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Abstract. It is widely accepted that most natural language terms do
not have precise universally agreed definitions that fix their meanings.
Instead, humans use terms in a variety of ways that adapt to different
contexts and points of view.
In this paper we present a framework based on Supervaluation Semantics
for interpreting languages in the presence of semantic variability. This
work builds on supervaluationist accounts, which explain linguistic inde-
terminacy in terms of a collection of possible precise interpretations of
the terms of the language. We extend the basic supervaluation seman-
tics by adding the notion of standpoint. A multi-modal logical language
for describing standpoints is presented. The language includes a modal
operator �s for each standpoint s, such that �s φ means that proposi-
tion φ is unequivocally true according to standpoint s — i.e. φ is true
at all precisifications compatible with s. We show how it can be used to
represent logical properties and connections between alternative ways of
describing a domain and different accounts of the semantics of terms.

Keywords: Supervaluation Semantics ·Modal logics ·Vagueness ·Multi-
modal logics.

1 Introduction

It is widely accepted that most natural language terms do not have precise
universally agreed definitions that fix their meanings. Even when conversation
participants share the same vocabulary and agree on taxonomic relationships
(such as subsumption and mutual exclusivity, which might be encoded in an
ontology), they may differ greatly in the specific semantics they give to the
terms in a particular situation. Moreover, except for certain technical terms,
individuals do not hold permanent and precise interpretations of the meaning of
terms [10].

This phenomenon has been approached in many ways within a highly in-
terdisciplinary area of research, from philosophy to linguistics, cognitive science
and artificial intelligence. Philosophical interest on this issue dates well back
to Ancient Greek philosophy [3, 4] and has often been studied as vagueness in
natural language. One traditional view is that imprecision of terms presents an



obstruction to good philosophy [12], which should be circumvented by establish-
ing precise definitions. But views of human language becoming prominent in the
20th century (e.g. [14, 24]) have tended to accept semantic heterogeneity as a
fundamental feature of human communication1 that improves the adaptability
of terms to diverse contexts. Numerous logical theories of vagueness have been
proposed to model different aspects of it. To date, the most popular approaches
are based on many-valued logics [23], supervaluation semantics [11] and mainly
fuzzy logic [26, 25]. Fuzzy logic works by assigning degrees of truth to statements
rather than making truth valuation a binary choice. As a result, this approach
provides a reasonably intuitive model of sorites vagueness. However, fuzzy sets
do not fully characterise the different precise overlapping meanings that a term
can adopt, which can be sharp but diverse and relevant in different contexts,
and fails to incorporate penumbral connections [17] among them.

The current research is mainly concerned with the problem of reasoning
within a scenario of semantic heterogeneity. Instead of aiming at representing
the full variation of certain natural language terms (e.g. via a fuzzy set), we fo-
cus on providing a means to model scenarios in which certain interpretations or
standpoints coexist and investigate reasoning within such settings. In this way,
our framework can be seen as complementary rather than rival to others.

Furthermore, ontology matching techniques are mainly conceived to ‘solve’
heterogeneous situations instead of ‘representing’ them. Our intention is to sup-
plement the existing work on the topic of conceptual indeterminacy by provid-
ing explicit support for semantic variation within the representation framework.
Nevertheless, as discussed in the future work section of our paper, we consider
that ontology matching techniques could have a huge potential to populate su-
pervaluated ontologies as well as to guide both logic and heuristic reasoning
within them.

The rest of the paper is organised as follows. It first presents a motivation
example in chapter 2. We then introduce the supervaluationist account vague-
ness in chapter 3, overview the core ideas of standpoint semantics in chapter 4
and give a formal specification of the standpoint logic in chapter 5. Following
this, we illustrate the expressive capabilities of the logic (chapter 6) and discuss
its application to combining ontologies (chapter 7). We revisit the use case in
chapter 8 and conclude with some final remarks and indication of future work.

2 A Motivating Example

How much forest is there in the world? is a surprisingly difficult question to an-
swer [1]. A broad range of forest concepts and definitions [19] have been specified
for different purposes, leading to discrepancies of estimates due to the different
conceptual and methodological approaches [13]. This has been recognised to be
one of the key challenges [7] preventing the use of the more and more datasets
(e.g. [15]) and portals (e.g. Global Forest Watch) that have emerged for enabling

1 Some research suggests that it may enable more efficient communication [27, 21].



the tracking, comparing and understanding of the available information on land
use-cover and global forest extent.

We consider the situation of a decision maker needing to understand a com-
plex scenario in which data and conceptual models coming from different con-
texts need to be critically analysed. We consider five examples of inferences
relevant to the aspects in which the diversity of forest definitions has been re-
ported to pose challenges for the acquisition of global knowledge [7]. For the
current purpose we set the use case of a stakeholder using one of the portals
(e.g. GFW) and the proposed framework to reason about the following queries:

Q1. Is area a consistently a forest for all reasonable forest interpretations or is
it only arguably a forest? What discrepancies are there?

Q2. Area a has been degraded from the status of original ‘intact forest’ and its
status is now contested. How is it described according to other views?

Q3. Are there inconsistencies among the data or only different data classifica-
tions? E.g. Are there areas reported to satisfy some criteria that is incon-
sistent with the way they are classified by others?

Q4. What can we say about area a that is differently classified under different
interpretations of terminology?

The scenario is not dynamic or informal. On the contrary, the agents that set
their standpoints are institutions and/or scientific communities that produce and
distribute data relevant to specific contexts. E.g. An area in Iran may have been
considered a forest by a national agency while according to a global definition it
may not be. We shall return to this example towards the end of the paper, once
we have presented our logic of standpoints, and consider how our representation
can be used to express the requirements of these queries.

3 Supervaluation Semantics

In supervaluationist accounts of linguistic indeterminacy the meanings of vague
terms are explained in terms of a collection (a set or some more structured
ensemble) of possible precise interpretations (often called precisifications). An
early proposal that vagueness can be analysed in terms of multiple precise senses
was made by Mehlberg [20] and a formal model based on a multiplicity of classical
interpretations was applied to the analysis of vagueness by Fine [11]. A similar
approach was proposed by [16], which has been influential among linguists.

Apart from providing a general framework for specifying a semantics of
vagueness, the supervaluationist idea is also attractive in that it can account
for penumbral connection [11], which many believe to be an essential ingredient
of an adequate theory of vagueness. This is the phenomenon whereby logical
laws (such as the principle of non-contradiction) and semantic constraints (such
as mutual exclusiveness of two properties – e.g. ‘. . . is red’ and ‘. . . is orange’)
are maintained even for statements involving vague concepts. The solution, in a
nutshell, being that, even though words may have multiple different interpreta-
tions, each admissible precisification of a language makes precise all vocabulary



in a way that ensures mutual coherence of the interpretation of distinct but
semantically related terms.

Moreover, such frameworks offer a natural treatment of what we call concep-
tual vagueness2, which arises when there is a lack of clarity on which attributes
or conditions are essential to the meaning of a given term, so that it is controver-
sial how it should be defined. This kind of conceptual indeterminacy underlies
the controversy about whether to define forest in terms of land cover or land
use, and this case is a good illustration of the overlapping of the applicability
of the two interpretations, since the use to which land can be put depends to a
large extent on the material and ecological properties of its land cover.

4 The Logic of Standpoints

We now overview the ideas of standpoint semantics, which is essentially an elab-
oration of supervaluation semantics introduced in [6]. However, whereas that
paper is concerned with anchoring precisifications (and hence standpoints) to
objective properties of the world, this work is mainly aimed at modelling and
reasoning with different partial interpretations of the language (i.e. different
standpoints).

A precisification in standpoint semantics is identified with a precise inter-
pretation of the language, such that for any state of the world there is a unique
extension for every predicate. This notion differs from Fine’s terminology, where
a precisification need not be completely precise, but leave certain propositions
indeterminate. Fine’s precisifications form a partial order where p2 is more pre-
cise than p1 if all propositions with a definite truth value in p1 have the same
truth value in p2 but some propositions that are indeterminate in p1 have a
determinate truth value in p2.

The standpoint semantics [6] uses an almost equivalent but conceptually sim-
pler model in which a partially determinate interpretation is called a standpoint
and is modelled by the set of all (fully determinate) precisifications that are con-
sistent with the (partially determinate) standpoint. Since they are modelled as
sets, standpoints form a lattice under the subset relation; and, when one stand-
point is a subset of another, we may also regard it as more precise, since it rules
out certain interpretations of the language.

Standpoints are collections of precisifications. They are typically organised
by constraints (axioms and threshold limitations) that pick out a corresponding
set of admissible precisifications that satisfy these constraints. For example, a
standpoint might be constrained by the definition E1, but the value of the
threshold t tall might not be fixed although constrained to lie between certain
values E2.

E1. ∀x[Tall(x) ↔ height(x) > t tall]

2 The distinction between sorites vagueness (the applicability of a predicate depends
on measurable parameters but their thresholds are undetermined) and conceptual
vagueness is introduced in [6].



E2. t tall > 175cm ∧ t tall < 185cm

Such values may not be explicitly given, since they could be inferred from asser-
tions associated with the standpoint. For instance, if a person of height 175cm
is asserted not to be tall, the threshold for tallness must be greater than 175cm.

5 The Formal Language Standpoint Logic (SL)

The formalism that we present here goes significantly beyond [6] in explicitly
representing standpoints within the logic of the object language by means of
modal operators (previously standpoints were handled by auxiliary semantic
apparatus).

Standpoint logic is a multimodal logic with partially ordered modalities.
Standpoints are modelled as a set of modal operators: If s is a standpoint and

�s φ then φ is the case for all precisifications which are compatible with the
standpoint s. The partial ordering encodes the subset relation which may hold
between two standpoints s and s′.

5.1 Syntax

Our formal language LS is an extension of classical first-order calculus including
numerical symbols and comparison relations (= and <) as well as the usual
boolean operators and quantifiers.

Vocabulary. The non-logical symbols of the language are specified by a vocab-
ulary, which is a tuple of the form:

V = 〈N ,X ,R,F〉 ,

where N is a set of nominal constants, X is a set of nominal variables, R =
(R1,∪ . . .∪Rn ∪ . . .) is the set of predicate/relation symbols, whose subsets Rn

are the sets of n-ary predicate symbols and F = (F1,∪ . . . ∪ Fn ∪ . . .) is the set
of function symbols, subsets Fn being the sets of n-ary function symbols.

Terms. The language has two types of terms: one type refer to individual entities
and the other refer to numerical magnitudes:

– Tn = N ∪ X is the set of nominal terms of the language.
– Tm = TD ∪ {f(τ1, . . . , τn) | f ∈ Fn ∧ τ1, . . . τn ∈ Tn} is the set of magnitude

terms.

The set Tm includes the set TD of decimal numerals, as well as terms formed
by applying function symbols to nominal terms, which give the value of some
scalar property of an entity (e.g. height) or tuple of entities (e.g. the distance
between two entities).



Atomic Propositions. The language has the following forms of atomic propo-
sition:

– R(τ1, . . . τn), where τ1, . . . τn ∈ Tn,
– τ1 = τ2, where τ1, . . . τ2 ∈ (Tn ∪ Tm),
– τ1 ≤ τ2, where τ1, . . . τ2 ∈ Tm

R(τ1, . . . τn) asserts that relation R holds of the nominal terms τ1, . . . τn
(which are named entities and/or quantified variables) and τ1 = τ2 is the usual
equality relation, that can hold either between named entities and/or variables.

Complex Propositions. For any φ, ψ ∈ LS , and x ∈ X the following complex
propositions are also in LS :

– ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), (φ ↔ ψ), ∀x[φ], ∃x[φ] — the standard boolean
operators and first-order quantifiers,

– �s φ meaning φ is true in standpoint s, i.e. in all precisifications compatible
with standpoint s.

– �∗ φ — meaning φ is true in all precisifications. �∗ φ is a special case of �s φ
where ∗ is the standpoint containing the set containing all precisifications.

LS is the smallest set containing all atomic propositions and all complex
propositions formed by these constructions.

We can easily define other useful operators such as ♦s φ ≡def ¬�s ¬φ, i.e.
according to standpoint s φ may be considered true; Is φ ≡def (♦s φ ∧ ♦s ¬φ),
i.e. the truth of φ is indeterminate with respect to standpoint s, or Ds φ ≡def

(�s φ ∨ �s ¬φ), i.e. according to standpoint s φ has a determinate truth value.

5.2 Semantics

A standpoint semantics interpretation structure is a tuple

S = 〈P,D,V,S, σ, δ, ρ〉 ,

where:

– P is the set of precisifications,
– D is a non-empty set, the domain of individuals,
– V = 〈N ,X ,R,F〉 is a vocabulary,
– S is the set of standpoint symbols.
– σ : S → (2P /∅) is a function mapping each standpoint symbol to a non-

empty set of precisifications,
– δ = δn ∪ δm, where δn : Tn → D maps each nominal term to an element of

the domain of individuals and δm : Tm → Q maps each magnitude term to
a real number.

– ρ = (ρ1 ∪ . . . ∪ ρn . . .), where ρn : Rn × P ×Dn → {t, f}. So ρ maps, each
n-ary predicate, precisification and n-tuple of individuals to a truth value.



With respect to the interpretation structure, formulae are interpreted as
follows:

– [[r(τ1, . . . τn)]]pS = ρ(r, p, 〈δ(τ1), . . . δ(τn〉)),
– [[(τ1 = τ2)]]pS = t if δ(τ1) = δ(τ2), else = f ,
– [[(τ1 ≤ τ2)]]pS = t if δ(τ1) ≤ δ(τ2), else = f ,
– [[¬φ]]pS = t if [[φ]]pS = f , else = f ,
– [[φ ∧ ψ]]pS = t if [[φ]]pS = t and [[ψ]]pS = t, else = f ,
– [[∀x[φ]]]pS = t if ( [[φ]]pwS′ = t, for every interpretation structure

S′ = 〈P,D,V,S, σ, δ′, ρ〉, such that δ′ is identical to δ, except that δ′(x) may
have a different value from δ(x) ), else = f ,

– [[�s φ]]pS = t if [[φ]]p
′w = t for all p′ ∈ σ(s), else = f . Note that this

includes the case there s = ∗.

5.3 Proof Theory

We now give a set of axioms for the logic, which capture significant aspects of the
semantics. We believe all our axioms are sound with respect to the semantics,
but we do not claim they are complete. Establishing a proof system that we can
prove sound and complete is the subject of ongoing work.

Being built upon an underlying classical logic we have that φ is a theorem of
Ls if it is an axiom of first-order logic (where we treat all modal sub-formulae
as atomic propositions).

Modal Axioms. In the following axioms hold for any of the operators �si and
the special case �∗.

AN �s φ for any theorem φ
AK. �s(φ → ψ) → (�s φ → �s ψ)
AT. �∗ φ → φ
AD. �s φ → ♦s φ
A4. �s φ → �s �s φ

A5. ♦s φ → �s ♦s φ

A1. �s φ → �s′ φ for (s′ � s) 3

A2. �s φ ↔ �∗�s φ

A3. �∗ φ → �s φ

Thus, the �∗ operators is an S5 modality, whereas the rest of �s operators
satisfy the axioms of the modal logic KD45.

Axiom A1 can also be expressed in the form ♦s′ φ → ♦s φ for (s′ � s) and
it captures the partial order between standpoints, by ensuring that any proposi-
tion considered definite in a given standpoint, is also considered definite in any
sharper standpoint. A3 is easily derivable from A1. A2 captures the property of
the semantics whereby once we apply a standpoint operator to a propositional
formula, we will get a proposition that is either true at all precisifications or
false at all precisifications. This is like in the well-known modal logic S5, where

�φ → ��φ and ♦φ → �♦φ. By combining A2 and A3, we get:

T1. �s′ �s φ ↔ �s φ
3 s′ � s asserts that s′ is at least as sharp as s i.e. σ(s1) ⊆ σ(s2); every proposition

that is unequivocally true in s is also true in s′.



Quantifier Axioms. The universal quantifier satisfies its classical axioms,
which are covered by axiom C above. What about axioms specifying the in-
teraction between the modal operators and quantification?

Since our semantics is based on a single domain of individuals, its models
will satisfy the Barcan formula:

A7. ∀x[�s φ(x)] → �s ∀x[φ(x)]

Issues Regarding the Domain of Quantification. One can argue that if
we change the precisification according to which the world is classified, the set
of entities is likely to change. For example, under one precisification, a partic-
ular tree-covered area might be determined to form a single forest under one
precisification, whereas under another it might be determined as consisting of
two forests separated by a band of heathland. However, one could take the con-
trary view that, the set of entities can be regarded as the same even though
their classification changes. This is consistent with a de dicto view of vagueness,
in which it is only linguistic descriptions that are vague, not the objects that
they describe. In fact, we believe that our semantics is inadequate to adequately
express correspondencies between entities at different worlds and/or precisifica-
tions, e.g. we cannot say that different tree covered areas correspond to the same
forest seen from different standpoints, which agree that there is one forest within
a given region, but disagree about its extent.

6 Expressive Capabilities of LS

We now examine the expressive capabilities of our standpoint logic and illustrate
them with a variety of examples.

Judgements Regarding Graded Predicates. Problems of formalising rea-
soning with vague predicates are the subject of a huge amount of debate in the
philosophical literature. Here we do not go into detail about the issues involved,
but just give a simple example of how our formalism can deal with some aspects
of this problem in relation to attributions of the typical graded adjectives ‘tall’
and ‘short’ for two standpoints s1 and s2 where s2 � s1.

E3. �∗ ¬∃x[Tall(x) ∧ Short(x)]
E4. �∗[height(tara) = 186cm]
E5. �∗[height(simon) = 160cm]
E6. �s1 [∀x[Tall(x) ↔

height(x) > t tall]

E7. �s1 [t tall < 185cm]
E8. �s1 [Short(simon)]
E9. �s2 [t tall = 180cm]

All precisifications must satisfy the given penumbral connection axiom E3:
nothing can be both Tall and Short. Thus this formula will be true in all stand-
points. Formulae E4 and E5 express objective, non-vague facts that are taken to
be true for all precisifications. Given E3, E4 and E7 we know that �s1 [Tall(tara)].



Because we know that s2 is at least as sharp as s1, by using axiom A1 we can
infer that �s2 [Tall(tara)]. Note that s2 � s1 implies that at least those definite
tall cases in s1 are also definite in s2, so the threshold for tallness in s2 must be
equal or lower than that of s1. Also, with E8, we know �s1 [t tall > 160cm].

Conceptual Variation. In LS it is easy to stipulate that a particular defini-
tional axiom holds for a particular standpoint. In the domain of forests we might
have:

E10. �s1 ∀x[Plant(x) ↔ Embryophyta(x)]
E11. �s1 ∀x[Tree(x) ↔ (Plant(x)∧Woody(x)∧Tall(x))]

In another standpoint s2 we might have:

E12. �s2 ∀x[Plant(x) ↔ Organism(x) ∧ ¬Animal(x)]

E10 and E12 express inconsistent definitions (a mushroom would be a Plant
accordint to s2 but not according to s1) but the formulae can coexist consistently
within LS because the definitions are within different standpoint operators.

Penumbral Connections. Supervaluation semantics regards precisifications
as applying to the whole language. This is because the meaning of related vague
concepts cannot always vary independently. We do not allow precisification in
which related concepts are interpreted inconsistently (e.g. someone can be both
‘tall’ and ‘short’). Modelling this kind of penumbral connection is one of the main
motivations of supervaluation semantics [11]. Our standpoint logic enables us to
impose penumbral connections between concepts both for what we consider to
be all reasonable interpretations, using the �∗ operator, and also from the point
of view of some particular standpoint s, by means of the �s operator. We have
already seen in E3, a formula expressing a condition that two predicates are
mutually exclusive over all precisifications.

It may also be useful to specify that concepts are semantically independent
within a standpoint (or globally). This may allow for the modularisation of a
vocabulary into sets of terms that do not impinge on each other (e.g. concepts
relating to forests can be modelled without worrying about mountains or build-
ings). We say that two vague propositions φ and ψ are penumbrally independent
when every sense in which φ can be interpreted is compatible with every sense
which ψ can be interpreted. In LS logic we can express this by:

( (♦s φ ∧ ♦s ψ) → ♦s(φ ∧ ψ) ∧ (♦s φ ∧ ♦s ¬ψ) → ♦s(φ ∧ ¬ψ) ∧
(♦s ¬φ ∧ ♦s ψ) → ♦s(¬φ ∧ ψ) ∧ (♦s ¬φ ∧ ¬♦s ψ) → ♦s(¬φ ∧ ¬ψ))

Concept sharpness. We can say that a particular predicate R is extensionally
sharp in a given standpoint s with a formula such as ∀xDs[R(x)], where x stands
for n different universally quantified variables and where n is the arity of R.



Moreover, we can express the condition that ‘standpoint s′ has an extensionally
sharper interpretation of concept C than standpoint s’, which we represent by
the form (s′ � s) : λx[C(x)]. This is just syntactic sugar for an actual formula
of LS that can be defined as follows:

(s′ � s) : (λx[C(x)]) ≡ ( ∀x[�s C(x) → �s′ C(x)] ∧ ∀x[�s ¬C(x) → �s′ ¬C(x)] )

7 Combining Unaligned Ontologies

In the process of defining an ontology, there may be a number of different mean-
ings attached to certain terms. Moreover, users may hold that having all these
meanings is useful, as they are relevant for different contexts [9, 8]. While the
analysis of [9] proposes a descriptive strategy to deal with the semantic variabil-
ity of terms, we suggest that ‘supervaluating’ concepts preserves the advantages
of the former strategy while: (a) making explicit the fact that such series of def-
initions are linked to a single vague concept; and (b) making further inferences
possible through the framework proposed here.

We thus see the potential for supervaluated ontologies by design, that are
not the fruit of the integration of different models but a direct formalisation of a
domain in which the semantic variablility of its terms is sufficiently meaningful
and/or relevant to be represented in the ontology.

Embedding Ontologies within LS. Moreover, our language LS provides
many ways in which the relationships between terms in different ontologies can
be described and we are still investigating which of these are most practical.
However, we now outline some possibilities. Any given ontology Oi is identified
with a set of formulae incorporating both semantic constraints (its T-Box ) and
facts (its A-Box ). We also associate Oi with a standpoint si. Our aim is to
construct a theory Θ in LS in which we embed two or more unaligned ontologies.

We assume that every formula of the ontology is unequivocally true with
respect to that standpoint, so an ontology’s standpoint can only be indefinite
about formulae that are not explicitly stated or implied by its explicit statements.

We suggest that when interpreting and combining ontologies it will be useful
to also create a general umbrella ontology O∗. This will contain a set of constrain-
ing formulae, which we would expect to hold in any reasonable interpretation of
the vocabulary under consideration. Thus, for each ψ ∈ O∗ we have �∗ ψ ∈ Θ.
This means that the standpoint of each ontology will inherit any penumbral
connections that we consider to be essential, but may have been omitted from
the ontology itself.

Inter-Ontology Concept Alignment and Interaction. We address the gen-
eral and common case where the ontologies are poorly aligned both in that: (1)
only some of the terms in each ontology have a closely corresponding coun-
terpart in the other ontology; and (2) even where a concept in one ontology



has a ‘matching’ counterpart in the other, these counterparts are not exactly
equivalent. Such counterparts may differ either in terms of explicit definitions or
axioms within the ontology itself, or in terms the criteria that have been used
to determine the instances of a predicate (for instance a particular settlement
might be classified as a Forest in one ontology but not in the other (e.g. because
that ontology requires that a forest must have a certain minimal area), where it
is instead considered to be an instance of Woodland. We assume that some form
of alignment and matching of conceptual terms has already been carried out.

E13. ∀x[�s1 C(x) ↔ �s2 D(x)] (equivalence)
E14. (s′ � s) : (λx[C(x)]) (sharpening)
E15. ∀x[¬(�s1 C(x) ∧ �s2 D(x))] (exclusion)
E16. ∀x[�s1 C(x) → �s2 D(x)] (subsumption)
E17. ∃x[�s1 C(x) ∧ �s2 D(x)] (strong overlap)
E18. ∃x[♦s1 C(x) ∧ ♦s2 D(x)] (weak overlap)

For present purposes we simply assume that certain entities can be identified
between ontologies. In practice, identifying objects between different ontologies
may be non-trivial and involve complex issues. These issues are related to the
problems of establishing correspondences between entities at different possible
worlds and/or precisifications.

8 Reasoning about Forests

As described in the Motivation Example, for the current purpose we set a scenario
in which a stakeholder is using the proposed framework to analyse the conceptual
variation between the forest concepts of the different data sources of an online
platform (e.g. Global Forest Watch). In this section we show how the answers
to the questions set in the Motivating Example section may be inferred.

Q1. Is area a consistently forest for all forest interpretations? Otherwise, is it
arguably a forest?:

�∗[Forest(a)], ♦∗[Forest(a)] ∧ ¬�∗[Forest(a)]
Q2. A degraded area a stopped being classed as Intact Forest4 and is now only

arguably a forest. What is it according to the other views?
∀s[�s ¬Forest(a) → ♦s Landtype(a)]

Q3. What can we infer from an area that satisfies some but not all the inter-
pretations?
Consider an example where we have three standpoints, s1, s2 and s3 where
s3 � s2, two potential forests p and q and some facts:

E24. �s1 Forest(p), �s2 ¬Forest(p)
E25. �s1 [∀x[Forest(x) ↔ (canopy(x) > t can)] , �s1 [t can > 30]
E26. ∀x[�s2 Forest(x) ↔ (�s1 Forest(x) ∧ av tree height(x) > 2m)]

4 IFL are unfragmented areas with at least 50,000ha and 10Km width. These were
then mapped from Landsat satellite imagery for the year 2000. [22]



E27. �∗[∀xForest(x) ↔ ¬Savannah(x)]
E28. �s3 Savannah(q), canopy(q) = 35

We can infer the following:

E29. av tree height(p) < 2m
E30. �s2 ¬Forest(q)
E31. ¬�s1 Forest(q)
E32. �s3 [t can > 35]

Q4. Are there inconsistencies among the data or only different data classifica-
tions? e.g. Are there areas reported to satisfy some criteria that don’t fit
the classifications? Hypothesis: temporal clearings?

E33. canopy(p) = 25

Consistency is ensured within precisifications and thus the system would
show any inconsistent standpoint s to be ∅. In this case E24, E25 and E33
imply that �s1 [t can < 25], which is inconsistent with E25 in s1.

9 Conclusions and Further Work

We have presented a formal language which we believe is well-suited for de-
scribing the variability of vague concepts and also for expressing relationships
between different points of view regarding concept meaning in different contexts.
Development of our system is ongoing, and many questions remain regarding its
generality and practical applicability.

We have given both a semantics and a set of axioms for our formal language.
In future work we will provide alternative Kripke style semantics with partially
order operators, along the lines of [5, 2] and aim to establish completeness (pos-
sibly with addition of further axioms) via a Henkin-style proof that there is a
model for every consistent set of formulae. However, given its complexity, we do
not envisage our axiom set being used as practical inference mechanism. Rather,
it would serve as a framework within which one could define more limited sub-
languages, suitable for particular data interpretation tasks.

With regard to applications of the theory we plan to develop its use for com-
bining non-aligned ontologies and to test this on specific examples, particularly
concentrating on the forestry domain, which provides many interesting scenarios
and challenges. Regarding developing the underlying semantics, there are some
very interesting and tricky issues concerning correspondences between individu-
als identified with respect to different standpoints and/or possible worlds.
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