} (17)

EM2 = {Book} (18)

RM2 = {writes} (19)

AM2 = {Title, ISBN} (20)

The ER-Structure M2 is not a Model for the ER-Theory T , because sentence
(7), denoted by φ, does not hold for x = writes.

M2 2 φ

5 Conclusion and Future Work

In this paper we present the research goal of this PhD thesis - a formalism for
modeling methods based on mathematical concepts - and present first results
using model theory, a concept from logic. We show how a modeling language can
be formalized in the notion of a formal language L, how to enrich the language
with semantic constraints written in first order logic and how models are then
translated to so called L-structures, which can be checked against the constraints.

At the moment we are also working on the application of particular con-
cepts of model theory, i.e. sorted model theory and second order logic for the
axioms, on modeling language definitions and apply them to more complex mod-
eling methods like petri nets. With sorted model theory we can easily represent
multigraphs. Furthermore, we are examining a procedure for merging modeling
languages via the use of extensions and cartesian products of formal languages.

We will proceed with the literature review starting with literature on the
application of graph theory in computer science, e.g. attributed graphs, type
graphs, graph grammars and transformation [5–7, 18, 19, 21, 22, 26]. We expect
to thereby find techniques to supplement our formalism.

Afterwards we will start to examine possible formal structures to enrich the
semantics and achieve the necessary expressibility and conceptualization of mod-
eling methods [9, 11, 24, 25] and then proceed with the iteration steps of investi-
gating metamodeling concepts and components.

The main challenge in this research project is the balancing act of creating
a feasible formalism. Thalheim, referencing the commandments of Bowen and
Hinchey [3], asks: “Thou shalt formalise but not over-formalise.” [27] (p. 25) We
will strive to construct a formalism which is on the one hand powerful enough
to define the syntax and semantics of a modeling language as well as to provide
methods and algorithms like language merging, simulation and transformation
and which is on the other hand intuitive and convenient enough so that the
modeling method engineers can use it in a suitable way.
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