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Abstract
Clinical Practice Guidelines (CPGs) are documents devel-
oped in a systematic way that aim to improve the quality of
health care, reduce variations in medical practice, and reduce
health care costs. However, when concurrently apply them,
this can lead to adverse drug-drug interactions that can im-
pair the patient’s condition. Several efforts have been made
in order to provide systems capable of identifying these con-
flicts. However, the current approaches for this purpose have
some limitations. This paper presents a solution that rep-
resents CPGs as Computer-Interpretable Guidelines (CIGs)
and allows for the automatic drug conflict identification and
resolution. Also, we provide the identification of improve-
ments to include in a future model. Moreover, this system
provides clinical recommendations in an agenda, being capa-
ble of identifying drug interactions when drugs are prescribed
simultaneously and provide conflict-free alternatives.

1 Introduction
To improve the utilisation of clinical practice guidelines
(CPGs) at the point of care, there have been numerous efforts
to computerise CPGs in ontologies and incorporate them
within Clinical Decision Support Systems (CDSSs). There
are several guideline description languages such as Arden
Syntax (Samwald et al. 2012), Guideline Interchange For-
mat (GLIF) (Peleg et al. 2000), Asbru (Balser, Duelli, and
Reif 2002), EON (Musen et al. 1996), PROforma (Vier et al.
1997) and Guideline Acquisition, Representation and Exe-
cution (GLARE) (Bottrighi et al. 2006) that are aimed at
the representation of CPGs as computer-interpretable guide-
lines (CIGs) in order to provide computer-assisted tools that
help health care professionals make decisions. Through the
formalisation of CIGs in CDSSs, a new range of operations
can be performed with the knowledge they enclose. Such in-
cludes automated reasoning for the generation of recommen-
dations, automatic identification of conflicts between differ-
ent CIGs, consistency checking within the same CIG and
across different CIGs, and merging CIG knowledge with
contextual information such as patient and physician pref-
erences or available health care resources. So, the objective
of these approaches is to provide support to the processes of
diagnosis and planning of the clinical treatments, as well as
to promote the use of the best clinical practices.

However, these systems lack the flexibility to support
cases where multiple protocols need to be combined; this

is especially problematic for patients with multimorbidity.
Multimorbid patients have complex treatment plans and face
a high burden of the disease since they suffer from multi-
ple diseases at the same time. There are also several prob-
lems regarding the application of treatment plans of mul-
tiple disease-specific CPGs to multimorbid patients. Such
includes adverse drug events, increased treatment complex-
ity, and cost of treatment (Tinetti, Bogardus Jr, and Agostini
2004) (Boyd et al. 2005). Thus, the application of multiple
CPGs individually can result in complex multiple drug regi-
mens (polypharmacy) with the potential for harmful combi-
nations of drugs (Dumbreck et al. 2015).

Therefore, new needs arise in order to provide computer-
assisted tools that automatically identify the common poten-
tial conflicts or interactions that can happen when merging
CIGs, namely, those that happen when there are drug-drug
interactions.

The work described herein presents a system that auto-
matically identifies recommendation interactions, conflicts,
and alternatives using existing terminology services such as
the RxNorm API. Thus, the contributions featured in this
work are: characterisation of main approaches to handle the
combination of CIGs, especially for multimorbid patients
and a solution to address this problem.

The paper is organised as follows. Section 2 describes re-
lated work regarding systems for combining CPGs. Section
3 presents an architecture for combining CIGs as well as
the contributions for the deployment of CPGs in CDSSs. Fi-
nally, Section 5 presents the conclusions drawn so far with
the development of the system and future directions for the
work.

2 Existing Systems for Identification of
Conflicts Between Concurrently Executed

CPGs
When treating multimorbid patients, health care profession-
als need to retrieve clinical recommendations from multiple
chronic disease CPGs. From the combination of these rec-
ommendations, several problems can happen, for instance
when a drug, prescribed for one condition, has an adverse ef-
fect on another condition (Boyd et al. 2005). With the grow-
ing number of multimorbid patients, identification of these
inconsistencies becomes increasingly essential (Wilk et al.



2011). Computerised CDSSs have been used to alert health
care professionals to adverse drug events at the point of
care (De Clercq, Kaiser, and Hasman 2008). In this section,
we will provide a literature review of the existing CDSSs
for identification of conflicts between concurrently executed
CIGs.

2.1 Constraint Logic Programming
Wilk et al. propose an approach that combines logic pro-
gramming with constraint satisfaction problems (Wilk et al.
2011). They use CIGs as an activity graph and use constraint
logic programming to identify and mitigate possible adverse
interactions between CIGs, it means, to identify conflicts
associated with potentially contradictory and adverse ac-
tivities resulting from applying two CPGs to the same pa-
tient. Although this approach provides automatic identifica-
tion of conflicts and solutions, it depends on the availability
of knowledge bases containing information about both dis-
eases and the whole work of combining CIGs remains man-
ual. So, in order to provide automatic identification conflicts
and solutions need to be defined in a medical background
knowledge as protocol-dependent rules/constraints.

2.2 Rule-based Combinations
The RBC approach provides identification and reconcilia-
tion of drug conflicts between recommendations of two con-
currently executed CPGs (López-Vallverdú, Riaño, and Col-
lado 2013). They use a standard terminology called ATC
(Anatomical Therapeutic Chemical Classification System
for drugs) in order to provide as output, a final treatment plan
without interaction, i.e., a set of ATC-codes of medicines
that should be prescribed.

For the identification of all possible drug conflicts that
can occur when combining two specific CPGs, they use the
knowledge from health care professionals and knowledge
engineers in order to manually build knowledge units for the
pairwise combination of three diseases: hypertension, dia-
betes mellitus and heart failure. These knowledge units rely
on the existence of drug-drug interactions, the presence of
a drug which is adverse to a specific disease (drug-disease
interaction) and the absence of a necessary drug for a com-
bination of diseases.

Although this approach can only combine pairs of CPGs,
a final treatment plan based on two CPGs could again be
combined in a pairwise manner with a new CPG.

2.3 OntoMorph
The objective of the OntoMorph (Jafarpour 2013) approach
is to propose a treatment plan, consisting of several tasks,
that do not conflict and that are time and resource effi-
cient. Jafarpour et al. (Jafarpour and Abidi 2013) used on-
tologies to develop systems to merge two concurrent CPGs
into a comorbid personalised guideline. They extracted clin-
ical tasks from the CPGs and converted them to CIGs with
an OWL-based CPG ontology. An ontology is a method-
ology for CPG representation. It consists of rules to repre-
sent declarative knowledge (medical statements and propo-
sitions) and procedural knowledge (workflow structures and

actions). OWL is a W3C standard for web ontologies, for
which CPG concepts are converted to RDF triplets and XML
file (Jafarpour and Abidi 2013). This model defines four
types of constraints for concurrent execution of tasks from
multiple guidelines: workflow constraints, operational con-
straints, temporal constraints and medical constraints.

Workflow constraints are rules that specify whether tasks
should be combined with, substituted by, executed simul-
taneously with or executed before or after a task from an-
other guideline. Operational constraints refer to limitations
for combining tasks at a specific medical Institute; temporal
constraints specify the time required between the first and
second task of two guidelines. Medical constraints are di-
vided in Task Substitutes (a substitute for a task of protocol
A that does not conflict with a task of protocol B) and use
results constraints ( a rule that specifies expiry date of task
results).

They also built a merging representation ontology to cap-
ture merging criteria in order to achieve the combination of
CIGs. Semantic Web Rule Language (SWRL) rules were
used to identify potential conflicts during the merging pro-
cess. All conditions related to the merging process need to be
described by the rules, increasing the effort to maintain the
system up-to-date, and reducing the possibility of sharing
knowledge. However, some related problems were not yet
(completely) addressed in their work, for instance, potential
contradictions between rules, the scalability of the merging
model to combine several CIGs, and how the ontology/rules
are maintained up-to-date.

2.4 Transition-based Medical Recommendations
Model

The TMR4I model has been developed for the automatic in-
ference of interactions between recommendations (Zambor-
lini et al. 2016). Its scope is currently limited to conflicts be-
tween CPG statements on drug prescription, but it could be
used for non-pharmacological treatment recommendations
as well.

This model defines meta-rules for identification and
reconciliation of three categories of drug conflicts using
SPARQL queries (SPARQL is a W3C-standard for semantic
queries). The meta-rules define how a conflict is identified,
and how drugs with similar effects but without conflicts can
be selected from CPG-knowledge. The categories of con-
flicts within CPGs are repetition interactions, contradiction
interactions and alternative interactions.

A web-tool for execution of guidelines was developed. In
this tool, clinicians firstly enter all guideline recommenda-
tions applicable to a patient. The execution engine creates a
new, merged guideline with all recommendations. With the
SPARQL meta-rules, interactions are identified and classi-
fied. Then, the engine consults the alternative recommenda-
tions, in order to choose solutions for the conflicts. Finally,
a list of conflicts and recommended solutions is presented to
the clinician.



3 Architecture to Automatically Identify
Drug Interactions and Conflicts

There are some limitations regarding the systems aforemen-
tioned which should be taken into account. These limitations
regard with the necessity of manually defining all guideline-
dependent rules, limitations in the number of CIGs that can
be combined and necessity of all conflicts and solutions to
be available in a knowledge base.

Thus, the present work not only aims to provide recom-
mendations to support medical decision-making but also to
represent automatically the conflicts and interactions that
can happen when merging CPGs. To accomplish the goal
mentioned above, as shown in Figure 1, we provide a solu-
tion in three levels: representation of CPGs in CIGs, iden-
tification of recommendation interactions and provision of
recommendation alternatives in case that some recommen-
dations, when applied together, are adverse. The following
sections provide an explanation of the architecture in the dif-
ferent stages regarding the different level mentioned before.

Figure 1: Architecture of CompGuide system

3.1 Representation of CPGs in CIGs
The work described herein uses the CompGuide ontology
to represent CPGs in the form of a task network. The
CompGuide ontology (Oliveira, Novais, and Neves 2013)
contains different types of clinical tasks such as Question,
Action, Decision, End, Plan and Condition and constraints

expressed in the form of conditions on the patients state,
such as TriggerConditions, PreConditions and Outcomes.
Moreover, it provides a model of temporal representation
(Oliveira et al. 2017) that aims to represent the temporal
constraints placed on clinical tasks. This model represents
temporal constructors on the execution of tasks such as Du-
rations, Repetitions, Periodicities, Waiting Times and Rep-
etition Conditions and temporal constraints about the state
of a patient. To acquire and represent CPGs we use the
CompGuide plugin which provides information step-by-step
on how to fill the data for the guideline entries (Gonçalves
et al. 2017). This plugin performs the role of managing the
creation and editing of CIGs.

The final output will be a CIG that will be saved in
the Guideline Repository. This component is responsible
for keeping different CIGs represented according to the
CompGuide ontology. The Guideline Handler is responsi-
ble for managing the access to recommendations of CIGs
in the Guideline Repository, providing the clinical tasks and
constraints placed on the tasks to the Guideline Execution
Engine.

3.2 Identification of Recommendation
Interactions

The Guideline Execution Engine with the information of
the clinical tasks provided by the Guideline Handler inter-
prets all the scheduling constraints on the tasks and produces
enactment times. The applications implemented to interact
with the health care professionals are then responsible for
verifying starting and ending times of the tasks.

This component is also responsible for calling the
RxNorm service in order to identify the interactions and
recommendation conflicts. RxNorm (Liu et al. 2005) in-
tegrates the Unified Medical Language System and offers
normalised names for clinical drugs and links its names to
many of the drug vocabularies commonly used in pharmacy
management and drug interaction software, including those
of First Databank, Micromedex, MediSpan, Gold Standard
Drug Database, and Multum. The RxNorm interaction API
uses two sources for its interaction information - ONCHigh
and DrugBank. The RxNorm interaction API provides in-
formation such as source name, severity and description of
the interaction. Thus, the Guideline Execution Engine pro-
cesses all the clinical tasks that are being executed, retrieves
all drugs and for each pair of drugs calls the RxNorm In-
teraction API to obtain the severity and description of the
interaction.

3.3 Determine Alternative Recommendations
With the severity of recommendation interactions, it is pos-
sible to determine the necessity of providing alternative rec-
ommendations. The severity can assume values such as high
if there is an adverse drug event resulting from the inter-
action, and N/A, if there is no adverse effect. In case the
interaction between drugs assumes as value high we call
RxNorm RxClass API. This service provides alternative rec-
ommendations by offering ways to get similar classes of
drug members. This service provides information such as



similarity scoring (a score that determines the similarity be-
tween drugs), the drug name, the source of the drug relations
and the relationship of the drug class to its members.

After processing the constraints of clinical tasks, deter-
mining the interactions between drugs and their alternatives,
the clinical recommendations are made available through the
Personal Assistant Web App and the health care assistant
Mobile App.

The Personal Assistant Web Application access the data
through the web services available in the CompGuide sys-
tem (Silva et al. 2017). This component was developed as a
web application following the Model-View-Control (MVC)
paradigm using Java Server Faces (JSF). The Health care
assistant Mobile Application is an android application de-
veloped in Java, which also uses the same web services.

4 Execution Example
This section describes how CompGuide processes the inter-
actions between drugs given a case test example. For this
purpose, we used two CIGs based on the NCCN Clinical
Practice Guideline for Prostate Cancer (Mohler et al. 2018)
and the IDF Clinical Practice Recommendations for manag-
ing Type 2 Diabetes (Aschner 2017). These guidelines were
a comprehensive case study since it was possible to test sev-
eral aspects of the deployment of CIGs, namely those that
concern with CIG representation, acquisition and execution
in the CompGuide system. So, it is possible to examine all
the stages of the deployment of CIGs, representing several
types of tasks, various temporal constraints and several con-
flicts among the guidelines. However, in this section, we
only address the conflicts between recommendations from
many guidelines.

For demonstrations purposes, we will consider two rec-
ommendations from the mentioned guidelines. The first one,
named recommendation A belongs to the guideline for man-
aging Type 2 Diabetes: ”Apply insulin 0.2 units/kg and
titrate once weekly at one unit each time during six months
to achieve a target fasting blood glucose between 3.9 and
7.2 mmol/L (70 and 130 mg/dL)”. The second recommen-
dation, named recommendation B belongs to the guideline
for prostate cancer: ”Apply goserelin, leuprolide, histrelin
180 mg/m2 or Triptorelin 100mg/m2 as part of Androgen
Deprivation Therapy”.

The recommendation A has the action apply insulin, a pe-
riodicity value of 1 with a temporal unit of week, a duration
value of six, and the respective temporal unit of month. In
this case, starting on the 18th of July of 2018 the system will
create one event for each week with a duration of one day,
during 6 months. The expected conclusion of this task will
be on the 18th of January of 2019. As for recommendation B,
the action to apply goserelin, leuprolide, histrelin or triptore-
lin can be identified, with a duration value of 1 and temporal
unit of day, starting and finishing on the 18th of July of 2018.

In this case, the two recommendations are concurrently
being applied in 18th of July of 2018 and have drug con-
flicts, namely the drugs goserelin, leuprolide, histrelin and
triptorelin have adverse effects on the therapeutic efficacy of
insulin. The Figure 2 shows the output regarding these con-
flicts.

Figure 2: Recommendation interactions between recom-
mendations A and B in the CompGuide Personal Assistant
Web Application.

Later, the application tries to provide alternative drugs to
address the identified conflicts, by calling RxNorm API as
described in section 3.3. Through a mitigation function, the
system calculates which one will be applied. This function
has different mitigation principles, such as the similarity be-
tween drugs or user preferences. The objective is to deter-
mine which alternatives best fit the needs of users. One pos-
sible principle, which possibly will increase the effective-
ness of this function, is a multiple criteria mechanism for
supporting decision-making such as Multiple-criteria Deci-
sion Analysis (MCDA) (Thokala et al. 2016). This method
allow to evaluate possible solutions based on conflicting cri-
teria in decision problems. There are complex drug interac-
tions that can impair the patient’s condition as well as several
solutions with conflicting objectives. Thus, it is essential to
evaluate the possible solutions according to criteria such as
user preferences in the best treatment alternative, benefit/risk
assessment of different decision alternatives, the similarity
between different drugs, the severity of disease for which
recommendations are advised, among others. However, in
this case study we only use the similarity between drugs
as the mitigation principle. This function is responsible for
finding the conflicts between drugs. For each conflict this
function finds alternative drugs by calling the RxNorm API,
according to section 3.3. Later, it calculates the high similar-
ity score provided by RxNorm API for the set of alternatives
drugs. For each alternative with the higher score, it tries to
find if a drug conflict exists. If there is a conflict, the algo-
rithm finds the next alternative with the higher score, if there
is no conflict, it stores the alternative in the database and dis-
plays the alternative drug. Based on the given case example,
the reproduced recommendation alternatives are shown in
Figure 3.

In the work described herein, we provide a system that
automatically identifies conflicts and interactions between
drugs for many guidelines. Comparing with OntoMorph,



Figure 3: Recommendation alternatives for the given case
example in the CompGuide Personal Assistant Web Appli-
cation.

CLP and RBC, where conflicts are defined as constraints
in the knowledge base having to be manually specified,
CompGuide uses existing terminology services that aggre-
gate different drug sources such as ONCHigh and Drug-
Bank. Thus, through the reuse and integration of existing ter-
minology services such as RxNorm, it is possible to identify
conflicts and interactions automatically, without the need
to manually define them in the knowledge base. So, using
existing terminology services is one of the possible solu-
tions for the limitation mentioned above. Other solution in
regard to the usage of meta-rules, such used by the TM4I
model. Meta-rules can be reused since they can be applied
to many CIGs, and conflicts do not need to be manually
identified for each guideline, because they can be automat-
ically derived from the guideline representation. However,
the bottleneck will be in converting guidelines to computer-
interpretable rules. Besides, these systems do not consider
aspects such as decision-making. In most cases, there are
several alternatives that can lead to conflicting objectives by
the decision makers. In other cases, it is necessary to de-
cide which recommendation we want to choose, or which
recommendation, in the case at hand, is less adverse. For
this specific case, an MCDA approach can be a possible so-
lution, since it allows the evaluation of possible solutions
based on conflicting criteria. In the given example we use a
mitigation function to determine which alternatives best fit
the needs of users, by using as a mitigation principle, the
similarity between drugs. One possible principle is a multi-
ple criteria mechanism for supporting decision making such
as Multiple-criteria Decision Analysis (MCDA) (Thokala et
al. 2016). Since there may be complex interactions yield-
ing multiple solutions with conflicting objectives, it is use-
ful to score these solutions according to criteria spawning
from sources as diverse as patient preferences, the severity
of disease for which recommendations are advised, bene-
fit/risk analysis, and so forth.

5 Conclusions and Future Work
There are several efforts in order to provide systems capable
of determining drug-drug interactions and conflicts among
guidelines. However, some of the studied systems are un-
able to detect the conflicts for combinations of protocols
automatically. Other approaches cannot propose alternative
measures that would resolve the conflicts. Other CIG mod-
els require all the possible conflicts and their solutions to be
available in a knowledge base. Moreover, they cannot lead
with cases where decision makers have conflicting solutions
or cannot decide on the best treatment alternatives.

Although we currently do not provide an MCDA ap-
proach, it is our intention to implement a multiple criteria
decision-making approach for not only assessing the benefit-
risk of applying the recommendations but also getting pa-
tient preferences on best treatment alternatives since some
treatment plans can have harmful effects on the patients
health . This allows to evaluate all possible solutions and to
specify different criteria to solve conflicts with medical rec-
ommendations, beyond the simple comparison of drug inter-
actions. Also, we intend to make a proper assessment of the
fitness of the system for CIG deployment, by performing a
study involving physicians interacting with the system.
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