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1 Introduction

Modular ontologies have received much attention in the past decade; they are usually
easier to maintain, comprehend, and reason over. If an ontology is given as a monolithic
entity, the task of decomposing it into modules is the first step towards making it modular.
Several decomposition approaches have been developed, among them partitionings based
on E-connections [2] (henceforth: E-partitions). E-partitions have been developed for the
purpose of automatically and efficiently decomposing an ontology into a graph whose
nodes are (pairwise disjoint and mutually covering) components (i.e., subsets) of the
ontology, and whose edges represent “semantic links” between the components in the
style of E-connections [5]. The adoption of the E-connection framework ensures that the
resulting partitions provide strong logical guarantees, such as encapsulation.

E-Connections have been defined for abstract description systems (ADSs), a notion
that generalises description logics (DLs) and further formalisms. An E-connection is
a combination of (heterogeneous) logical theories via semantic links established by a
designated set of relations, called link relations. The semantics of such a combination
is given by interpretations consisting of pairwise disjoint components. In contrast to
the general nature of E-connections, E-partitions have been defined specifically for the
DL SHOIQ(D), a fragment of the latest OWL 2 ontology language. The partitioning
procedure starts from a monolithic ontology O and attempts to turn it into an (as fine
as possible) E-connection by identifying link relations among the roles in O. In [1,2]
an efficient algorithm is given. To ensure that the resulting E-partition and the input
ontology are equivalent under the E-connection semantics, an additional condition has to
be imposed on the input ontology, which was called safety and coincides with domain-
independence (DI), as known from first-order logic and database theory. Contrary to DI
in first-order logic, DI for SHOIQ(D) is decidable.

The partitioning algorithm was implemented as an experimental feature of the (dis-
continued) ontology editor Swoop. Initial experiments [2] showed that some ontologies
admit useful E-partitions, sometimes revealing modelling deficiencies. On the other
hand, some modelling patterns – e.g., the use of few top-level concepts – are notoriously
problematic: they admit only coarse E-partitions. The limited success of E-partitions
may be due to this observation, but may also lie in the preliminary nature of the imple-
mentation. Hence some observed “poor” (i.e., coarse-grained) E-partitions might be due
to code bugs and not “features” of the general approach.
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When pursuing this last question, we found a considerably simpler way of computing
E-partitions, based on the idea of creating an undirected graph G whose edges connect
concepts and/or roles that must be part of the same component, and reading the minimal
E-partition off G’s connected components. We were able to extend the underlying
framework to most of OWL 2, with the only exception of the universal role u. This
exception is unavoidable in some sense [3], but it is also insignificant because u “typically
plays a minor role in modelling” [4].

Our new approach offers the following advantages over the original one:

– Ready applicability to the latest OWL 2 standard, under two restrictions ensuring
equivalence (domain-independence, absence of the universal role)

– A simplified notation of the theoretical foundations
– A new deterministic partitioning algorithm that is based on a simple idea and can be

implemented to run in linear time (the original one is quadratic)
– Simple rigorous proofs that the algorithm is correct and outputs the maximal equiva-

lent E-connection

In the light of these advantages, we predict an easy implementation of the algorithm and
plan experiments on an up-to-date corpus of existing ontologies. The work reported here
is therefore in progress. This extended abstract summarises the submission [3] to the
Description Logic Workshop, which contains numerous additional details.

2 E-Connections and Partitionings for SROIQ

We consider SROIQ, the description logic (DL) underlying OWL, minus the universal
role (see above). We omit datatypes and keys, discussing their addition (and of further
non-OWL features) in [3]. For the syntax and semantics of SROIQ, see [4]. An
ontology is a set of axioms (no distinction between TBoxes, RBoxes, and ABoxes).

Let Σ be a signature, i.e., a finite set of terms (concept, role, and individual names).
Given a natural number n ≥ 1, an n-numbering of Σ is a function ν that assigns to each
concept and individual name a number ν(A), ν(a) ∈ {1, . . . , n} and to each role name a
number ν(r) ∈ {1, . . . , n}2. Numberings are extended inductively to arbitrary concepts
and axioms. A concept C (axiom α) is called an i-concept (i-axiom) if ν(C) = i (ν(α) = i).

Given an n-numbering ν, a ν-ontology is a tuple O = (O1, . . . ,On), each of whose
components Oi is a nonempty set of i-axioms. The semantics of ν-ontologies is given by
ν-interpretations, whose domain consist of n pairwise disjoint nonempty sets, and which
interpret every i-concept name and i-individual name in the i-th component, and every
(i, j)-role name as a relation between the i-th and j-th component. The interpretation
function is extended in the obvious way to arbitrary concepts; satisfaction of i-axioms is
defined as expected and denoted I |=ν α. A ν-ontology I is a model of a ν-ontology O,
written I |=ν O, if I |=ν α for all axioms α in O. O is consistent if it has a model.

The correspondence between simple and ν-ontologies is captured by compatibility
and equivalence (the former being syntactic and the latter semantic).

Definition 1. Let O be an ontology, ν an n-numbering, and O = (O1, . . . ,On) a ν-ontol.

1. O and O are compatible, written O ∼ O, if O =
⋃

i≤n Oi .
2. O and O are equivalent, written O ≈ O if, for all ν-interpret. I: I |= O iff I |=ν O.



Compatibility implies equivalence under an additional assumption: domain-independence
as known from the first-order and database worlds. A concept C (axiom α) is domain-
independent (DI) if CI = CJ (I |= α iff J |= α) for all interpretations I,J with
XI = XJ for all terms X. An ontology is DI if so are all its axioms. For (most of)
SROIQ, DI can be decided efficiently via a syntactic characterisation, called locality
in [1,2]. DI links compatibility and equivalence as follows.

Theorem 2. Let O be an ontology, ν an n-numbering, O = (O1, . . . ,On) a ν-ontology.

1. (a) If O is DI and O ∼ O, then O ≈ O.
(b) If additionally O is consistent, then so is O.

2. If O is not DI and consistent and O ∼ O and O ≈ O, then n = 1, i.e., O = O.

3 The New Partitioning Algorithm

We now present the partitioning algorithm. As in [1,2], it receives as input an ontology
O and returns a ν-ontology O = (O1, . . . ,On) such that O ∼ O and n is maximal
with this property. If O is domain-independent, O ≈ O follows by Theorem 2. Let
sub(O) be the set of all concepts (atomic or complex) occurring in O. The main routine
partition(O) of Algorithm 1 first creates a graph G containing one node per concept
in sub(O) and two nodes r0, r1 per role r in O. It then adds all edges induced by the
structure of the concepts (addSubConceptEdges) and axioms (addAxiomEdges) in O
to G. For a given role R, both subroutines use the notation Ri, which equals ri if R = r
and r1−i if R = r−, for i = 0, 1. Additionally, addAxiomEdges labels, for each axiom α,
one of the created edges with α. Next, the CCs of G are determined. Then the partitioning
is read off the axiom labels in the CCs. We show in [3] that the algorithm runs in linear
time, is correct, and outputs the maximal compatible O.

For example, let O = {A v ∃r.B, B v B′}. Then G has nodes A,∃r.B, r0, r1, B, B′,
and edges {A,∃r.B}, {∃r.B, r0}, {r1, B}, {B, B′}. Edges {A,∃r.B} and {B, B′} are labelled
A v ∃r.B and B v B′, respectively. Now G has 2 connected components (CCs): G1 with
nodes A,∃r.B, r0 and label α; G2 with r1, B, B′ and β. Hence O = ({A v ∃r.B}, {B v B′}).

4 Conclusions and Future Work

We have extended the original approach underlying E-partitions in [1,2] to all of OWL
2 except the universal role (which cannot be accommodated, as shown in [3]). We
have presented a new simplified notation and a linear-time algorithm for computing
the maximal E-connection that is syntactically compatible (and, assuming domain-
independence, equivalent) with the input ontology. We show in [3] that theory and
algorithm extend to expressive operators on roles considered in the literature.

For future work, we expect a straightforward implementation of our algorithm, as
a basis for experiments on a representative up-to-date ontology corpus. We conjecture
that existing ontologies generally decompose well when allowing slight deviations from
(syntactic) compatibility, to circumvent the notorious problematic modelling patterns, see
§1. We furthermore plan to revisit module extraction, extending the existing procedure



Algorithm 1: Partitioning an ontology O
1 Function partition(O):

input : O with signature Σ output: ν-ontology O

2 V ← {C | C ∈ sub(O)} ∪ {r0, r1 | r ∈ ΣR}; E ← ∅; L← ∅

3 forall C ∈ sub(O) do addSubConceptEdges(G,C)
4 forall α ∈ O do addAxiomEdges(G, α)
5 {G1, . . . ,Gn} ← all connected components (CCs) of G with ≥ 1 axiom label
6 forall i ≤ n do Oi ← {α | L(v, v′) = α for some edge (v, v′) in Gi}

7 O← (O1, . . . ,On)

8 return (O)

9 Function addSubConceptEdges(G,C):
10 switch C do
11 case ¬D do E ← E ∪ {C,D}
12 case D u F do E ← E ∪ {{C,D}, {C, F}}
13 case >m R.D do E ← E ∪ {{C,R0}, {R1,D}}
14 case ∃R.Self do E ← E ∪ {{C,R0}, {C,R1}}

15 case {a} do E ← E ∪ {{C, a}}

16 Function addAxiomEdges(G, α):
17 switch α do
18 case C v D or C ≡ D do E ← E ∪ {C,D}; L(C,D)← α

19 case R v S , R ≡ S or Disjoint(R, S ) do
20 E ← E ∪ {{R0, S 0}, {R1, S 1}}; L(R0, S 0)← α

21 case R ◦ S v T do E ← E ∪ {{R1, S 0}, {R0,T0}, {S 1,T1}}; L(R0,T0)← α

22 case C(a) do E ← E ∪ {C, a}; L(C, a)← α

23 case R(a, b) do E ← E ∪ {{a,R0}, {R1, b}}; L(a,R0)← α

24 case a ≈ b or a 0 b do E ← E ∪ {{a, b}}; L(a, b)← α

in [2] to arbitrary E-connections, independently of a specific partitioning algorithm.
Given the linear runtime of our algorithm, module extraction might even compete in
performance with syntactic locality. Finally, we expect to transfer the overall approach
to logics with unary negation, such as frontier-one existential rules or even UNFO.
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