
Design and Implementation of a Diagrammatic Tool for
Creating RDF graphs

Anca Chiș-Rațiu1 and Robert Andrei Buchmann2

Business Informatics Research Center, Faculty of Economics and Business Administration,
Babeș-Bolyai University, Cluj Napoca, Romania

1achisratiu@yahoo.com,2robert.buchmann@econ.ubbcluj.ro

Abstract. Graph databases are the next generation of relational databases, as
they allow convenient retrieval of complex network structures and employ
graph theory to store and navigate relationships. The resulting data models are
simpler and more expressive than those produced using traditional relational da-
tabases. However, there is a shortage of tools for creating such graphs in an in-
tuitive visual way. Metamodeling can help in this respect, as it enables the agile
customization of tools for diagrammatic knowledge representation and editing,
under constraints imposed through metamodels.

Our goal is to present a modeling tool that was customized to support the crea-
tion of Resource Description Framework (RDF) data graphs, by integrating no-
tions of Conceptual Modeling and the Agile Modeling Method Engineering
(AMME) framework, using ADOxx as an instance environment to obtain a us-
able prototype - a starting point for the future evolution an Open Models Labor-
atory project. The proposed modeling tool is inspired by the model-driven code
generation paradigm, as an ADOxx script was developed to generate, out of di-
agrammatic structures, RDF graphs written in the N-triples serialization syntax.
The paper highlights benefits of the proposed modeling tool as this successfully
resolves fundamental user-oriented issues regarding the easy production of
knowledge graphs guided by the Linked Enterprise Data paradigm and support-
ed by a Conceptual Modeling "look and feel".

Keywords: Resource Description Framework, Conceptual modeling, Enterprise
knowledge graphs

1 Introduction

Web 2.0 established a large information space where people share valuable data and
contribute human-readable knowledge in various fields - see Wikipedia, a free ency-
clopedia project, where many individuals are motivated to contribute by adding and
revising content. The next stage, Web 3.0, has encouraged a similar production scale
and scope for machine-readable knowledge to be made available to Linked Enterprise
Data projects [1], where experts share and retrieve large-scale connected RDF graphs
[2] that store flexible relational data enriched with domain-specific rules or schemata.

Linked Data is about information creation coupled with information sharing, where
documentation, construction and distribution processes are equal in terms of im-
portance.

In order to support enterprise knowledge creation, conceptual modeling methods
can be employed - not only for data modeling purposes, but also for capturing do-
main-specific abstractions, business entities and their relationships. Modeling meth-
ods are deployed as tools that enable the description of a system based on instantiated
concepts defined on a metamodel level, and can be enhanced by mechanisms that are
relevant for the production or transformation of knowledge graphs.

The goal of this paper is to present a conceptual modeling tool that was customized
with the help of a metamodeling methodology to allow users to easily construct RDF
knowledge graphs by visual means. The model-driven code generation paradigm in-
spired the work, in the sense that the tool generates knowledge encoded in the ma-
chine-readable N-triples syntax [3], readily available for uploading and managing it in
an RDF database management system. This started as a student dissertation project
that opens the path towards establishing a research project fit to participate in the
Open Models Laboratory (OMiLAB) ecosystem [4][5].

Code generation is acknowledged as a key benefit of conceptual modeling, sup-
porting the development of software systems in the sense that development time be-
comes consistently shorter. As examples, Modeliosoft tool products [6] provide mod-
el-driven code generation for development languages like Java (from UML classes),
C++ and SQL (generated from ERD diagrams). Process automation is made possible
by generating BPEL or XPDL process descriptions from BPMN diagrams. However,
there is a shortage of tools that generate RDF serializations from visual models of
their corresponding graphs – i.e., RDF visual tools typically provide a visualization of
already created RDF graphs, instead of providing a graphical way to build such views
and then generate the corresponding machine-readable structures. In the first draft of
our prototype, the target syntax of choice is N-triples (supported by any RDF man-
agement systems). In the future this can be extended towards a richer knowledge edi-
tor, to be distributed for open use within the OMiLAB global network.

The motivation for creating a new modeling tool for creating RDF data graphs is
that nowadays we have an increased utilization of enterprise knowledge, but the
means of creating that knowledge with an optimal learning curve for non-technical
users are limited. RDF graphs should be created in an easy way, not more complicat-
ed than filling data in the cells of SQL tables, and not necessarily conforming a pre-
imposed schema since RDF graphs can be schemaless databases – i.e., instance data
can be created separately from the schema; or, the schema is employed for semantic
annotation purposes, to support reasoning rather than validation. Linked Enterprise
Data is commonly lifted or derived through adapters (e.g., D2RQ [7]) from legacy
non-graph data sources. When data is created from scratch, graph creation is often
blended with ontology engineering in the same tool (form-based or text-based), fol-
lowing the traditional relational database creation process – first schema, then in-
stance data.

We aim to minimize the effort of RDF data creation by developing a diagrammatic
tool with conceptual modeling "look and feel", potentially evolving towards a flexible

38

knowledge base editor (with the possibility to add domain-specific dynamic notation
and other metamodeling-powered features). In the current draft, the tool only allows
simple graph editing, limited annotation of nodes and the generation of machine-
readable serialization. The key novelty is that this is built on an open access meta-
modeling platform, ADOxx [8], to ensure the evolution of the tool according to future
academic exploitation goals – e.g., teaching semantic technology with user-friendly
tool support.

The requirements selected for this tool originate in teaching goals – i.e., to provide
an intuitive RDF editing toolkit to novices, focusing on a visual building process as a
replacement for the traditional text-based or form-based building. Additionally, a
meta-requirement imposed the need to have an agilely evolving tool that can incorpo-
rate additional functionality and domain-specific annotations towards the goal of ena-
bling enterprise knowledge creation – hence the adopted metamodeling approach.

The remainder of the paper is further structured as follows: Section 2 introduces
background on the enablers - RDF, AMME and the ADOxx metamodeling platform.
Section 3 provides methodological considerations in relation to Design Science, as a
guide for this effort. Section 4 provides comments on related works and proposed
benefits. Section 5 presents the modeling method conceptualization providing insights
about syntax, semantics, the serialization mechanism and the modeling procedure.
The paper ends with conclusions and an outlook to future developments.

2 Background on Technological Enablers

Enterprises are willing to adopt the Linked Enterprise Data concept [1] due to its ben-
efits regarding semantic interoperability and connectivity of data originating in legacy
silos. However, this also comes with a need of easily building connected data, requir-
ing no more effort than when filling data tables in traditional databases. Conceptual
modeling can help in this respect, if we see it through the lens of agility – i.e., concep-
tual modeling tools that do not necessarily follow established methods (ER, UML
etc.) but are instead customized for specific requirements. In our case, these require-
ments originate in the need to capture RDF semantics with (i) minimal notation, (ii) a
Conceptual Modeling "look and feel", and (iii) mechanisms for generating machine-
readable RDF from diagrammatic graphs.

Agile development accepts change and even expects it, therefore the proposed tool
also highlights characteristics of Agile Modeling Method Engineering (AMME) as a
key methodology for customizing modeling tools for a diversity of purposes. Accord-
ing to [9] and [10], AMME provides a conceptualization method that repurposes agili-
ty principles established in software engineering, and ensures that the necessary se-
mantics are captured in relation to modeling needs. This framework has also been
applied in the community-oriented research environment of OMiLAB, in the creation
of a multitude of tools – see BEE-UP (an educational project for teaching Model-
Driven Software Engineering and Business Process Management topics) [11], or the
ComVantage method (a research-oriented project addressing Knowledge Manage-
ment and Enterprise Architecture Management concerns) [12]. Both mentioned tools

39

allow the lifting of RDF graphs from modeling languages (e.g., UML, the domain-
specific ComVantage language) – however those graphs are limited to the semantics
prescribed by the supported languages. In our case, AMME is employed to tailor a
minimal modeling language directly for the RDF semantics, without any intermediate
abstraction layer.

2.1 Resource Description Framework (RDF)

The standard technology for representing and sharing semantic information is the
Resource Description Framework (RDF), where "resources" can be anything includ-
ing documents, people, objects or abstract concepts. In particular, RDF is used to
publish and interlink data on the Web or to represent knowledge in knowledge man-
agement applications. RDF employs a graph-based data model, which is significantly
different than the earlier interoperability standards such as XML (based on DOM and
hierarchical data structures). Data graphs are more flexible than DOM trees because
the queries are more powerful and flexible as they can navigate a graph in any direc-
tion along arbitrary chains of relationships. RDF databases are considered NoSQL
databases since they are queried with other means than SQL – the standard language
for this is SPARQL [13]. Consequently, RDF graphs are the main data model serving
the Linked Data paradigm. They are also related to the concept of Smart Data, if rea-
soning and rule systems are deployed on top of RDF graphs.

The RDF data model is based on small units called statements, describing re-
sources in the form of triples of resource identifiers (URIs):

<Subject> <Predicate> <Object> .

Fig. 1 Resource Description Framework (RDF)

As exemplified in Figure 1, the triples can be visualized as a connected graph, con-
sisting of nodes and arcs. The subjects and objects of the triples are the nodes and the
predicates form the arcs – however, predicates themselves can also be described thus
becoming subjects (nodes) in other graphs. Resources are of two types: addressable,
easy to access on the Web through a URL (files, e-mail accounts, Web services,
HTML paragraphs) and non-addressable, representing abstract or concrete things that
can have a representation on the Web but they generally exist independently of the
Internet (concrete persons, places, attributes, verbs, concepts). This second category
rely on a universal identification scheme - URIs which become the terms used to
write RDF statements and at the same time act like identifiers (similar to ISBNs for

40

books, but also indicating provenance as an HTTP domain). Most of the terms used in
RDF statements are URIs or URLs, but there are some exceptions: the object can be
anonymous/blank, without identity or provenance, or a literal representing a simple
data value of some type - integer, boolean etc. Subjects can also be anonymous/blank,
while the predicate is always an URI. RDF offers multiple syntaxes for writing such
graphs in machine-readable form - the most important ones are Turtle, RDF/XML and
N-triples. The paper's proposed modeling tool is programmed to automatically gener-
ate in N-triples the RDF data graphs that are built by visual means, as enabled by a
metamodeling platform (ADOxx) and methodology (AMME).

2.2 Agile Modeling Method Engineering (AMME)

Agile software development started as a global movement promoting a different way
of thinking than traditional approaches such as waterfall, encouraging evolutionary
development, continuous improvement and adaptability. In order to support agile
development, to transfer agility principles also to the world of conceptual modeling
and to motivate the relevance of agile modeling methods, the framework of AMME
was created. The following paragraph summarizes its role, as described in [10].

AMME is guided by modeling requirements which can evolve as richer semantics
become necessary for design-time and run-time modeling use cases, or are affected by
change requests as users become more familiar with modeling possibilities. The out-
come of AMME is a modeling tool tailored for a customized diagrammatic language,
including any relevant functionality that can be built on models created with that lan-
guage. The OMiLAB environment facilitates the deployment of AMME, fosters a
community of researchers having a common understanding of model value and of the
concept of modeling method as introduced by [14]. Also, the NEMO summer school
event facilitates knowledge transfer between academics, practitioners and educators –
during this, the principles of AMME are taught in dedicated training sessions [15].

AMME has been applied to several OMiLAB projects - some of them are present-
ed in [16]. In our case the key benefit for adopting AMME was related to the evolving
nature of the tool, incorporating gradual understanding of RDF semantics during a
student project, and, on the other hand, facilitating an evolution roadmap towards a
rich knowledge editing environment that has the potential to become a future
OMiLAB project.

2.3 The ADOxx metamodeling platform

ADOxx [8] is a metamodeling platform employed as a fast prototyping environment
for AMME to allow method engineers to develop their modeling method and to itera-
tively loop through a conceptualization lifecycle for incremental enrichment of the
modeling prototype. A meta-metamodel is built in ADOxx to allow the implementa-
tion of a modeling language notation, grammar and vocabulary. In our work, these are
subordinated to the goal of creating RDF graphs by visual means. In addition, an in-
ternal scripting language allows the implementation of model-based functionality,

41

which in our case is the generation of N-triples serializations from the visual struc-
tures.

In ADOxx diagrammatic elements are described by their conceptual schemata de-
fining machine-readable properties to be exposed to the modeler for editing. The
schemata will generate annotation sheets supporting various ways of describing or
linking model elements - they are repurposed in the work at hand to derive RDF de-
scriptions. A formal description of the ADOxx metamodeling approach was presented
in [17].

3 Methodological Considerations

Design Science is a solution-oriented methodology focusing on the design and inves-
tigation of artifacts developed to address a particular problem. For example, the de-
sign of an enterprise modeling method aligned to business goals is subordinated to
Design Science, as opposed to observational science which focuses on the utilization
of such methods. A modeling method becomes usable when deployed as a modeling
tool – however, both a method and a tool can be considered Design Science artifacts
(addressing requirements on different levels of abstraction and reusability). More
generally, artifacts can be models, methods, constructs, design theories. All these
categories are knowledge-containing - the knowledge may cover design logic, con-
ceptualization cycles, tool usage procedures etc. In our case, the artifact is a modeling
tool whose development steps have deployed the building blocks of the "modeling
method" notion published in [14]: syntax and semantics, notation (minimal), mecha-
nisms, modeling procedure. These building blocks will establish the structure of Sec-
tion 5 which details the technical aspects of the implementation.

The proposed tool can be considered the deployment of a modeling method – how-
ever, due to the origin of this tool in a student project guided as a learning experience,
the development process was as follows: we initiated this effort as a simple ADOxx
implementation exercise (triggered by the requirement to support basic RDF editing),
followed by an abstraction exercise (i.e., a reflection on how the results illustrate the
abstract notion of modeling method). For the future, we aim to formalize and extend
this modeling method (as recommended by AMME), then to revisit the tool imple-
mentation coming from an enriched understanding of the modeling method concept
and finally to evolve the tool according to the richer method specifications.

The project aims to address the shortage of visual RDF editing tools by providing
an open use and open source tool for this purpose. In the engineering cycle inspired
by Design Science, the first step was the problem investigation, followed by the
treatment design step (the interaction between artifact and context – a university set-
ting where RDF is being taught as a knowledge representation technique). The next
step, the design validation, takes place whenever changes are being made in artifact –
currently this mostly took the form of basic tool testing. In addition, the treatment
validation also involved the expert opinion of professors supervising the project. The
simulation method has been used as the prototype can be easily applied in a simulated
context for producing RDF graphs given some enterprise description.

42

4 Related Work and Proposed Benefits

A variety of tools have been developed during recent times to support a visual man-
agement of knowledge representations, including knowledge graphs, ontologies or
diagrammatic models. TopBraid Composer [18] combines semantic modeling capa-
bilities with data conversion features, in order to build Semantic Web and Linked
Data applications. MS Visio [19] provides the ability of creating easy and intuitive
diagrams using shapes and templates. An open-source ontology editor and framework
for building intelligent systems, Protege [20], is already supported by a strong com-
munity of both academics and practitioners – it enables users to build ontology-based
solutions, being adopted in areas such as biomedicine, e-commerce etc. However,
Protege does not provide direct conceptual model-driven means of visually creating
RDF graphs (the user cannot add new nodes and properties to an empty view), the
tool only allows creating graphs by using editing forms (subordinated to ontologies)
and afterwards the generation of graph visualizations with the help of plug-ins such as
OntoViz [21].

Callimachus [22] is a data editing platform and provides an easy way to create cus-
tom forms for data entry that end up in RDF graphs. Also, RDF Studio [23] is an en-
vironment for editing, browsing and visualizing RDF and ontologies, however it does
not employ an agile conceptual modeling foundation to allow for free extension and
evolution. DotNetRDF [24] is a Windows GUI toolset that includes a text editor for
RDF, providing syntax highlighting, validation and auto-completion. These are re-
placed in our case by a visual editing tool where correctness is controlled through
metamodeling declarations (domains, ranges, cardinalities) and a script that produces
correct code from the diagrammatic representation. A tool that is closer to our goal is
OWLGrEd [25], one of the first to provide graphical interaction for editing ontolo-
gies.

The proposed modeling tool is based on an evolving modeling method, driven by
changing requirements that originated in a student project. This required the applica-
tion of AMME in building a flexible modeling tool which can also evolve as the RDF
specification evolves, or as additional features are required. Flexibility is enabled by
employing metamodeling and ADOxx, where both the visualization layer and the
code generation layer can be further enriched. In the current iteration the proposed
tool is limited to instance-level graphs and limited schema support, therefore it does
not extend to the scope covered by e.g., OWLGrEd. However, its implementation
relying on OMiLAB resources (AMME, ADOxx) is open to a flexible evolution, and
to an investigation of mapping the formal semantics of RDF and OWL to underlying
metamodeling structures that facilitate the tool implementation.

43

5 Method Conceptualization

5.1 Syntactic and Semantic Specification (Metamodel)

The modeling tool presented in this paper allows the visual construction of RDF data
graphs. The syntax in RDF is the set of rules and principles that govern the structure
of RDF statements, as composed of the three terms: a subject, a predicate (or proper-
ty, relation, attribute) and an object. Based on these, a modeling symbol has been
attached to each machine-readable concept in the ADOxx Development Toolkit.

Figure 2 describes the concepts that have explicit machine-readable semantics
based on the minimum graph-based RDF semantics. The root class, D_construct,
provides the predefined ADOxx skeleton for all concepts in modeling tool, any con-
cept inherits from it several built-in properties allowing the definition of graphical
notation and the conceptional schema of attributes for editable annotations/properties.
The class Node was created for inheritance purposes, as this is not visible to users.
The other subclasses represent the typical term types in RDF statements (URI/URL,
Simple/Literal values, Anonymous/Blank, RDF Class). URI allows to set the prefix,
whereas Literal values can get a data type and a language code as annotations. All of
these terms are contained in Graphs, which is a class created for aggregation purposes
(see the graphic container in Figure 4).

Modeling relations manifest as visual connectors, inside a model type. The rela-
tions created in the ADOxx Development Toolkit are highlighted in Figure 3, to cap-
ture some of the standard relations that occur in RDF graphs (rdf:type,
rdfs:subClassOf) as well as visual connectors that become predicates.

Fig. 2. Concepts having explicit machine-readable semantics

44

Fig. 3. Relation classes proposed in the modeling tool

5.2 Model Serialization Mechanism

The proposed modeling tool is based on the model-driven code generation paradigm
as an ADOxx script was developed to generate in N-triples syntax a serialization of
the diagrammatic graphs. In the ADOxx Development Toolkit a menu item was creat-
ed to trigger the script and generate the serialization code. Also, a function was creat-
ed for storing internal IDs of modeling objects according to every connector that is
created in diagrammatic models, which form the statements created graphically by the
user by drawing the property relation between the subject and object nodes.

Figure 4 presents an example of a model and also the usage flow: the user creates
visual data graphs – for each GUI event object IDs are stored in a text file; afterwards,
this file is converted by a user-triggered menu item in the N-triples syntax according
to the types of various nodes.

Fig. 4. Example of enterprise data graph created in the modeling tool

45

The ADOxx script (see a code sample in Figure 5) for generating serializations in the
N-triples syntax comprises the following procedures:

─ Procedure "GetGraphPrefix" searches graphs in the active model and obtains their
ids. For each graph found, it searches for the attributes and the value is stored for
using it further on nodes, to form the URIs;

─ Procedures "TransformURI", "TransformAnonymous", "TransformSimpleValue",
as the IDs of nodes have been sent to transform from object ID to the specific
forms prescribed by the N-triples syntax: <URI> for nodes of type URI, under-
score-prefixed identifiers for Anonymous, and typed values for literal nodes. For
URIs, the graph-level prefix is added;

─ Procedures "TransformType", "TransformSubClassOf", the IDs of visual connect-
ors are transformed according to their prescribed types (rdf:type, rdfs:subClassOf)
or according to their URI.

Fig. 5. ADOxx script sample for generating N-triples

5.3 Modeling procedure

As suggested before, the modeling procedure is determined by how different steps of
the code generation were scripted: IDs are collected through GUI interaction events
and written in a text file during the graphical creation of connectors. Then, the user
decides when to convert this collection of IDs into N-triples according to the syntactic
rules of N-triples.

46

Validation checks are also applied to ensure correctness: the metamodel-level con-
straints allow the user to create graphs to contain any subjects, predicates and objects
as long as the statements are correctly and conforming to RDF principles. In other
words, it prevents errors such as: a simple value cannot be a subject, a "subClassOf"
connector can only connect "Classes" etc. Another aspect that requires sanity checks
is the graph structure: the statements must be part of some graph, and also this graph
must have a previously defined prefix/namespace attached to it. This opens the path to
further extend the tool towards a more refined distinction between named graphs and
simple graphs.

6 Conclusions and Outlook

The paper contributes to research related to the implementation of modeling tools that
support users in expressing graph-like knowledge conforming the Resource Descrip-
tion Framework. RDF data graphs have a high degree of flexibility in data representa-
tion, which can be easily integrated on a metamodeling level to support the creation of
enterprise knowledge graphs by visual means. The modeling tool described in this
paper can have impact in the Linked Enterprise Data area - however current evalua-
tions did not involve real stakeholders. The tool was only used in a teaching environ-
ment and in a testing context. An RDF creation productivity framework is under de-
velopment to support the compared evaluation of such tools.

The proposed modeling tool showcases the agility enabled by AMME in creating
purposeful tools that do not deploy a traditional modeling language, but rather a dia-
grammatic method for producing technology-specific code. This can be included in
the paradigm of Technology-Specific Modeling Languages, a flavor of Domain-
Specific Modeling Languages as introduced in [26].

In future work, additional mechanisms will be added to allow integration with on-
tologies that will also be created with diagrammatic means (see [27]). The ontology
level is now only rudimentary supported by the attachment of types to graph nodes.

7 References

1. Wood, D.: Linking Enterprise Data, Springer (2010)
2. Resource Description Framework (RDF), https://www.w3.org/RDF/, last accessed

2018/08/26.
3. RDF 1.1 N-Triples, https://www.w3.org/TR/n-triples/, last accessed 2018/08/26.
4. OMiLAB Global Network, http://www.omilab.org/psm/home, last accessed 2018/08/26.
5. Bork, D., Miron, E. T. "OMiLAB - An open innovation community for modeling method

engineering", Proceedings of ICMIE 2017, Niculescu Publishing, p. 64-77 (2017).
6. MODELIO, https://www.modeliosoft.com/en/, last accessed 2018/08/26.
7. D2RQ, http://d2rq.org/, last accessed 2018/08/26.
8. ADOxx.org, https://www.adoxx.org/, last accessed 2018/08/26.
9. Karagiannis, D.: Agile modelling method engineering. In: Proceedings of PCI 2015, pp. 5-

10, ACM, New York (2015)

47

10. Karagiannis, D.: Conceptual Modelling Methods: The AMME Agile Engineering Ap-
proach, LNBIP 273, pp 3-19, Springer, Berlin Heidelberg (2018)

11. Bee-Up, http://austria.omilab.org/psm/content/bee-up/info, last accessed 2018/08/26.
12. Buchmann, R.A., Karagiannis, D., Visic, N.: Requirements definition for domain-specific

modeling languages: the Comvantage case. In: Proceedings of BIR 2013, LNBIP 158, pp.
19-33, Springer, Berlin Heidelberg (2013)

13. SPARQL Query Language for RDF, https://www.w3.org/TR/rdf-sparql-query/, last ac-
cessed 2018/08/26.

14. Karagiannis, D., Kuhn, H.: Metamodelling Platforms. In: Proceedings of EC-Web 2002,
LNCS 2455, pp 182. Springer, Berlin Heidelberg (2002)

15. Next-Generation Enterprise Modelling in the Age of Internet of Things,
http://nemo.omilab.org/2018/, last accessed 2018/08/27.

16. Karagiannis, D., Mayr, H. C., Mylopoulos, J. (Eds.), Domain-Specific Conceptual Model-
ing, Springer (2016)

17. Fill, H. G., Redmond, T., Karagiannis, D.: Formalizing Meta Models with FDMM: The
ADOxx Case, Proceedings of ICEIS 2012, LNBIP 141, pp 429-451, Springer, Berlin Hei-
delberg (2018)

18. TopBraid Composer Maestro Edition, https://www.topquadrant.com/tools/ide-topbraid-
composer-maestro-edition/, last accessed 2018/08/26.

19. Visio - Microsoft Store, https://www.microsoft.com/en-us/store/collections/visio, last ac-
cessed 2018/08/26.

20. Protege, https://protege.stanford.edu/, last accessed 2018/08/26.
21. OntoViz, https://protegewiki.stanford.edu/wiki/OntoViz, last accessed 2018/08/26.
22. Callimachus, http://callimachusproject.org/, last accessed 2018/08/26.
23. RDFStudio, http://www.linkeddatatools.com/rdf-studio, last accessed 2018/08/26.
24. DotNetRDF, http://www.dotnetrdf.org/, last accessed 2018/08/26.
25. OWLGrEd, http://owlgred.lumii.lv/, last accessed 2018/08/26.
26. Harkai, A., Cinpoeru, M., Buchmann, R. A.: The “What” Facet of the Zachman Frame-

work – A Linked Data-Driven Interpretation, In: CAiSE 2018: Advanced Information Sys-
tems Engineering Workshops, pp. 197-208, Springer (2018)

27. Fill, H. G.: SeMFIS: A Flexible Engineering Platform for Semantic Annotations of Con-
cep-tual Models, Semantic Web 8 (5): 747-763 (2016).

48

	1 Introduction
	2 Background on Technological Enablers
	2.1 Resource Description Framework (RDF)
	2.2 Agile Modeling Method Engineering (AMME)
	2.3 The ADOxx metamodeling platform

	3 Methodological Considerations
	4 Related Work and Proposed Benefits
	5 Method Conceptualization
	5.1 Syntactic and Semantic Specification (Metamodel)
	5.2 Model Serialization Mechanism
	5.3 Modeling procedure

	6 Conclusions and Outlook
	7 References

