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In this paper consideration is given to the 𝑀/𝐺/1 FCFS system in which the service
time distribution is not fully known. There is an unknown “theoretical distribution” of the
actual service times. But those service times which are known, follow a different distribution,
obtained by adding theoretical services times with the error term drawn from a left-truncated
normal distribution. The goal is to derive bounds on the response time in the 𝑀/𝐺/1 FCFS
queue with the unknown “theoretical distribution” that are better than simply using the known
service time distribution. In [1] it is shown that in the case when theoretical service times
are multiplied by a log-normally distributed error the 𝑀/𝐺/1 LCFS queue with resampling
gives better upper bounds on the mean response time in the 𝑀/𝐺/1 FCFS queue with the
“theoretical distribution” of the service times. Here we present some numerical results, which
show that once the error becomes additive the result of [1] is not valid any more. In the
calculations it was assumed that the unknown “theoretical distribution” is left-truncated
Weibull. The new modification of the LCFS resampling policy is suggested, which leads to the
lower bounds for the unknown first and second moments of the response time in the 𝑀/𝐺/1
FCFS system with the “theoretical distribution” of the service times. Behaviour of mean
response times under other service policies is briefly discussed.
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1. Introduction

In this paper a step forward is made in the problem of analyzing the queues with the
inaccurate job size information. We understand the inaccurate job size information as
described in [2]. Assume that at a top-level some technical system (e.g. a data-intensive
execution engine) may be modelled by a 𝑀/𝐺/1 queue. Suppose a job arrives at the
system. Upon arrival its (future) service time, say 𝑆, is sampled from the known
distribution, say �̂�(𝑥), and the value of 𝑆 is used for scheduling the job. After the
job has received service, it turned out that its service time was 𝑆 ̸= 𝑆. The same
happens with the next job etc. It means that the (true) service time is sampled from
another distribution, say 𝐵(𝑥), which is unknown to the scheduler. Thus the system’s
performance characteristics based on �̂�(𝑥) are biased and may differ significantly from
those which are based on 𝐵(𝑥). The general question is: is it possible to tune the
mathematical model so as to reduce the bias? In [1] it is shown that such tuning
is possible in 𝑀/𝐺/1 Processor Sharing (PS) queue with 𝑆 = 𝑆 × 𝑋 with 𝑆 being
long-tailed, 𝑆 and 𝑋 being independent, 𝑋 having a log-normal distribution with with
parameters 0 and 𝜎. Under these conditions the mean response time in the 𝑀/𝐺/1
LCFS queue with resampling may be a good upper bound1 for the mean response
time in the 𝑀/𝐺/1 PS queue with service times drawn from 𝐵(𝑥). Since it is more
common in the mathematical models of various phenomena that an error term 𝑋 (usually
normally distributed) enters the model in the additive (not multiplicative) way, we
find it important to understand whether the results of [1] still hold in such case. The
main contribution of this paper is the observation (made from the series of numerical
experiments) that the results of [1] do not hold any more once the additive error (instead
of multiplicative) is assumed. The PS (and the preemptive LCFS) policy filters out the
additive error and thus the mean service time in the 𝑀/𝐺/1 PS queue based on �̂�(𝑥)
coincides with the mean service time based on 𝐵(𝑥). Yet for other policies (like FCFS,
LCFS, RANDOM) under which the mean sojourn time depends on higher moments of
the service time distribution (or its other characteristics) the situation is more complex.
And for such cases some meaningful results for the additive model can be gained by
developing the ideas from [1] (see sections 2 and 3 for the details). The end of this
section is devoted to the discussion of the additive model.

The major drawback of the additive model is that in its basic form i.e. when the
inaccurate job size 𝑆 is modelled by 𝑆 = 𝑆 + 𝑋, where 𝑆 and 𝑋 are independent, 𝑋 is
normally distributed with mean 𝜇 and standard deviation 𝜎, it is meaningless. Indeed,
the true service times 𝑆 are always positive and since 𝑋 is defined on the real line, 𝑆
may become negative, which never happens in practice. The most straightforward way
out is to assume truncated distributions for 𝑆 and 𝑋. The use of truncated distributions
for 𝑆 conforms the experimental data (see, for example, data for the actual service times
of Mapreduce jobs from Facebook in [3, 4]). But we are unaware of practical use-cases
of the truncated normal (or other) distribution for an additive error 𝑋 in the service
times (in the queueing-theory context). Thus we assume2 that the components of the
inaccurate job size 𝑆 are independent random variables 𝑆 > 𝑎 and 𝑋 > 𝑏, for some
constants 𝑎 > 0 and 𝑏 < 0, and 𝑆 = 𝑆+𝑋. We also assume that 𝑆 has the left-truncated
Weibull distribution with parameters 𝑘 and 𝛼 and its probability density 𝑝𝑆(𝑥) has the
form

𝑝𝑆(𝑥) =
𝑘

𝛼

(︁ 𝑥
𝛼

)︁𝑘−1
𝑒−( 𝑥

𝛼 )𝑘+( 𝑎
𝛼 )𝑘 , 𝑥 > 𝑎, 𝑘 > 0, 𝛼 > 0. (1)

1It is always good if 𝑆 is exponentially distributed.
2It is worth noticing here that, on the contrary, for the multiplicative model there are statistical
evidences from practice. See [2].
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The mean E𝑆 and the variance 𝑉 𝑎𝑟 𝑆 can be derived in a straightforward manner (for
the details one can refer, for example, to [5]). The probability density 𝑝𝑋(𝑥) of the
left-truncated normal distribution is

𝑝𝑋(𝑥) =

1
𝜎
𝜑
(︁

𝑥−𝜇
𝜎

)︁

1− Φ
(︁

𝑏−𝜇
𝜎

)︁ , 𝑥 > 𝑏, 𝜎 > 0, (2)

where 𝜑(𝑥) and Φ(𝑥) are the probability density and the cumulative function of the
standard normal distribution correspondingly. The closed-form expressions for the mean
E𝑋 and the variance 𝑉 𝑎𝑟𝑋 are well-known and are thus omitted.

Estimation of the unknown parameters 𝑎, 𝑏, 𝑘, 𝛼, 𝜇 and 𝜎 from the given trace may
not be trivial (or not possible at all). The constants 𝑎 and 𝑏, which enter the additive
model, make the situation more complicated. This is due to the fact that in practice
from the available data it is only possible to estimate the value of 𝑎 + 𝑏 (which is the
minimal value in the data set), but not the individual values of 𝑎 and 𝑏. Finally, in the
additive models it is commonly assumed that no systematic errors are present, which
means that E𝑆 = E(𝑆 + 𝑋) = E𝑆 i.e. E𝑋 ≡ 0. Thus the parameters 𝜇, 𝜎 and 𝑏 must
satisfy the equation

𝜇 + 𝜎
𝜑
(︁

𝑏−𝜇
𝜎

)︁

1− Φ
(︁

𝑏−𝜇
𝜎

)︁ = 0.

For example, for 𝑏 = −2, 𝜎 = 1 the value of 𝜇 is −0.0627. But it can be shown that this
equation may not have a solution at all (see remarks in the section 4).

2. Problem statement

Let us consider two queueing systems operating independently in parallel. The first
(denote it system I) is the 𝑀/𝐺/1 FCFS queue with the arrival rate 𝜆 and the service
times distributed as 𝑆 with the probability density (1). Denote the mean sojourn time
in this system by 𝑣𝑆 . The second (denote it system II) is the 𝑀/𝐺/1 FCFS queue with
the same arrival rate 𝜆 but with the service times distributed as 𝑆 = 𝑆 + 𝑋, where
the density of 𝑋 is given by (2) and the parameters 𝜇, 𝜎 and 𝑏 are such that E𝑋 = 0.
Denote the mean sojourn time in this system by 𝑣𝑆 . For any 𝜎 > 0 it holds that

E𝑆 = E𝑆 + E𝑋 = E𝑆, E𝑆2 = E𝑆2 + E𝑋2.

From the Pollaczek-Khintchine formula it follows that 𝑣𝑆 < 𝑣𝑆 for any value of 𝜆 such
that 0 < 𝜆 < (E𝑆)−1. One of the questions we are interested in is the following: is it
possible to tune the mathematical model of system II in such a way that it gives the
value of the mean sojourn time, say 𝑣*, satisfying 𝑣𝑆 < 𝑣* < 𝑣𝑆?

In [7–9] there was introduced the service policy — LCFS with resampling — which,
when applied to system II, may give such value of 𝑣*. But only if the error is multiplicative
and the service time distribution is long-tailed. With the additive error, as it is shown
by the numerical examples in the next section, this result does not hold any more3 . Yet
the LCFS policy with resampling may be useful for finding the lower bound for 𝑣𝑆 . If
we alter it in such a way that the resampling customer occupies a place in the queue
with a certain probability4 , say 𝜃, then by making the value of 𝜃 dependent on the
service time distribution �̂�(𝑥) (or only its moments), the mean sojourn time 𝑣*(𝜃) in
the 𝑀/𝐺/1 LCFS with 𝜃-resampling may provide a lower bound for 𝑣𝑆 . The numerical
examples in the next section give the first impressions about this effect.

3And we don’t have any suggestion for a modification which leads to an upper bound better than 𝑣
𝑆

.
4Note that if 𝜃 = 1 then 𝜃-resampling policy is the simple resampling policy.
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3. Some observations from the numerical experiments

Even though some analytic analysis of the interplay between 𝑣𝑆 , 𝑣𝑆 and 𝑣*(𝜃) is
possible under the assumptions made above, we will restrict ourselves here only to some
observations made from the numerical experiments.

Let us assume that the distributions of 𝑆 and 𝑋 (and thus 𝑆) are known and given
by (1) and (2). Then the numerical computation of 𝑣𝑆 , 𝑣𝑆 and 𝑣*(𝜃) is possible. We
consider the following three cases for the distribution of 𝑆: (i) 𝑆 has a constant hazard
rate, (ii) 𝑆 has a decreasing hazard rate, (iii) 𝑆 has an increasing hazard rate. The basic
data for the distributions of 𝑆 and 𝑋 are given in the Table 1. The only idea for picking
up such values was to keep the variance of 𝑋 comparable with the variance of 𝑆; in the
rest the values of the parameters were chosen arbitrarily5 .

Table 1
Basic data of the distributions of 𝑆, 𝑋 and 𝑆.

Case (i) Case (ii) Case (iii)
𝑋 𝑏 = −20.358, 𝜇 = −10, 𝜎 = 20

E𝑋 0
𝑉 𝑎𝑟𝑋 196.417

𝑆
𝑎 = 20.358

𝑘 = 1, 𝛼 = 10 𝑘 = 0.762, 𝛼 = 5 𝑘 = 1.263, 𝛼 = 15

hazard rate const. hazard rate ↓ hazard rate ↑
E𝑆 30.358 30.358 30.358

𝑉 𝑎𝑟𝑆 100 115.241 87.473
𝑆 hazard rate ↑ hazard rate ↑ ↓ hazard rate ↑
E𝑆 30.358 30.358 30.358

𝑉 𝑎𝑟𝑆 296.417 311.654 283.890

In the sub-figures of the Figure 1 one can see the values of 𝑣𝑆 , 𝑣𝑆 and 𝑣*(𝜃) as the
functions of the arrival rate 𝜆 for the FCFS policy. The uppermost sub-figure corresponds
to the case (i) in the Table 1; the midmost — to the case (ii), the bottommost — to the
case (iii). Since the stability condition6 for the 𝑀/𝐺/1 FCFS queue is 𝜆E𝑆 = 𝜆E𝑆 < 1,
then 𝜆 = (E𝑋)−1 = 0.033 is the asymptote of 𝑣𝑆 and 𝑣𝑆 . Each sub-figure contains
three graphs for 𝑣*(𝜃) corresponding to the following values of 𝜃: 𝜃1 = 1, 𝜃2 = 0.5,

𝜃3 = 1− 𝑒−𝜆
√

E𝑆2 .
The most important observation, which follows from the Figure 1, is the following.

Irrespective of the tail of the distribution of 𝑆, the simple resampling policy (the curve of
𝑣*(𝜃1)) does not provide better than 𝑣𝑆 estimate of 𝑣𝑆 across all possible values of the
load. This empirical fact is in the sharp contrast with the results for the multiplicative
model: as shown in [1, 6], with the multiplicative model if 𝑍 has a long-tail distribution,
the resampling policy may provide better than 𝑣𝑆 estimates for 𝑣𝑆 (even though both 𝑆
and 𝑋 are unknown!). Surprisingly, even though the simple resampling policy provides
a useless upper bound for the unknown mean sojourn time 𝑣𝑆 , it can be modified in
such a way that it provides the lower bound for the 𝑣𝑆 . This can be achieved by varying

5And 𝑎 = −𝑏 was chosen for simplicity.
6For the resampling queue the stability condition is different: 𝛽(𝜆) > 𝜃(1 + 𝜃)−1.
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the value of 𝜃. As can be seen from the Figure 1, the lower bound may be quite tight
and may hold across the whole (or at least meaningful) range of load.
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Figure 1. The values of 𝑣𝑆 and 𝑣𝑆 for the FCFS policy and 𝑣*(𝜃) for the
resampling policy versus the arrival rate. Here 𝜃1 = 1, 𝜃2 = 0.5 and

𝜃3 = 1 − 𝑒−𝜆
√

E𝑆2 . Uppermost figure — case (i), midmost figure — case (ii),
bottommost figure — case (iii).
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It is worth also mentioning that if we switch from the FCFS policy to the other
policy (like Shortest-Job-First or SRPT) under which the mean sojourn time depends
not only on E𝑆 but on some other characteristics of the service time distribution, the
situation becomes more complicated and requires a special, delicate treatment7 .

Coming back to the FCFS case, just for the illustrations purposes, let us briefly
consider one real-life scenario. Specifically let us estimate the values of the parameters
𝑎, 𝑏, 𝑘, 𝛼, 𝜇 and 𝜎 based on one of the workloads generated by the tool SWIM (see [10]),
which is said to be used (see [11, 12]) to test MapReduce systems. Specifically we
use the trace FB09-1 from Facebook8 , which contains a bunch of data on 6638 jobs.
Since we are interested in the job’s processing times only we used the methodology
from [3, Section 2.2] to combine the available data to obtain the processing times (further
denoted by 𝑡𝑖). The basic statistics for this trace are: the minimal processing time is
𝑡𝑚𝑖𝑛 = 1.3738 × 10−8, the sample mean processing time is 𝑡𝑎𝑣𝑔 ≈ 11.8, the sample
second moment is 𝑡𝑠𝑒𝑐.𝑚𝑜𝑚. ≈ 13574.8.

The direct way to obtain the values of 𝑎, 𝑏, 𝑘, 𝛼, 𝜇 and 𝜎 would be to equate the
first four theoretical moments E𝑆, E𝑆2, E𝑆3 and E𝑆4 to the sample moments and
solve the system under the natural constraints 𝑎 > 0, −𝑎 < 𝑏 < 0, 𝑘 > 0, 𝛼 > 0, 𝜇 < 0
and 𝜎 > 0. Since there are 6 unknowns, the other two equations are: 𝑎 + 𝑏 = 𝑡𝑚𝑖𝑛,
E𝑋 = 0. The problem is that this system may not have a solution and it is so with
the trace9 FB09-1. Thus in order to obtain some estimates we artificially limit the
number of unknowns. Firstly we fix the value of 𝑏 = −2 which immediately gives us
also the value of 𝑎 = 2 + 𝑡𝑚𝑖𝑛 = 2 + 1.3738 × 10−8. Next we fix the value of 𝜎 = 5
and from the equation E𝑋 = 0 we find the value of 𝜇 = −10.89427. Finally by solving
(numerically) the system of two equation E𝑆 = 𝑡𝑎𝑣𝑔, E𝑆2 = 𝑡𝑠𝑒𝑐.𝑚𝑜𝑚., we find the
values of 𝑘 ≈ 0.07639 and 𝛼 ≈ 8.1147477× 10−15. So the probability density functions
of the true service time 𝑆 and the error 𝑋 have the form:

𝑝𝑆(𝑥) = 262511.47𝑥−0.92361𝑒−11.92313 𝑥0.07639
, 𝑥 > 2.000000014,

𝑝𝑋(𝑥) =
𝜑(0.2𝑥 + 2.17895802)

5 (1− Φ(1.77895802))
, 𝑥 > −2.

Numerical computations show that for these 𝑆 and 𝑋 the picture is qualitatively the
same as in the Figure 1, case (ii).

Conclusion

The empirical observations show that in a case of inaccurate job size information,
when the error is additive the simple resampling policy (i.e. when 𝜃 = 1) does not lead
to better estimates of the unknown mean sojourn time 𝑣𝑆 . Yet there is a modification

of the simple resampling policy (for example, with 𝜃 = 𝜃3 = 1− 𝑒−𝜆
√

E𝑆2 ) which may
lead to quite tight lower bounds for the 𝑣𝑆 . The usefulness of this empirical fact can
be seen from the following example. According to the Figure 1 in the 𝑀/𝐺/1 FCFS
queue with the arrival rate 𝜆 and the service time 𝑆 = 𝑆 + 𝑋 (where 𝑆 and 𝑋 are
independent, given by (1) and (2); 𝑆 is the true service time, 𝑋 is the error) the true
sojourn time 𝑣𝑆 satisfies the inequality 𝑣*(𝜃3) < 𝑣𝑆 for all 0 < 𝜆 < (𝐸𝑆)−1. Thus

7It may happen, for example, that 𝑣
𝑆

< 𝑣𝑆 even though E𝑆 = E𝑆 and E𝑆2 > E𝑆2.
8The trace can be downloaded from https://raw.github.com/SWIMProjectUCB/SWIM/master/workloadSuite/
FB-2009_samples_24_times_1hr_1.tsv.
9Indeed, due to the given values of 𝑡𝑚𝑖𝑛 and 𝑡𝑎𝑣𝑔 the value 𝑏 ≈ 0 and for 𝜎 > 1 we have that
𝑏/𝜎 ≈ 0. Thus, by disregarding the term 𝑏/𝜎 and by introducing the new variable 𝑐 = 𝜇/𝜎, the
equation E𝑋 = 0 can be rewritten as 𝑐 + 𝜑(−𝑐)(1 − Φ(−𝑐))−1 = 0. It does not have a solution in
(−∞, 0).
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from the Pollaczek-Khintchine formula for 𝑣𝑆 we get the following lower bound for the
(unknown!) second moment of 𝑆:

E𝑆2 ≥ max

(︂
0,

2(1− 𝜆E𝑆)

𝜆
(𝑣*(𝜃3)−E𝑆)

)︂
.

Finding conditions when this bound is trivial as well as the proofs of the presented
empirical are yet to be done.
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