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Abstract. Comparing the importance of axioms in ontologies is an es-
sential task in a variety of applications such as ontology repair and in-
consistency management. It guides the choice of axioms to remain in the
ontology or which should prevail when a conflict arises. While evaluating
the importance of an axiom is difficult, there are different approaches to
stratify ontologies by criteria that act as proxies for importance. How-
ever, there is little work about how these methods are related and their
adequacy considering different applications. In this work, we evaluate
specificity and modularity-based stratification approaches, and work to-
wards understanding how they relate. We compare empirically the result
of five stratification methods over a corpus of real-world ontologies. In
particular, we investigate correlations between their rankings and their
ability to distinguish axioms.
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1 Introduction

When managing knowledge bases, users and designers are often confronted with
the need to choose among conflicting pieces of information. While the most
reliable solution may be to delegate the choice to a domain specialist with in-
formation about the particular case at hand, this is not always possible, and
thus many approaches propose the use of stratification methods. Stratified or
prioritized knowledge bases are such that each axiom has a value that denotes
its importance.

In the absence of further information, an axiom’s importance is closely re-
lated to its generality (or specificity), where none of these notions has a com-
monly accepted definition for complex axioms. Being able to stratify an ontology
by the importance of its axioms, will enable automatic repair algorithms [4] or
inconsistent-tolerant [14] reasoning algorithms to choose to preserve more impor-
tant information and ignore/drop less important one. a pre-determined criterion.

The idea of stratification or prioritization to solve choice problems in knowl-
edge bases is not new. It has appeared in repair and evolution of databases [9],
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of classical knowledge bases [12] and of ontologies [14, 4]. In Belief Revision,
the area of Knowledge Representation that studies change over logical theories,
Nebel [12] claims that its impossible to completely define a formal revision op-
eration without resorting to some preference ordering. In the context of default
reasoning, Baader and Hollunder [1] discuss and propose approaches to priori-
tization in terminologies to encode the preference for more specific knowledge
when dealing with inconsistencies.

In this paper we consider OWL 2 DL ontologies [7] and regard them as finite
sets of axioms in SROIQ(D). While some approaches to prioritize axioms in
these ontologies have been proposed [1, 14, 5, 10], to the best of our knowledge,
there is no study that compares stratification techniques. Moreover, there is no
work regarding how to measure the quality of a stratification procedure.

The contributions described in this paper are two-fold: firstly, we devise met-
rics to measure the ability of these methods to distinguish between the axioms
of an ontology and suitable statistical methods to measure correlation between
these approaches. Secondly, we apply this framework to five different stratifica-
tion methods and a corpus of existing ontologies, thereby gaining novel insights
into their differences, strengths and weaknesses.

Of the five methods selected for this study, two encode specificity and three
rely on the modular structure of the ontologies. Besides measuring correlation
and axiom dispersion of these methods, we also discuss other aspects such as
restrictions to applicability, feasibility and significance of the rankings produced.
While we do not validate or compare directly proxies for importance, such as,
specificity, generality and module preservation we will often refer to them to
understand the stratification methods considered. It turns out that the methods
perform very differently according to our metrics, and there are some interesting
correlations between some stratification methods.

This paper is accompanied by a technical report with more details about the
implementation of the experiments and additional results [11].

2 Preliminaries

Before detailing the methods we evaluate, we present in this section some fun-
damental concepts and establish conventions used through this work. We also
assume the reader to be familiar with description logics and its usual notation
(for more details we refer the reader to [2], for example).

We call a set of terms (concept, role and individual names) a signature.
Moreover, if O is an ontology, its signature ( sig(O) ) is the set of terms occurring
in O. We extend the notion and definition for axioms and sets of axioms.

Since we consider ontologies here as sets of formulas (bases) in a description
logic, we follow the approach adopted by Benferhat et al. [4] (but considering
all axioms and not only assertions) and define a stratified ontology O to be a
partitioned set of axioms: O = {Oi}0≤i≤n (with Oi∩Oj = ∅, if i 6= j). We decide
by convention that the most important axioms are those at the strata with the
lowest index, that is, if i < j, then the axioms in Oi are more important than (or



preferred over) the axioms in Oj . Moreover, if an axiom α is at the stratum Oi,
we say that it has rank i (rank(α) = i). Through this paper we use the notion
of ranks and partitions interchangeably.

The stratification approaches we discuss in Section 3 are induced by a partial
order of the axioms. Formally, if S is a set and ≺ a partial order on S then, the
stratification of S induced by ≺ is such that, for each a ∈ S:

rank(a) =

{
0, if a is minimal w.r.t. ≺
1 + max{b∈O|b≺a} rank(b), otherwise

2.1 Modularity

In this subsection, we briefly discuss the modularity approach underlying the
stratification methods that we selected for comparison.

The syntactic locality-based modules (LBMs) [6] constitute a modularity
approach which not only has crucial properties for reuse, but also is polynomi-
ally extractable. These characteristics, together with its availability through the
OWL API3 explain its current popularity.

Given a signature Σ, the locality-based module of an ontology O for the
signature Σ is a subset of the ontology that has the same entailments as the
ontology over Σ and all other terms that compose the module’s signature. There
are two basic flavours of LBMs: >-locality and ⊥-locality. They differ in the
syntactical rules applied to decide whether an axiom belongs to a module (due
to space constrains, we refer the reader to [15] for the actual definition). For
x ∈ {⊥,>}, we denote the x-locality-based module of the ontology O for the
signature Σ by x-LBM(O, Σ).

The atomic decomposition (or simply AD) of an ontology represents the set
of all locality-based modules of an ontology. The AD of an ontology consists of
a partitioning of the axioms (each partition called atom), according to their co-
occurrence in LBMs and a dependency relation between these, that is, a partial
order indicating that whenever an atom is a subset of a module, so are all atoms
that it depends on. As with LBMs, we denote the atomic decomposition of the
ontology O for the locality notion x ∈ {⊥,>} by x-AD(O). Each atom in the
AD, together with the atoms it depends on, forms a genuine module, that is,
a locality-based module that is minimal w.r.t. set inclusion [13]. To clarify the
definition of the atomic decomposition, consider the illustrative ontology KoalaS,
a modified version of the ontology Koala [8], shown in the first column of Table 1
(the whole table will be discussed in Section 3) and its atomic decompositions
in Figures 1a and 1b.

3 Stratification Methods

In this section, we present the stratification methods selected for comparison.
We choose these methods because they only use the input ontology as parameter
and can be computed without human assistance.

3 http://owlcs.github.io/owlapi/



Table 1: The KoalaS ontology and five distinct rankings of its axioms
Axiom AxS CNS BAH BAD TAH

α1 : Animal v ∃hasGender.Gender 4 1 1 3 2
α2 : Person v Animal 3 1 2 2 1
α3 : Person u Marsupial v ⊥ 1 1 3 1 0
α4 : Marsupial v Animal 3 2 2 2 1
α5 : Koala v Marsupial 2 1 3 1 0
α6 : KoalaWithPhD ≡ Koala u ∃hasDegree.{PhD} 1 0 4 0 0
α7 : ∃hasDegree.> v Person 2 1 3 1 0
α8 : Degree(MS) 0 1 0 4 1
α9 : Degree(PhD) 0 1 0 4 1
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Fig. 1: Atomic decompositions and inferred concept hierarchy of KoalaS

3.1 Axiom Specificity

Axiom specificity (AxS) was described by Qi and Pan [14], based on the work
of Benferhat, Baida and Cuppens [3] that used this notion of importance in
access-control applications. A similar notion was applied in default logic ter-
minologies [1]. This criterion considers the most specific axioms as the most
important ones. According to the definition in [14] α1 = C1 v D1 is more specific
than α2 = C2 v D2 (written α1 ≺AxS α2) in O if O � C1 v C2, but O 6� C2 v C1.
Therefore, AxS is the stratification of axioms induced by ≺AxS.

We extend the definition of of specificity (≺AxS) in [14] to other types of
axioms, such as role (chain) inclusions for example, using an analogous method-
ology for comparison (e.g. check inclusion between the left-hand sides of two
axioms). ABox axioms (concept and role assertions) are minimal axioms, as sug-
gested by Cóbe [5]. That is, given an ontology O, if α is a class or role assertion,
then α is minimal w.r.t. ≺AxS. Excluding relations with ABox axioms, axioms
from different types are incomparable.

Given the differences between SROIQ(D) axioms and their OWL 2 DL
equivalents, in our implementation we handled each axiom type in a straightfor-
ward way, more details are included in the technical report [11].

This method is syntax dependent, i.e., two ontologies O1 and O2 can have
equivalent axioms (for every α1 ∈ O1 there exists α2 ∈ O2, such that α1 ≡ α2,



and vice versa), and yet have distinct stratifications. It is possible to change the
rank of an axiom by rewriting it in another way. Consider the axiom A u ∃r.B v X,
a simple absorption, a common optimization in reasoners, would rewrite it equiv-
alently as A v ∀r.¬B t X that is (usually) less specific than its original version.
Moreover, this criterion ignores the right-hand side of axioms, hence in the on-
tology O = {A v C1, B v C2, C1 v C2}, the axioms A v C1 and B v C2 would be
placed in the same stratum, even though we could say that the first one is more
specific than the because since A and C1 are subconcepts of C2 [5].

The dependency on classification to compute AxS also interferes with their
application on inconsistent ontologies, as the hierarchies collapse. But still, it
can be adapted to such cases [14].

3.2 Concept Name Specificity

We also define an alternative to AxS. First, we establish a partial order of con-
cepts: C is more specific than D (C ≺v D) in O if O � C v D, but O 6� D v C. Let
rank(C) be the rank of the concept name C for all concept names in O in the strat-
ification obtained from ≺v, then we say that α1 is more concept-specific than α2

(written α1 ≺CNS α2) in O if minC∈ sig(α1) rank(C) < minC∈ sig(α2) rank(C). The
concept name specificity (CNS) is the stratification of axioms induced by ≺CNS.

Even though this approach does not display the same syntax sensitivity as
axiom specificity for absorption, it fails to capture differences between any pair of
axioms whose most specific concepts are at the same level of specificity. Moreover,
it also has the same issues when applied to inconsistent ontologies as AxS. This
dependency on the hierarchy of concept names also implies that the axioms
without concepts (such as role inclusions) cannot be ranked by this method.

One notable way in which it differs from AxS is the handling of the assertions:
instead of considering all of them equally important, it also considers concepts
involved. For instance if we have O = {A v B, A(a), B(b)}, the axioms A(a) and
B(b) would attain the same rank by axiom specificity, however CNS would tell
us that A(a) is more specific than B(b).

3.3 x-AD Height

The last stratification method we consider, proposed by Guimarães and Wasser-
mann [10], is based on the atomic decomposition (discussed in Subsection 2.1).
We use the partial order determined by the dependency relation in the x-AD of
O: α1 is x-preferred to α2 (written α1 ≺x-AD α2) in O if a1 ≺ a2 in x-AD(O),
where ai is the atom that contains the axiom αi (since each axiom belong to
exactly one atom, this relation is well-defined). The x-AD height is the strati-
fication of axioms induced by ≺x-AD. To shorten the notation, we will refer to
⊥-AD height as BAH and >-AD height as TAH.

In [10], the authors focus on >⊥∗-locality (other type of locality) to define
height, since it produces smaller modules than > or ⊥. However, we restrict
ourselves to > and ⊥-locality, since we are more interested in smaller atoms and
good dependency relations than in small modules. Compared to >⊥∗-locality,



> and ⊥-locality preserve more information about class hierarchies that seem
to be beneficial for specificity/generality and importance analysis [8] (e.g. the
>⊥∗-AD of a pure taxonomy has only unconnected atoms). In particular, for
⊥-locality we have that the module preserves all superclass relationships for the
concepts in its signature. In this way, axioms from lower atoms in the ⊥-AD tend
to deal with more general concepts, while higher deal with more specific ones,
and the opposite happens with >-AD. Hence, we expect that BAH displays a
strong negative correlation with specificity-based metrics, while TAH displays a
positive one. To get a clearer picture, we include also the ⊥-AD depth (BAD) in
our investigation; it is defined analogously to ⊥-AD height, but replacing ≺⊥-AD

with �⊥-AD in the definition of rank.
The height is a way to estimate which axioms participate of more or fewer

modules. An axiom with low height is more likely to be part of more genuine mod-
ules and thus also of more general modules, via the dependency relations [10].
Proposition 1 considers the case of removal of an axiom and the question whether
modules can be preserved and shows that this metric acts as proxy for impor-
tance, if one intends to preserve as many modules as possible.

Proposition 1. Let O be an ontology, x ∈ {⊥,>} a locality notion, α ∈ O
an axiom and Σ ⊆ sig(O) a signature such that α 6∈ x-LBM(O, Σ). Then,
x-LBM(O \ {α}, Σ) = x-LBM(O, Σ).

This proposition is an immediate consequence of the fact that x-locality w.r.t.
Σ (and any of its extensions) during the computation of x-LBMs, is decided on
a “per axiom” basis. As a consequence of Proposition 1, if α ≺x-AD β then the
removal of α affects more x-LBMs than the removal of β. Therefore, axioms with
lower heights can be said to be more influential, thus more important.

As the locality-based modules and atomic decomposition are syntax-dependent,
so are the x-AD heights and depths of the axioms. Therefore, all approaches we
consider are syntax-dependent: AxS by ignoring the right-hand sides, CNS by
considering only at the most specific concept in the class signature and the ones
based on the atomic decomposition due to the definition of syntactic locality.

To conclude this section, we compare the selected stratification methods il-
lustratively with Example 1, which uses the ontology KoalaS from Table 1 and
that is inspired by the ontology repair scenario.

Example 1. Consider the ontology KoalaS shown in Table 1 and suppose that
we would like to restore coherence (the concept KoalaWithPhD is unsatisfiable)
by removing a minimal set of axioms. Therefore, the candidates for removal
are: α3, α5, α6 and α7. Removing any of them is enough to make the ontology
coherent. TAH is unable to distinguish between them. Instead, if we follow axiom
specificity, we would either remove α5 or α7, using CNS or BAD we would remove
any of them, except α6, as KoalaWithPhD becomes the most specific concept due
to its unsatisfiability. In contrast, since BAH is more likely to favour more general
axioms (see Figure 1), it would tell us to remove (or fix) α6.

In Table 1 and Figure 1 we also observe that BAH and AxS are mostly
inverses of each other as we expected, if we ignore the concept assertions α8 and



α9. Also, BAD is very similar to AxS and CNS. In Section 5, we will see whether
these correlations hold in general.

4 Methodology

Our first methodological step is to formulate the research questions we aim
to answer. The first question is due to the fact that all stratification methods
produce partial orders and thus, do not guarantee that all the axioms have
different ranks. It consists in determining how well these methods separate the
axioms, i.e., how likely a stratification approach is to help us pick a suitable
axiom for a certain task. The second, is to verify if these methods are correlated.

Regarding dispersion, for each method, we are interested in measuring the
number of strata in the whole corpus, their relative size and how many pairs
of equivalent axioms exist after stratification. The number of strata and their
distribution by relative size (the percentage of axioms from the original ontology
inside a stratum) show how often small and large strata occur for each method.
The indistinguishable axioms rate (IAR) of a stratified ontology is the proportion
of pairs of axioms in the ontology that have axioms with the same rank, i.e., it
measures how far the ranking is from a strict total order (the 0 IAR situation).

In the case of the ontology KoalaS from Table 1, we have for ⊥-AD height:
5 strata, with the smaller strata with approximately 11.11% of the axioms and
the largest with around 33.33% of the axioms, and an IAR of roughly 0.1389.

For the second question, we test correlation between methods in two ways.
First, we look at each ontology and measure the correlation between the rank-
ings in each. Second, we normalize the ranks of the axioms in each ontology to
the [0, 1] interval, join the results for the whole corpus and only then measure
correlation. We call them local correlation and corpus correlation, respectively.

We choose Spearman’s rank-order coefficient to measure correlation. This is
a metric of monotonic association between two rankings that does not make
assumptions about the distribution of the input data (i.e. is non-parametric).
Its value ranges from −1 to 1 and expresses whether the association is direct or
inverse. Values close 0 indicate weak or absent correlation. We will also refer to
the p-values associated to the correlation measurements. The p-value indicates
the probability of obtaining the same coefficient given that there is no monotonic
association between the rankings, the null hypothesis for the Spearman’s test.
Smaller p-values mean that we have more grounds to reject the null hypothesis,
thus the correlation is more statistically significant.

4.1 Experiment Design

We want to answer our two research questions by looking at the stratification over
a corpus of realistic ontologies. Moreover, as we rely on reasoning to compute
AxS and CNS, and on current module extraction algorithms, we only handle
legal OWL 2 DL ontologies.



Among the possible corpus options, the set of ontologies hosted by Biopor-
tal4 stands out. This repository hosts ontologies from the biomedical domain,
many of them used in practical applications. The corpus of ontologies used in
this work is a subset of 272 ontologies out of the 438 from the Bioportal snap-
shot at 30/03/20175. For brevity, we omit here other details about the corpus
and experiments which are available with additional plots, tables and discussion
regarding influence of expressive power in the technical report [11].

5 Results

5.1 Axiom Dispersion

We start our analysis of dispersion by looking at the cumulative histogram in
Figure 2. For each method there is a line that can be read as the proportion of
strata it produced that have size up to a certain fraction of the original ontology.
Each bin corresponds to increments of 10% of relative size. In addition, since
each method produces a different number of strata, the total number of strata
in the corpus is shown as the N near the method label in the legend.
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Fig. 2: Cumulative density histograms of stratum relative sizes over the corpus.

For all methods, at least 60% of strata produced has size up to 10% of their
original ontologies. This is a good indicator that they produce useful rankings.
We notice that BAH and BAD are clear winners regarding the total number

4 https://bioportal.bioontology.org/
5 http://doi.org/10.5281/zenodo.439510



of strata generated6, while TAH is notably the worst method in this aspect.
Furthermore, BAH and BAD have the largest proportions of strata below the
20% mark and are the ones which gain the least as the relative size increases:
the proportion of their strata with size 80% or more of the original ontology is
negligible. In contrast, TAH has the largest proportions of bigger strata, almost
10% of the strata produced by this method has relative size of 90% or more.

The specificity-based approaches not only generated similar number of strata,
but also resemble each other in the distribution of strata by relative size, as we
can observe by the closeness between their histograms’ curves and their trends.

In the technical report [11], we repeated our studies regarding axiom disper-
sion and correlations diving the ontologies according to expressive power. The
major difference from what we see in Figure 2 is that BAH and BAD perform ex-
tremely well in “rich” ontologies, i.e., on the ontologies that cannot be expressed
in RDFS (RDFS only allows concept inclusions, domain and range restrictions
on roles, and assertions). In these “rich” ontologies, BAH and BAD have largest
proportion of strata with relative size of 20% or less, and practically no strata
with relative size of 80% or more. The reasons for this behaviour, as well as
deeper analysis of expressive power in other metrics are part of our future work.

As discussed in Section 4, the IAR is one of the most important characteristics
that we evaluate in this work, as it gives us a clear indication of how likely it is
that each method improves our ability to choose between two axioms. Figure 3
displays one violin plot for each method, their external shape (the “violin”) is
the estimated probability density function (using kernel density estimation), cut
at the range of the observations. The width of the violin indicates the probability
of an ontology having the given IAR value, considering the sample distribution.
The internal elements are boxplots marking from the centre to the extremities
median, interquartile range and 95% confidence interval.
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Fig. 3: Distribution of the indistinguishable axioms rates.

6 The small different occurs because in atomic decompositions where the distance
between the nodes at the top and the bottom is not unique (it depends on the pair
of nodes), depth and height produce different number of strata.



From Figure 3, we can infer that the ⊥-AD height is the best approach
regarding IAR, with more than a quarter of the 272 ontologies having IAR of
less than 0.2. Additionally, the IAR of BAH in at least 75% of the corpus is below
0.5 and the probability density decreases rapidly at higher IAR values. While
⊥-AD depth also has 0 IAR in some cases, its distribution is centred on the
median, which is close to 0.5 IAR, and it has also attained 1 IAR in the corpus.
Excluding BAH, all methods reach 0.4 IAR in at least 50% of the ontologies.

As expected, AxS and CNS have similar IAR distributions. Also, we observe
a small dominance of AxS over CNS, as the median and quartiles are marked
at lower IARs. Still, given the proximity of both distributions and the higher
variability of AxS when compared to CNS, we are not able to decide which one
is better than the other from IAR alone. Neither specificity-based approaches
nor >-AD height were able to produce any ranking with IAR smaller than 0.1,
this is shown by the bottom limits of their (cut) violin plots.

5.2 Correlation

We start our correlation analysis with the local version (as defined in Section 4).
Figure 4 shows violin plots (similar to ones presented in Figure 3). Each violin
plot depicts the distribution of the Spearman’s correlation coefficient between
two metrics for each ontology in the corpus. To avoid counting results with low
significance, we consider only instances of correlation for which the p-value was
below 0.05, i.e., we only count situations whose probability of obtaining the same
Spearman’s coefficient under the null hypothesis was less than 5%. The value of
N in the legend indicates, for each method, how many rankings out of the 272
for passed this criterion, for each pair of methods.
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Fig. 4: Distribution of correlation between the methods (for p-value < 0.05).

As anticipated, CNS often has a very strong positive correlation with AxS and
BAD, while AxS and BAD usually display a weaker, but considerable positive
correlation. Generally, TAH correlates positively with CNS, AxS and BAD, but



weakly. The correlations involving BAH are typically negative and weak, even
though we would expect it to display stronger negative associations with BAD
and TAH. We are confident with these results since in all cases most ontologies
displayed a significant correlation (p-value < 0.05).

Table 2: Corpus correlation values between stratification methods.

Methods
AxS AxS AxS AxS BAH BAH BAH BAD BAD CNS
× × × × × × × × × ×

BAH BAD CNS TAH BAD CNS TAH CNS TAH TAH

Spearman’s -0.1847 0.3108 0.6110 -0.1080 -0.3372 -0.1646 -0.0120 0.4383 0.0633 0.0532

Now we direct our attention to the corpus correlation (Table 2). We remind
that we normalized each axiom rank to the interval [0, 1], took the union of
all rankings and only then calculated the associations. For brevity, we omit the
p-values because they were sufficiently small (the largest at the order of 10−16).

We can observe in Table 2 some similar relationships to those seen in Figure 4.
For example, the strong positive correlation between AxS and CNS and the
average negative one between BAH and BAD. Also, there is a noticeable positive
association between BAD and both AxS and CNS. The other interactions have
values of correlation too close to zero to indicate any consistent association.

All results in this section reflect the behaviour of the methods in a particular
corpus. It may be the case that the overall results differ if we consider ontologies
from a different domain, or include more ontologies from the same corpus.

6 Conclusion and Future Work

In this work we discussed desirable traits for stratification procedures and eval-
uated five distinct methods according to these criteria. We focused on axiom
dispersion and correlation, devised suitable metrics to evaluate the methods and
discussed the results obtained. The methodology we followed gives insight into
a crucial component for automatic debug and repair of ontologies.

We observed that AxS and CNS displayed similar behaviour and significant
positive association following our expectations. However, the same cannot be
said about BAH and TAH. Besides the low correlation, their behaviour is very
different regarding axiom dispersion: ⊥-AD height being one of the most suc-
cessful according to our metrics, and >-AD height the worst in number of strata
and relative size distribution. Interestingly, ⊥-AD depth had similar behaviour
regarding dispersion as ⊥-AD height, but displayed a significant correlation with
the specificity-based methods.

As future work we propose the extension of this study covering other stratifi-
cation approaches, including other metrics related to the atomic decomposition
and other definitions of specificity. Moreover, other characteristics of the strati-
fication methods such as ease of interpretation and computational performance



also need to be studied in detail. Such extended experiments will also include
a larger and more diversified corpus and analyse whether the expressive power
(i.e. the OWL 2 DL fragment considered) affects performance and correlation.

Furthermore, the ability to distinguish axioms, feasibility and ideal of impor-
tance can vary according to the application, thus evaluating the effects of a range
of stratification approaches in a particular setting, such as ontology repair, is an-
other possible direction. In this sense, some applications may also provide a way
to compare stratification methods which depend on other parameters besides
the ontology itself (such as syntactic connectivity [5, 10]).
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