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Abstract.  
Smart contracts gain rapid exposure since the inception of blockchain 
technology.  Today's smart contracts are coded in non-mainstream 
procedural programming languages (e.g. Solidity for Ethereum), 
which lifts the requirement to draft enterprise ready smart contract to 
both a legal professional and a programmer instead of only the former. 
In search for a smart contract language that reduces the threshold to 
draft one, this conceptual paper elaborates how business logic can be 
converted to executable code for commitment-based smart contracts. 
Hereby, a contract is viewed as a set of reciprocal commitments. The 
smart contract ensures the automated execution of all or most of these 
commitments. In order to leverage its event processing capabilities, 
Reaction RuleML has been used to appropriately represent the 
elements and working of passive and active rules within a 
commitment based smart  
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Smart contracts combine protocols with user interfaces to formalize and 
secure relationships over computer networks. Objectives and principles 
for the design of these systems are derived from legal principles, 
economic theory and theories of reliable and secure protocols [1]. The 
concept of smart contracts emerged in the 1990s, but only gained 
exposure since the inception of blockchain technology. Today's smart 
contracts are coded using imperative programming languages, in 
mainstream programming languages (e.g. Javascript and Go for 
Tendermint) and non-mainstream procedural languages (e.g. Solidity for 
Ethereum) or. Representing contractual terms in code rather than natural 
language, could bring clarity and predictability to agreements, as a smart 
contract could then be tested against a set of material facts, allowing legal 
professionals on either side to know precisely how the contract would 
execute in every computationally-possible outcome [2]. 

In order to make smart contracts more familiar to ordinary internet 
users, it is important to minimize the threshold to read and write them, in 
particular for users from the legal practice who draft paper-based or 
electronic legal contracts (from now: conventional contracts). In this 
context, [2] has built an argument for logic-based smart contracts. In 
contrast to procedural languages, declarative languages, and logic-based 
languages in particular, strive for the ideal of programming by wish: a 
legal professional states what he or she wants, and the computer figures 
out how to achieve it [2]. Declarative programming therefore splits into 
two separate parts: methods for humans on how to write wishes, and 
algorithms for computers that fulfil them [3]. The consideration to use 
declarative languages for smart contracts has several objectives. (1) 
Current implementations of smart contracts unintentionally add a third 
party to the process; the requirement for a programmer or programming 



knowledge to write a smart contract, which is in sharp contrast to the 
promise of smart contracts to remove intermediaries [4] and lower or 
nullify transaction costs altogether [5]. (2) In common legal practice, 
procedural and regulatory rules are written in natural language. Legal 
professionals are not expected to become programmers or vice versa. (3) 
It is unlikely that a legal professional can verify the legal validity of a 
smart contract coded by a programmer in a procedural language and it is 
therefore unlikely that large businesses will adopt smart contracts under 
these circumstances.  Based on these objectives, we believe that there is 
need for a logical format that smart contract verification interpreters, that 
are immutable and live on the blockchain, can actually understand [6]. 
Several languages such as LKIF (knowledge interchange), SBVR 
(knowledge discovery), PENELOPE, ConDec (temporal knowledge), 
ContractLog, OWL-S2, eSML [7] and RuleML, have been proposed to 
facilitate this process for various useful purposes, but mostly from a 
generic knowledge engineering context and none for smart contracts in 
specific.  

Our research objective is to make a theoretical contribution to the 
science of contract languages for (logic-based) smart contracts. Chopra's 
concept of business contracts as a bundle of commitments is applied using 
RuleML as a markup language for drafting smart contracts. We evaluate 
existing approaches using declarative rules [8] and introduce an 
alternative using reaction rules via the RuleML sublanguage Reaction 
RuleML, whereby a commitment is evaluated as an (economic) event. 
The practical goal of this paper is to set a future direction for commitment-
based smart contracts by exploring to what extent business rules in natural 
language can be translated to code that is applicable to any blockchain 
platform.  

This paper is structured as follows. First, we explore the elements of 
commitment-based smart contract and possible execution styles, followed 
by an introduction to Reaction RuleML, code examples per execution 
style and a conclusion.  

Elements of a Commitment-Based Smart Contract 

A contract is a legally binding or valid agreement between two or more 
parties. The main objective of a contract is to fulfill a certain goal and to 
safeguard against undesirable outcomes, together referred to as contract 
robustness [2]. Contracts that are not robust may lead to transaction costs, 
expensive conflict resolution, or even a collapse of a transaction as a 
whole. 

It might be objected that commitments represent the positive actions to 
be performed by the actors only. What about prohibitions? For instance, 
a music customer is not allowed to copy the music he can download. In 
some cases, like the music copying, there may be technical means to make 
the prohibited action impossible, but there are also actions of agents that 
are not under control. In these cases, what the parties should commit to, 
is to take the consequences (e.g. paying a penalty). The prohibition – don’t 
do A – is reformulated as a contingency commitment – IF <A> THEN 
<consequence>, where a transformation is described between deontic 
logic and dynamic logic [9]. In the example, the customer commits 
himself to be a penalty when he has made an illegal copy. Our claim is 
that all contract clauses can be similarly represented as commitments 
(validation of this claim is out of the scope of this paper). 

In the context of blockchain, a commitment is equal to a future 
transaction, the robustness of their smart contract depends on how its 
commitments relate to the goals of the contract parties [2]. This definition 



implies that a commitment-based smart contract should at least contain 
goals, commitments, conditions to execute and timing constraints.  

As each contract goal consists of reciprocal commitments. In line with 
the economic exchange pattern [10], the duality between parties consists 
of rights and obligations. For every obligation that A owes to B, there is 
a balancing right from B to A. Commitments can both be financial (e.g. 
payment) or non-financial (e.g. promise to deliver a good) and may or 
may not happen under certain circumstances and a specified time.  

Since there is no formal way to schedule transaction events via the 
blockchain protocol itself [11], smart contracts should be coded in such a 
way that they are schedulable, based on timing or other conditions. In 
order to mitigate this limitation, various solutions are presented in the 
smart contract community with regard to smart contracts execution 
method. 
 

Method Explanation Advantage Disadvantage 
Lazy Execution 
(Must call to 
execute paradigm) 

Transactions are 
initiated by an 
actor, either 
manually or 
scheduled 

Low compute costs 
Lower complexity 
due to lack of nesting 
inside contract code 

Less automation and 
leverage of the power 
smart contracts 

Eager Execution The smart 
contract polls for 
events in order to 
trigger reciprocal 
transactions 

Fully automated 
Transactions provide 
security that they 
happen. Humans may 
forget to initialize a 
transaction when they 
should.  

Full automation 
results in higher 
compute complexity, 
which equals 
transaction costs.  

 
Figure 1. Smart contract execution modes 

 
In this paper, we provide code examples of business rules within 
commitment based smart contracts using Reaction RuleML, for both 
execution methods, as they are both relevant in practice today. Besides 
the execution method, we have made other considerations that can be 
summarized as follows: 
 

• Transaction events are atomic, meaning that they happen in total 
(‘execute’ in the technical sense) or not happen at all.  

• The business logic (or rules of engagement) for economic 
settlement, is preferred to executed on-chain  

• Each commitment that has time constraints consists of at least 
two smart contracts, since a second smart contract is created that 
takes care of the scheduled call of business logic in the ‘main’ 
smart contract  

• Smart contract transactions for settlement are initialized by the 
smart contract itself, not by the parties involved, since the smart 
contracts protects the interests of all actors.   

RuleML 

RuleML is as markup language with the ability to express business rules 
as modular, stand-alone units. It can be extended and possesses the ability 
to resolve conflicts using priorities and override predicates [8].  RuleML 
adopts Java's class versus method naming convention by distinguishing 



upper-case type tags from lower-case role tags, and uses the Datalog 
sublanguage of Horn logic as its kernel foundation.  

Commitments can be simulated by both branches of the RuleML 
family of rules; transformative (declarative) rules and reactive rules. 
Derivation rules are believed to provide the most accurate conceptual 
representation of a contract. The main goal of a declarative rule is 
knowledge generation [12], whereby the validation of a premise will 
induce or justify a conclusion. Multiple rules can hereby be related to a 
single conclusion. [8] used declarative rules convert natural language 
contracts (in its existing form) into executable code using RuleML. Their 
approach aimed to mitigate RuleML's limitative support for reasoning on 
deontic concepts and its lack of ability to identify the behavior of roles in 
the contract and contract violations. According to this view, monitoring 
on contract performance deals with normative concepts like obligation, 
permission, prohibition (violation) and behavior. Since commitments do 
not follow traditional contract logic, we broadened our search for other 
rule structures within the RuleML family that provide better fit for the 
event driven nature of commitment based smart contracts. 

Reaction rules are concerned with the invocation of actions in response 
to (complex) events and actionable situations [13]. Reaction RuleML is 
the quasi-standard for representing reaction rules. It is regarded as a user-
friendly XML- serialized sublanguage of RuleML and acts as an 
interchange format for reactive rules and rule based event-processing 
languages. Reaction rules using Reaction RuleML typically implement 
forward-chaining operational semantics for Condition-Action rules where 
changing conditions trigger update actions, like IF/THEN/ELSE 
(derivative reasoning), IF/DO (production rules), ON/DO (trigger rules), 
ON/IF/DO (Event-Condition-Action or ECA) or a variation of ON/IF/DO 
and IF/THEN (Knowledge Representation or KR) [14].  

Blockchain is considered to be a distributed database to transfer 
value or value derivatives (tokens). The introduction of smart contract 
functionality brought along functionality from the active database 
domain, like inserting and triggering. Nevertheless, blockchain is not 
limited to be an active distributed database either, since it has the 
capability to interact with (complex) events that consider time- and other 
constraints. Other (non-exhaustive) meta-model considerations for 
commitment based smart contract rules are summarized below: 

 
• Since we consider commitments as social economic events that 

may contain other events (e.g. to pay) [15], the rules themselves 
should be event oriented.  

• These events should be callable or detectable, which allows IF 
conditions to be specific for detected events only. 

• The meta-model should allow multiple event definitions to be 
part of the same rule procedure, in order to process a contract 
goal as a bundle of reciprocal commitments.  

• It is preferred to support smart contract wide states (e.g. deposit 
percentage) that apply to the entire smart contract, instead of 
defining them on run-time. This will maximize re-usability and 
consistency when contracts grow in complexity. 

• Prohibitions or violations are not similarly handled compared to 
conventional contracts [16]. The prohibition – don’t do A – is 
reformulated as a contingency commitment – IF A THEN 
<consequence> or ON A DO <consequence> in order to 
eliminate the need for complex and hard-to-maintain ELSE 
statements.  

 



The remainder of this paper shows how lazy and eager rules 
within the commitment based contract can be defined.  RuleML inhibits 
three execution styles for rules: passive, active and reasoning. Figure x 
shows how passive and active rules align with the smart contract 
execution styles.   

 
Method Blockchain Method Reaction RuleML Explanation 
Lazy Passive The smart contract 

'passively' waits for 
incoming events 

Eager Active The smart contract 'actively' 
polls/detects occurred 
events 

 
Figure 2. Aligning smart contract execution and Reaction RuleML execution modes 

 
Smart contract transactions are in essence text messages that are mined 
by network nodes. As a result, we depict transactions as <Messages> in 
Reaction RuleMl. The code examples provided fully adhere to the design 
considerations as presented in the previous section 
 
Lazy execution 
 

Passive reaction rules wait for incoming events in order to trigger an 
action. In this example, we assume an <event> that contains a <Message> 
that is sent to the smart contract. This message may (transaction) or may 
not (query) change the state of the smart contract (e.g. balance), a 
condition that can be used in the <body>. For example, it could be verified 
is there is a change to the state or if there is an outstanding obligation 
between the sender and the receiver. Once the condition is fulfilled, the 
smart contract triggers an automatic response message <action>, which 
sends a <Message> to the blockchain network to settle the balance.  
 
<Reaction style=”passive”> 
 <event> 
  <Message mode=”inbound”> 
   <oid><Var>PaymentID</Var></oid> 
   <protocol>Protocol</protocol> 
   <sender>SenderPublicKey</sender> 
   <receiver>ContractPublicKey</receiver> 

  <content> 
<Var>Amount</Var> 

</content> 
  </Message> 
 </event> 
 <body> 
  <Naf> 
   <Atom> 
    <Var>NoObligationLeft</Var> 
    <Var>T</Var> 
   </Atom> 
  </Naf> 
 </body> 
 <action> 
  <Assert> 
   <Message mode=”outbound”> 
    <oid><Var>PaymentID</Var></oid> 
    <protocol></protocol> 
    <sender>ContractPublicKey</sender> 
    <receiver> 

NetworkNodes 
</receiver> 

   <content> 
<Var>Balance</Var> 

</content> 
   </Message> 
  </Assert> 



 </action> 
</Reaction> 

 

The same workflow holds for rights as well. The fact that a party has the 
ability to call (or schedule) execution when they want, gives a sense of 
control to stakeholders with regards to when actions are executed and 
transaction costs are incurred. Due to the lower compute costs involved 
with lazy execution, it is a popular way of designing smart contract rules.  
 
Eager execution 
 

Active reaction rules poll in order to verify whether or not an event has 
taken place by checking the changes to the state of the smart contract. This 
method does not require an additional smart contract that serves as the 
scheduler. All code can be part of one smart contract. In this example, we 
verify every hour through an <event>, whether or not a payment has been 
made that changed the state or settled an obligation from the sender to the 
receiver. Similar to lazy execution, once the condition is fulfilled, the 
smart contract triggers an automatic response message <action>, which 
sends a <Message> to the blockchain network to settle the balance. 
 
 
<Reaction style=”active”> 
 <event> 
  <Reaction> 
   <event> 
    <Atom> 
     <Rel>everyHour</Rel> 
     <Var>T</Var> 
    </Atom> 
   </event> 
   <action> 
    <Atom> 
     <Rel>detect</Rel> 
     <Var  

   type=”paymentEvent” 
   mode=”-”>Payment</Var> 
<Var>T</Var>   

    </Atom> 
   </action> 
  </Reaction> 
 </event> 
 <body> 
  <Naf> 
   <Atom> 
    <Rel>NoObligationLeft</Rel> 
    <Var>T</Var> 
   </Atom> 
  </Naf> 
 </body> 

<action> 
  <Assert> 
   <Message mode=”outbound”> 
    <oid><Var>PaymentID</Var></oid> 
    <protocol></protocol> 
    <sender>ContractPublicKey</sender> 
    <receiver> 

NetworkNodes 
</receiver> 

   <content> 
<Var>Balance</Var> 

</content> 
   </Message> 
  </Assert> 

</action> 
</Reaction> 
 



Conclusion 

This conceptual paper examines rule definition for commitment-based 
smart contracts using Reaction RuleML as the declarative smart contract 
language. We have distinguished two execution modes for smart 
contracts: lazy execution and eager execution. A commitment based smart 
contract code example is provided for each execution mode in order to 
illustrate how rules can be coded. These code examples comply to non-
exhaustive design considerations with regards to reliability and 
accountability. Since both methods are used in parallel in practice, the 
paper aimed to provide a sufficient introduction to these modes and its 
semantics.  

The Reaction RuleML examples in this paper are a first step. An 
important next step for the development of commitment based smart 
contracts as a concept is to apply it in distinctive use-cases and 
implementation options, as well as the verification of input events, in 
particular when these events are outside the blockchain. In addition, the 
code examples could be simplified by extending Reaction RuleML with 
dedicated properties for commitment based smart contracts. 
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