
Nautilus Event-driven Process Chains:
Syntax, Semantics, and their mapping to BPEL

 Oliver Kopp, Tobias Unger, Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

70569 Stuttgart
{oliver.kopp, tobias.unger, frank.leymann}@iaas.uni-stuttgart.de

Abstract: Nautilus Event-driven Process Chains (N-EPCs) are a variant of Event-
driven process chains allowing multiple events between functions. This allows
events to be used as transition conditions in a mapping to the Business Process
Execution Language for Web Services (BPEL). We will give a formal definition of
N-EPCs and show how they can be mapped to BPEL. A close look will be taken
how connectors can be eliminated while preserving their semantics.

1 Introduction

Event Driven Process Chains (EPCs) were introduced in 1992 as an intuitive metamodel
for process modeling [KNS92]. The business process modeling tool Nautilus [Ge06a] is
using a slightly modified version of EPCs, which we call Nautilus Event-Driven Process
Chains (N-EPCs). The main difference is that in N-EPCs functions and events need not
alternate, allowing multiple events between functions. This enables a more detailed
modeling of the control flow by allowing nested conditions such as “amount > 1 million
euros and premium customer”. Figure 1 illustrates this using a simplified process for
loan application processing. Surely, this can also be modeled using the traditional EPCs
of [KNS92] by adding functions that execute nothing. However, the N-EPC approach
makes this addition obsolete and eases reading the modeled EPCs.

Figure 1: N-EPC describing a simplified process for loan application processing

85

Enabling multiple events between functions allows a detailed modeling of conditions
between functions. N-EPCs are neither directly executable in BPEL compliant workflow
systems nor do BPEL modeling tools support the import of N-EPCs and EPCs. On the
other hand, a large number of workflow systems and modeling tools support the
Business Process Execution Language for Web Services (BPEL, [An03]). Thus, we map
N-EPCs to BPEL to enable both, their execution and import into BPEL tools.

In the following, we first describe the basics of N-EPCs, including their syntax and a
discussion of their semantics. The main sections of this paper are devoted to the mapping
to BPEL, covering in detail how events, connectors and functions get mapped.

2 Event-driven Process Chains in Nautilus

Nautilus Event-Driven Process Chains (N-EPCs) build the basis of the metamodel of
Nautilus. An N-EPC consists of three different types of nodes: events, functions, and
connectors. An event describes a state of the modeled process. A state is the result of a
previous step, can trigger next steps or both. A function describes a step in the process.
Connectors join or fork the control flow. A connector is either an AND, an OR, or an
XOR connector. For the labeling of functions and events, the concept of objects, verbs,
and states is introduced. A function is doing something with an object. After the
processing, the object is in a new state. Therefore, functions are labeled with a verb and
an object and events are labeled with a state and an object. Events and functions need not
to be alternating. Transition from one function to another may be via multiple events.
Figure 2 shows the elements of an N-EPC.

Figure 2: Elements of an N-EPC

An event directly after a function is called “trivial event”, because it always occurs after
a function has been executed. The object of a trivial event is the same as in the preceding
function. It is a modeling convention to use the participle of the verb as the new state of
the object. For a detailed discussion of the convention see [Ge06b]. An event labeled
with (o,s) occurs, if the state of the object o changes to the state s.

2.1 Syntax

There are several approaches for formalizing the syntax of EPCs. [NR02] and [Ki04]
provide one of them. Since the metamodel of N-EPCs is different from the one
introduced in [KNS92], we have to introduce a new formal definition. This formalism
stays close to the one found in [Ki04].

86

Notation 1 (Set of all sequences). Let T be any set. By T+ we denote the set of all finite
sequences over elements of the set T, e.g. T={0,1}, then T+={0,1,00,01,10,…}.

Definition 1 (N-EPC). An N-EPC is a tuple M=(E,F,C,A,l,T,V,O,S) satisfying:

• E,F,C are disjoint sets

• E is a set of events

• F is a set of functions

• C is a set of connectors

• A is a set of arcs, A⊂(E∪F∪C)×(E∪F∪C).

• T is a set of terms

• V is a set of verbs

• O is a set of objects

• S is a set of states

• l is the labeling function: l: (E∪F∪C∪V∪O∪S) → (V∪O∪S∪T+),

To ease reading, we introduce following notations:

Notation 2 (Predecessors and successors). Let N be a set of nodes and let A⊆N×N be
the set of arcs. For each node n∈N, adj+(n)={m|(n,m)∈A} denotes the successors of the
node and adj-(n)={m|(m,n)∈A} denotes the predecessors of the node. If there is only one
successor, adj +1 (n) returns that successor and adj −1 (n) that predecessor:

,

“⊥” indicates “undefined”. It is included in the definition to let adj +1 (n) and adj −1 (n)
return a value for all n∈N.

Notation 3 (Connected nodes). Let N be a set of nodes and let A⊆N×N be the set of
arcs. For each node n∈N, adj*(n) denotes the transitive closure, i.e. the set of all directly
or indirectly connected nodes including the node n itself.

87

M is a valid N-EPC if it satisfies the following conditions:

1. Each function has exactly one successor. That successor is an event1:
∀f∈F: |adj+(f)|=1 and adj +1 (f)∈E

2. Each function has at most one predecessor:
∀f∈F: |adj-(f)| ≤1

3. Each event has at most one predecessor and at most one successor:
∀e∈E: |adj-(e)| ≤1 and |adj+(e)| ≤1

4. Events are connected by connectors, are triggered by functions or trigger
functions:
∀e∈E: (|adj-(e)|=1 ⇒ adj −1 (e) ∈ F∪C) and (|adj+(e)|=1 ⇒ adj +1 (e) ∈ F∪C)

5. Events and connectors are always directly or indirectly connected to a function:
∀n∈E∪C: ∃f∈adj*(n): f∈F.

6. There are no self loops2:
∀c∈C: (c,c)∉A

7. There has to be at least one event between an OR connector with more than one
successor and a function:
∀w∈{((n0,n1),(n1,n2),…,(nj-1,nj))| (ni,ni+1)∈A, 0≤i<j, n0∈C, l(n0)= , |adj+(n0)|>1,
nj∈F, nk∈E∪C, 0<k<j}: ∃nk: nk∈E

8. There has to be at least one event between an XOR connector with more than
one successor and a function:
∀w∈{((n0,n1),(n1,n2),…,(nj-1,nj))| (ni,ni+1)∈A, 0≤i<j, n0∈C, l(n0)= , |adj+(n0)|>1,
nj∈F, nk∈E∪C, 0<k<j}: ∃nk: nk∈E

We call a connector with more than one successor a “fork” and a connector with more
than one predecessor a “join”. A connector can be a fork and a join if it has more than
one successor and more than one predecessor. In addition, we call a connector with as
label “AND connector”, with as label “OR connector”, and with as label “XOR
connector”.

2.2 Semantics

[Ge06b] does not contain a formal semantics of N-EPCs, leaving room for mulitple
interpretations. For explaining the intended semantics, we use the process folders from
[vdADK02]. Process folders are comparable to tokens in a Petri net. Process folders
mark the current active functions, events, connectors, and arcs in an N-EPC. An N-EPC

1 The metamodel does not distinguish between trivial events and other events, since a trivial event is defined as
the event directly following a function.
2 It is sufficient to add a constraint for c∈C, because rules 1 to 4 ensure that events and functions cannot be
connected to themselves.

88

does not contain explicit start- or end-nodes. The initial state of an N-EPC is formed by a
non-empty sub-set of nodes without incoming arcs that are marked with a process folder.
The end of the processing of an N-EPC is formed by process folders that are only at
nodes without outgoing arcs. During execution, the process folder is passed by the nodes
of the N-EPC. A function takes the process folder on its incoming arc, executes and puts
the process folder on its outgoing arc. An event takes the process folder on its incoming
arc and owns the process folder. As soon as it occurs, it puts the process folder on its
outgoing arc. The arcs themselves do nothing with the process folder. Connectors fork
and join process folders. We will first explain the semantics of forks and afterwards the
semantics of joins.

Generally speaking, a fork connector ensures that the incoming process folder gets
propagated to the next join or function. If a fork connector has multiple incoming edges,
it is first treated as a join connector, which is explained below. If a fork connector has
one incoming arc, the process folder on the incoming arc is taken and put on its outgoing
arcs according to the label of the fork. If the connector is an AND fork, the folder is put
on all of its outgoing arcs. If the connector is an OR fork, the folder is put on at least one
of its outgoing arcs. If the connector is a XOR fork, the folder is put on one of its
outgoing arcs. For XOR and OR forks, the decision, which arc is taken depends on the
succeeding events. Therefore the semantics of XOR and OR forks is non-local. See
Figure 3 as example: Arc 1 is active. Since the XOR connector has only one predecessor,
it takes the process. If event e1 occurs, the XOR connector puts its process folder onto
arc 2. If event e2, event e3 or both events occur, the process folder is via arc 3. If e1 and
e2 occur, the behavior is non-deterministic: The following things can happen: An error is
raised to the outside3, the XOR connector doesn’t pass the process folder at all, the
process folder is passed at random to arc 2 or to arc 3 or even to both arcs.

Figure 3: N-EPC4 illustrating multiple events between functions

If the events are chained, the evaluation gets more complicated. Figure 4 contains an
example. There, e1 and e2 can both occur. If e3 and e4 occur, the process folder gets
passed to arc 2, even if both event e1 and e2 occurred. If e3 and e4 do not occur, e5 or e6
will occur so that the process folder is passed to arc 3. Therefore, the decision cannot be
taken by solely looking at the first reachable events. All events on the path from the
XOR connector to each function have to be regarded. This is specific to N-EPCs, since
there possibly is more than one event between an XOR connector and a function.

3 That means, the human reader (and executer) of the N-EPC is stopping executing the process and should talk
to his manager.
4 If the labeling with tuples is not important for the description, we omit that labeling and just use unique labels

89

e5

e6

e1

e4

e3

f1 te1

f2

f5

f4

f3

e2

2

3

1

Figure 4: N-EPC illustrating multiple events between functions

We first describe the semantics informally, and then formalize it: An active XOR
connector triggers5 if exactly one of its outgoing arcs can trigger. An activated OR
connector triggers if at least one of its outgoing arcs can trigger. An activated AND
connector triggers if all of its outgoing arcs can trigger. An arc triggers if its target
element can trigger. A function can always trigger. Finally, an event can trigger if it has
occurred and its successor can trigger. It is important that besides the occurrence of the
event its successor can trigger, since all the events on the way to the next function have
to be regarded. It is not always known in advance when a certain event occurs. A state
change of an object can happen because the object was modified by a function or
because the modification of the object was not modeled by the N-EPC. In the latter case
the event is called “external event”. An external event can be “temperature below 25°C”.
The change of the object “temperature” can be modeled by a function “get temperature”,
but the definition of N-EPC does not force that an object’s state can only be modified by
functions. This fact makes the evaluation of a function “canTrigger” time-dependent.
The formalization of this time-dependency is the subject of our current research. The
formal definition of canTrigger without considering the time-dependency is as follows:

Definition 2 (Function canTrigger): The function canTrigger(x) returns true if the
element x can trigger, false otherwise. The function eo returns true, if exactly one of its
parameters is true. An event e is true if it has occurred.

The time-dependency has no influence on the verification of the N-EPCs, since every
possible execution path in an EPC is considered for the verification (see [Me06] for an
example of verification of EPCs). In the verification, a fork connector can always
trigger. Therefore, the connectors pass the process folders randomly to their successors,
according to the connector’s semantics. I.e. the XOR connector passes the process folder
to one of its successors, the OR connector passes the process folder to either one, two,

5 We use the term “trigger” as a description for the situation that the element of the EPC is active and passes
the process folder to one or more outgoing arcs. An arc “triggers” if it is active and it passes the process folder
to its target element.

90

…, or all of its successors and the AND connector passes to process folder to all of its
successors without evaluating canTrigger().

It is important to note, that there is a modeling convention that the first fork following a
function can always trigger. The semantics shown in [NR02] and [Ki04] share this
convention since these semantics assume that a fork will always trigger.

In EPCs, the semantics of XOR and OR joins is non-local [NR02], which also applies
for N-EPCs. Non-locality means that means that the XOR connector triggers if one
incoming arc is active and all other incoming arcs: (a) not active, and (b) cannot become
active if other elements of the EPC are triggering. The OR connector triggers if at least
one incoming arc is active and all other arcs cannot become active. This informal
description has been formalized in [NR02] using a transition relation. The given
transition relation leads to problems in certain EPCs, first discussed in [vdADK02] and
solved in [Ki04]. Figure 5 shows the sample from [vdADK02] in N-EPC notation.

te1af1a e1a

f1b te1b e1b

te2af2a

f2b te2b

Figure 5: N-EPC showing a vicious circle

According to the semantics in [NR02], if the two XOR connectors are active, they will
never propagate the process folder to their successors [vdADK02]. The mapping to
BPEL will restrict the N-EPCs, preventing the occurring of any vicious circles.

Besides vicious circles, joins can be interpreted in two ways. We take the AND join as
an example to illustrate them. One interpretation can be that as soon as one incoming arc
becomes active, it is sure that all other incoming arcs will become active. If not, it is a
modeling error. The semantics introduced in [LSW97] uses this understanding. The
second interpretation of an AND join is, that it propagates the process folders if all
incoming arcs are active. In all other cases it does not propagate the process folder. In
particular, this case is not a modeling error. If a connector does not propagate a process
folder, all of its subsequent activities that are not reachable in other ways will not be
executed, too. This interpretation is shared by the semantics presented in [NR02] and
[Ki04], and the informal semantics of N-EPCs. Note that the interpretation in [Ge06b] is
equivalent to the semantics of the dead path elimination (DPE) if the N-EPC is acyclic.
DPE forces the process graph to be acyclic and eliminates activities that cannot be
reached during the execution of a BPEL process. The semantics of the DPE includes that
a join synchronizes on the incoming arcs. Therefore, an XOR join directly following an
AND fork will never propagate the process folders on its incoming arcs. We will give a
more detailed explanation of DPE in section 3.

91

2.3 Extended Nautilus Event-driven Process Chains (N-eEPCs)

We have so far introduced the Nautilus Event-driven Process Chain, which contains
events, functions, connectors, the arcs connecting them, and the labels on them. Nautilus
also provides the possibility to model what information is sent and received by a
function and which tool performs a function. The general concept is based on the Entity-
Relationship Model [Ch76]. An entity can be a function, an information item, and a
tool6. “Relations” define the relationships between entities. Nautilus allows the modeler
to choose from a provided set of relation types. Table 1 lists the relation types important
for the mapping to BPEL.

Entity Relation Entity
function sends information item
function receives information item
function is executed by tool

Table 1: Relation types important for the mapping to BPEL

Relating a function to another entity is optional. Thus, a function may receive something
but not executed by a tool. The existence of the relation “is executed by” implies that the
function is not executed by the process, but by an executer. Figuratively speaking, the
function is not part of the process, but is instead called by the process. Therefore, “f
sends i” means that the function f sends the information i to the process. “f receives i”
means, that the process sends the information item i to the function f. If a function
receives and sends information items, the order should be interpreted as “first receive,
then send” [Ge06b]. It is important to note that there is no possibility for events to send
or receive data.

Definition 3 (N-eEPCs). An N-eEPC is a tuple Mx=(E,F,C,A,l,T,V,O,S,I,P,s,r,x) and
has to satisfy following properties:

• M=(E,F,C,A,l’,T,V,O,S) forms a valid N-EPC. l’ is derived from l by restricting
the preimage of l to (E∪F∪C∪V∪O∪S). The image remains unchanged.

• l is the labeling function:
l: (E∪F∪C∪V∪O∪S∪I∪P) → (V∪O∪S∪T+),

• I is the list of information items

• P is the list of tools

6 Nautilus contains 25 more elements in addition to these. We concentrate on the ones that are important for the
mapping to BPEL. See [Ge06b] for a complete list of entities.

l(x)=y, y∈

(
as defined in definition 1 x ∈ E ∪ F ∪ C ∪ V ∪O ∪ S

T+ x ∈ I ∪ P

92

• s is the function assigning the sent information items to functions7:
s: F→2I

• r is the function assigning the received information items to functions:
r: F→2I

• x is the function assigning the executing tools to functions:
x: F→2P

3 The Business Process Execution Language for Web Services

BPEL is currently the widest-spread language to support orchestration of Web Services.
It is implemented by several companies, including IBM, Microsoft, and Oracle. The
current version is 1.1. In this section, a brief overview will be presented of the subset of
BPEL 1.1 used by the mapping. A complete explanation of the language and its elements
can be found in [An03]. Additionally, [LR05] illustrates the main concepts, and [Ou05]
and [HSS05] provide a formal description.

A BPEL process make use of Web Service(s) offered by partners and is itself offered as
one or more Web Service(s). These Web services are specified as port types8. The
connection with a partner is modeled using a partner link, typed by a partner link type
having one or two roles. Each role refers to a port type. If a BPEL process uses the
partner’s port type and does not offer a port type to the partner, the partner link type
contains a single role element and vice versa.

A BPEL process model may use different kinds of activities. An invoke activity is used
to invoke a partner’s Web Service operation, and consists of input/output variables, a
partner link and the name of the operation. If the operation is one-way, then the output
variable is not specified. A receive activity is used to handle incoming calls to the
process’s Web Service operations, and consists of a variable, a partner link, and the
name of the process’s operation. Variables are typed, usually with WSDL message types
[An03]. Such simple activities can be grouped into complex activities like flow,.

Activities inside a flow can be connected by links that have transition conditions. Every
activity with incoming links has a join condition, which as a logical operation on the
status of those links. When a flow starts, it enables all immediately enclosed activities
with no incoming links. Once an activity completes, the transition conditions on the
outgoing links get evaluated and the status of each link is set to the result of the
evaluation. The join condition of an activity is evaluated once all the incoming links
have fired. If it is true, then the activity executes. If it is false, the activity is skipped and
the status of its entire outgoing links is set to “false”. This procedure, formally defined in
[LR00], is called “dead-path-elimination” (DPE).

7 2S is used to refer to the power set of a set S
8 A port type is an interface defined with a WSDL file. For a complete description of WSDL see [Ch01].

93

Besides modeling control flow using flat-graph process definition approach, control flow
can be modeled with a structural constructs approach or a combination of the two
approaches. Structural constructs are switch and sequence. A sequence executes the
containing activities sequentially in lexical order. A switch contains one or more
branches with conditions assigned, and optionally a default branch. The conditions are
evaluated in lexical order. As soon as a condition evaluates to true, the respective branch
is taken. If no condition evaluates to true, the default branch, if existing, is executed.

BPEL Version 2.0 has just reached the public review stage of standardization [Al06].
There are no major conceptual changes regarding the navigation from 1.1 to 2.0. Thus
this explanation and the presented mapping will remain valid with regards to BPEL 2.0.

4 Mapping N-eEPCs to BPEL

We will use the extended Nautilus Event-driven Process Chains for mapping to BPEL,
since they contain annotations showing which tool executes a function and what data is
needed and returned by each function. To get an idea of the mapping of N-eEPCs to
BPEL we give a rough overview at first. In the subsequent paragraphs, we will give a
detailed explanation of each step and a justification why the transformation was chosen
as such.

The elements of the N-eEPC are used as follows: The information about the executing
tools and sent and received information items is used to generate the partner’s WSDL
files9 and the corresponding partner links. Each function becomes an operation in a port
type. In the generated BPEL process the generated activities are nested in a flow activity
to naturally reflect the structure of the structure of the EPC. Each function is transformed
into a receive, invoke or empty activity, depending on the sent and received
information and whether an executing tool is assigned. Connectors get empty activities
having their label transformed into a join condition. The incoming and outgoing arc of
an event is mapped to a link connecting the mapped predecessor and mapped successor
using the event as transition condition. Events with no successor get mapped to an empty
activity.

Having provided the high level description of the mapping, we now introduce the
restrictions on the N-eEPCs which can be mapped to BPEL.

BPEL supports natural loops10 having the entry node as the only exit node and BPEL
does not support arbitrary cycles. On the other hand, N-eEPCs model loops implicitly.
Mendling et al. [MLZ06] showed what kind of loops can be made explicit and be
transformed to ΒPEL. Since loop detection is out of the focus of this paper, we require
that the N-eEPC used in the mapping be acyclic.

9 Every tool becomes a partner in the BPEL process. For a complete description of WSDL and it’s relation to
BPEL see [Ch01] and [An03]
10 Natural loops are loops with a single entry node [Mu97].

94

Definition 4 (Acyclicity of an N-eEPC). A N-eEPC Me=(E,F,C,A,l,T,V,O,S,I,P,s,r,x) is
acyclic, if the N-EPC M=(E,F,C,A,l,T,V,O,S) is acyclic.

Definition 5 (Acyclicity of an N-EPC). A N-EPC M=(E,F,C,A,l,T,V,O,S) is acyclic, if
there is no non-empty path from a connector c to the same connector:

In addition to the acyclicity we demand that the N-eEPC contains a single root and that
this root is a function. Handling multiple roots introduces special handling – e.g. the
detection of pick11 – and other syntactical restrictions, which are out of scope of this
paper.

Definition 6 (Roots of an N-eEPC). A N-eEPC Me=(E,F,C,A,l,T,V,O,S,I,P,s,r,x) has
the same roots as the N-EPC M=(E,F,C,A,l,T,V,O,S): roots(Me)=roots(M).

Definition 7 (Roots of an N-EPC). Roots of a N-EPC M=(E,F,C,A,l,T,V,O,S) are the
functions, events and connectors having no incoming arc: roots(M)={n | n∈E∪F∪C,
|adj-(n)|=0}

Information items are not annotated with a type. Therefore a fixed type has to be taken.
We chose string as type, because most types can be serialized to a string. This leads to
incompatibility if existing Web Services should be wired to the exported process. In that
case, we suggest using mediation. Interface maps and data maps are one way to do
mediation [IBM06]. Interface maps can be used if the name and the signature of an
operation do not match. With an interface map, two different operations can be mapped
to each other. For mapping data types, the data mapping can be used. A data map maps
two data types to each other.

N-eEPCs allow multiple executers be related to a function. To get a clear mapping, we
demand that at most one executing tool is assigned for each function.

To formally explain the mapping, we need the definition of an intermediary N-eEPC
(IN-eEPC) that stores the current state of the transformation:

Definition 8 (Intermediary N-eEPC, IN-eEPC). An IN-eEPC IM is a tuple IM = (E,F,C,
A,l,T,V,O,S,I,P,s,r,x,jc,tc), where Me=(E,F,C,A,l,T,V,O,S,I, P,s,r,x) is a N-eEPC, where
no syntactical restrictions apply. E.g. a function may have several successors. In addition
jc and tc are defined as follows:

• jc is a function assigning the join condition to a function and a connector:

• tc is a function assigning an event (interpreted as transition condition) to an arc:

11 See [An03] for an explanation

@w: w=((n0,n1),(n1,n2),. . . ,(nj-1,nj)), n0,nj ∈C, nj=n0, (ni,ni+1)∈A, 0≤i<j.

95

We will first present the elementary steps of the mapping and combine them in a
complete algorithm at the end. First, we will explain the mapping of events, then the
mapping of connectors, and finally the mapping of functions from an N-eEPC to an IN-
eEPC. Then, we map the IN-eEPC to BPEL. We will take an arbitrary N-eEPC
Me=(Ee,Fe,Ce,Ae,le,Te,Ve,Oe,Se,Ie,Pe,se,re,xe) satisfying the conditions above as the starting
point and map it to an IN-eEPC IM = (E,F,C,A,l,T,V,O,S,I,P,s,r,x,jc,tc). IM is initialized
as follows:

E:=Ee, F:=Fe, C:=Ce, A:=Ae, l:=le, T:=Te, V:=Ve, O:=Oe, S:=Se, I:=Ie, P:=Pe, s:=se, r:=re,

x:=xe, tc(x):=⊥ ∀x∈A, jc(x)=
(
l(x) x ∈ C

⊥ otherwise

4.1 Mapping of events

Having an initial IM, we can start with the transformation of events. Generally, events are
mapped to transition conditions. There are two exceptions: Trivial events and events
having no outgoing arcs12. Trivial events always occur after the preceding function has
finished. Therefore, they do not bring additional semantics and can be removed from the
N-eEPC as shown in Algorithm 1.

Events having no outgoing arcs may be handled in two ways: Either remove them from
the graph or transform them to empty activities. We decided to keep them in the resulting
BPEL process instead of removing them. Empty activities do not lead to new partner
interaction, but take execution time. On the other hand, a form of documentation is lost if
they are removed. Thus it is an open discussion if removal is preferable to keep them.
During the modification of IM events having no outgoing arcs are transformed to
functions with no executer and no information items assigned. They will get mapped to
empty activities during the transformation of functions.

12 Events with no incoming arcs do not occur, since we demanded that Me has a single root which is a function.

Algorithm 1 Removal of trivial events

procedure RemoveTrivialEvents(IM)
for all f∈F do

e ← adj+1 (f)
if |adj+(e)| > 0 then

A ← A \ {(f,e), (e,adj+1 (e))} ∪ {(f,adj
+
1 (e))}

else
A ← A \ {(f,e)}

end if
E ← E \ {e}

end for
end procedure

96

The remaining events have one incoming and one outgoing arc. They get transformed
into transition conditions. With this interpretation of events, only events occurring as a
result of a function can be mapped. We chose this mapping, because the metamodel of
N-eEPCs does not allow annotating events with “sends”, “receives”, or “executed by”
relations. The information items in N-eEPCs are not related to each other, too. E.g.
“address consists of street, postal code and city”13 cannot be modeled. Assume a function
sending “address” and a succeeding event “(London, city)”. Without additional
information, an algorithm cannot decide whether the event belongs to the function.
Furthermore, we did not want to extend the metamodel, because events that receive
information are a completely new concept to business analysts that know the EPC
metamodel.

The transition condition will be object = 'state' in the resulting BPEL file. This is
sufficient for cases where the object and the information item can be identified and the
effective data type of the information item is string. One modeling convention used is
that an object and an information item describe the same entity if the label of the object
equals the label of the information item. If an information item cannot be identified with
an object, the transition conditions have to be edited manually after the transformation to
get a valid executable BPEL process.

13 We are aware of the fact that there are numerous variations of an address. E.g. an address can alternatively
contain the state, consist of a post-office box, etc.

Algorithm 2 Transformation of events without outgoing arcs

procedure TransformLeafEvents(IM)
E’ ← E
for all e∈E’, |adj+(e)|=0 do

E ← E \ {e}
F ← F ∪ {e}

end for
end procedure

Algorithm 3 Transformation of events to transition conditions

procedure TransformEventsToTransitionConditions(IM)
E’ ← E
for all e∈E’, |adj−(e)|=1, |adj+(e)|=1 do

a ← {(adj−1 (e), adj
+
1 (e))}

A ← A \ {(adj−1 (e), e), (e, adj
+
1 (e))} ∪ {a}

E ← E \ {e}
tc’ ← tc

tc(x) ←

(
tc’(x) x 6= a

e x = a

end for
end procedure

97

4.2 Mapping of connectors

Now all cases of the events are handled so we continue stating the handling of the
connectors. As explained in the beginning of this section, each connector gets mapped to
an empty activity. We will show that this is a straight forward mapping that can be
improved to reduce the amount of activities in the generated BPEL process.

First of all, connectors having a single incoming edge and a single outgoing edge can
safely be removed from IM. As soon as their incoming arc is active, they can pass the
process folders to the outgoing arc. They do not have to wait for other incoming arcs or
to evaluate canTrigger() on the outgoing arc. If they are asked for canTrigger(), they can
just return the value of their outgoing arc. Therefore, we remove them14.

BPEL does not provide any construct for “fork conditions”. A connector in EPCs has
such an implicit fork condition. E.g. an XOR fork states that only one outgoing arc can
be active. The only construct similar to a fork condition is the switch activity which
could be represented in N-EPCs using an XOR block15. See Figure 6 for an illustration.

Figure 6: N-EPC modeling a switch

Instead of f1 and f2 there can be other EPC constructs allowing switches to be nested.
This is the only case where BPEL supports fork conditions. There is no similar BPEL
construct for AND or OR blocks. Furthermore, regarding arbitrary EPCs16 the XOR
block is just one of many cases. To avoid dealing with special cases, we do not use
switch. As a result, the semantics of fork connectors cannot be directly mapped to BPEL.
The semantics of a fork includes the assurance that an active fork will trigger at some
time. This implies that the events succeeding the fork will occur in a combination
allowing the fork to trigger. As a result, no fork condition is needed. Thus forks mapped
to empty activities do not bring additional semantics to the BPEL process. They can be
removed instead if following conditions apply:

14 The removal is done before any events get mapped. Otherwise, transition conditions get lost.
15 XOR blocks are formally defined in [Ru99]
16 Called “unstructured process graph” in [MLZ06]

Algorithm 4 Removal of connectors not joining and not forking

procedure RemoveConnectorsNotJoiningAndNotForking(IM)
while ∃c∈C: |adj−(c)|=1 ∧ |adj+(c)|=1 do

A ← A \ {(adj−1 (c),c), (c,adj
+
1 (c))} ∪ {(adj

−
1 (c),adj

+
1 (c))}

C ← C \ {c}
end while

end procedure

98

1. The fork c has a single incoming arc

2. Either

a. The incoming arc does not contain a transition condition and all
outgoing arcs do not contain a transition condition

b. The incoming arc contains a transition condition and all outgoing arcs
do not contain a transition condition

c. The incoming arc does not contain a transition condition and some of
the outgoing arcs contain a transition condition

3. If 2a does not apply, there is no arc connecting the predecessor to one of the
successors of c having a transition condition.

The predecessor of the fork will be connected with all successors of the fork. Assume
{gi} is the set of generated arcs. If condition 2b is fulfilled, the transition condition of the
incoming arc is copied to each gi. If condition 2c is fulfilled, the transition condition of
each outgoing arc is copied to the corresponding arc gi. Because of these copying rules
the condition 3 is needed. BPEL does not allow multiple links between two activities.
This is assured in IM by the definition of A⊂(E∪F∪C)×(E∪F∪C) (cp. definitions 1,3,8).
There is the possibility to merge the transition condition of two arcs but we think the rule
“at most one event forms a transition condition” eases the understanding of the generated
BPEL process. The procedure is shown in algorithm 5.

BPEL supports join conditions on any activities with incoming links. Therefore, the label
of the connector is used as join condition, which is transformed to a XPATH statement
representing the join condition in BPEL. Using BPEL’s dead path elimination, activities
not reachable will not be executed during the execution of the BPEL process.

Similar to the handling of forks, joins with a single outgoing edge can be eliminated by
connecting the predecessors to the successor. The difference to the handling of the forks
is the join condition. The join condition of the join connector replaces the join condition
of the successor. Since the algorithm can be derived from algorithm 5, we give an
example of the transformation of joins in figure 7.

Figure 7: Illustration of the elimination of join connectors

99

4.3 Mapping of functions

The mapping of the functions is the last step. We will also present the mapping of arcs,
information items and executers since all of them are closely related to functions.

Functions describe what is done by whom and which information is sent and received by
the executer. Therefore, functions sending or receiving something and being executed by
someone or something are mapped to receive and invoke activities. In all other cases,
functions are mapped to an empty activity. The incoming and outgoing arcs are mapped
to incoming and outgoing links. The outgoing link is additionally assigned a transition
condition if the belonging arc has a transition condition assigned. The join condition of
the generated activity depends on the value of jc. Assume f is the current function to be

Algorithm 5 Transformation of forks

function ForkSatisfiesConditions(c)
tci ← tc((adj−1 (c),c)) 6= ⊥ . For completeness: tc(⊥, c) := ⊥
tco ← ∃s∈adj+(c): tc(c,s) 6= ⊥
arc ← ∃s∈adj+(c):∃a∈A,a=(adj−1 (c), s): tc(a) 6= ⊥
c1 ← |adj−|(c) = 1
c2a ← (¬tci ∧ ¬tco)
c2b ← (tci ∧ ¬tco)
c2c ← (¬tci∧tco)
c3 ← (c2a ∨ ¬arc)
return c1∧(c2a∨c2b∨c2c)∧c3

end function

procedure TransformForks(IM)
while ∃c∈C: (|adj+(c)| >1) ∧ ForkSatisfiesConditions(c) do

C←C \ {c}
p←adj−1 (c)
succ ←adj+(c)
A←A \ {(p,c)}
for all s∈succ do

a←(p,s)
A←A \ {(c,s)} ∪ a
if tci then
tc’ ← tc

tc(x) ←

(
tc’(x) x 6= a

tc’((p,c)) x = a

else if tco then
tc’ ← tc

tc(x) ←

(
tc’(x) x 6= a

tc’((c,s)) x = a

end if
end for

end while
end procedure

100

mapped. If jc(f)= then no join condition is generated, since the OR join is the default
join behavior in BPEL. If jc(f)= then a logical and over all incoming links is generated.
If jc(f)= , “exactly one” over all incoming links is expressed by logical and, or and not
connectors. Assume l1, l2 and l3 are the incoming links. Then the join condition
expressed in XPATH representing XOR looks as follows:

 (($l1) and (not $l2) and (not $l3)) or
 ((not $l1) and ($l2) and (not $l3)) or
 ((not $l1) and (not $l2) and ($l3))

$li is gets expanded to bpws:getLinkStatus('li') as soon as it is written into the
BPEL file.

Let f be a function having an executer and incoming and outgoing information assigned.
f is mapped to a receive if sends something and does not receive anything. The reason
is that the function is not executed by the process itself but the executer assigned to the
function. If someone external sends something to the process but does not get something
from the process, the process has just to receive it. In all other cases, an invoke is
generated. Assume the function f sending information i1 and receiving information i2.
Receive and send should be interpreted as “first receive, then send”17. Thus mapping to
single invoke activity sending i1 (using the input variable) and afterwards receiving i2
(using the output variable) is enough: The executer first receives i1 and then the BPEL
process is ready to receive i2. If the function receives i and does not send anything, it is
mapped to an invoke activity sending i. The sent and received information is used to
generate the variables and message types. Assume r(f)={i1,i2,i3}. With this information, a
message type named i1_i2_i3 and a variable named i1_i2_i3 of the type i1_i2_i3 is
generated18. The message type contains three parts named i1, i2, and i3 each of them
having the type string. The variable i1_i2_i3 is used as the input variable. The
generation of variables for s(f) follows the these rules, too.

The label of the function is used as the name for the operation: The concatenated verb
and object form the name of the operation. For the generation of the WSDL files, the
partner link types, the partner links and the port types, the tool executing a function is
used. Each generated port type is put in a separate WSDL file. If a function was mapped
to a receive activity, the operation is put into a port type named after the executer with
the suffix input. The partner link and the partner link type are named <tool>-to-
process. The generated port type is assigned to the partner link type and the partner link
as myRole. If a function was mapped to an invoke, the operation is put into a port type
named after the executer and assigned to the partner link <tool>-to-process as
partnerRole. The partner link and its partner link type are generated, if it they had not
already been generated by the mapping to an receive activity.

17 cp. section 2.3
18 If the message type has already been generated in a previous step, the message type and variable are not
generated again. For the ordering in the name alphabetical ordering is used.

101

4.4 The complete algorithm

Using the previous descriptions, the complete algorithm is straight-forward. The
algorithm first initializes IM with M. Connectors not joining and not forking are removed
afterwards. Then the events are transformed according to section 4.1 “Mapping of
events”. After this transformation, the connectors are transformed as presented in section
4.2 “Mapping of connectors”. In the last step, a depth-first search (DFS) is started from
the root of IM. During the DFS functions and connectors can be found. Events are
transformed to transition conditions or to functions during the step “Mapping of events”.
A connector is mapped to an empty activity, where the links and the join conditions are
generated as stated in “Mapping of functions”. Each function gets mapped to an empty,
receive, or invoke activity as descriped in section 4.3 “Mapping of functions”.

The algorithm presented in this paper was implemented in the BPEL module in Nautilus
[Ged06a] and is now commercially available. The BPEL file and WSDL files it
generates can be imported into a BPEL development environment like the IBM
WebSphere Integration Developer. Once in such an environment, the process can be
tweaked (transition conditions modified, interface and data maps added) to enable its
integration into an existing infrastructure.

5 Related work

Mendling et al. [MLZ06] categorized the approaches of mapping EPCs to BPEL. The
categorization includes a high level representation of the mapping, leaving out the
generation of the type of the basic activity and leaving out the generation of port types,
partner links and WSDL files. Additionally, they do not address allowing multiple events
between functions because the metamodel of EPCs does not allow that. Nevertheless,
our mapping falls into their “Element-Minimization” category.

Ziemann and Mendling [ZM05] presented an approach using the labels of the functions
to generate receives and invokes. Our mapping derives the type of the activity from the
information sent and received.

6 Summary and outlook

We presented the syntax and semantics of Nautilus extended Event-driven Process
Chains (N-eEPCs). N-eEPCs in contrast to EPCs introduced in [KNS92], support
multiple events between functions. This allows a detailed modeling of conditions
between functions. We showed how multiple events between functions can be used to
generate transition conditions in BPEL. The class of external events was completely
dropped from the mapping, because the metamodel of N-EPCs does not offer assigning
sent and received information to an event. Special care was taken to eliminate connectors
to get a readable BPEL file. Another contribution of this paper is the use of “send”,
“receive” and “executed by” relations to generate partner links and port types. A

102

commercially available implementation has been created. It produces BPEL files that
can be used in known BPEL tools and systems.

Future research directions include the investigating of possibilities to support external
events by N-eEPCs and the usage of function repositories to ease integration in an
existing infrastructure.

Acknowledgement

This work was supported by the German Federal Ministry of Education and Research
(project number 01ISE08B).

References

All links were followed on 2006-09-22.

[Al06] Alves, A. et al.: Web Services Business Process Execution Language Version 2.0.
Public Review Draft, 23rd August, 2006. http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.pdf

[An03] Andrews, T. et al.: Business Process Execution Language for Web Services version
1.1, 2003. http://www-128.ibm.com/developerworks/library/specification/wsbpel/

[Ch01] Christensen, E. et al.: Web Services Description Language (WSDL) 1.1. W3C Note
15 March 2001. http://www.w3.org/TR/wsdl

[Ch76] Chen, Peter P.: The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems. Volume 1. Number 1. pp. 9-36. 1976.

[Ge06a] Gedilan Consulting GmbH: Homepage. http://www.gedilan.com
[Ge06b] Gedilan Technologies GmbH: Nautilus Benutzerhandbuch. Version 4.5. 2006.
[HSS05] Hinz, S.; Schmidt, K.; Stahl, C.: Transforming BPEL to Petri Nets. In (W.M.P. van

der Aalst, W.M.P., et al.): Proceedings of the 3rd International Conference on
Business Process Management (BPM 2005), volume 3649 of Lecture Notes in
Computer Science, Springer, 2005; pages 220-235.

[IBM06] IBM Cooperation. IBM WebSphere Business Process Management Version 6.0
information center. http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/

[Ki04] Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. In (Desel, J.;
Pernici, B.; Weske, M., eds.): Business Process Management, 2nd International
Conference, BPM 2004. Lecture Notes in Computer Science Volume 3080,
Springer, 2004; pp. 82–97

[KNS92] Keller, G.; Nüttgens, N.; Scheer, A.-W.: Semantische Prozessmodellierung auf
der Grundlage Ereignisgesteuerter Prozessketten (EPK). In: Technical Report,
Veröffentlichungen des Instituts für Wirtschaftsinformatik (IWi), Heft 89,
Universität des Saarlandes, 1992.

[LR00] Leymann, F.; Roller, D.: Production Workflow - Concepts and Techniques,
PTR Prentice Hall, 2000.

[LR05] Leymann, F.; Roller, D.: Modeling business processes with BPEL4WS. In:
Information Systems and E-Business Management, Volume 4, Number 3. Springer,
2005; pp. 265-284.

103

[LSW97] Langner, P.; Schneider, C.; Wehler, J.: Prozeßmodellierung mit ereignisgesteuerten
Prozeßketten (EPKs) und Petri-Netzen. In: Wirtschaftsinformatik, Volume 5,
Number 39, 1997; pp. 479-489.

[Me06] Mendling, J.; et al.: Faulty EPCs in the SAP Reference Model. In (Dustdar, S.; et
al., eds.): Proceedings of the 4th International Conference Business Process
Management (BPM 2006). Lecture Notes in Computer Science Volume 4102,
Springer, 2006.

[MLZ06] Mendling, J.; Lassen, K. B.; Zdun, U.: Transformation Strategies between Block-
Oriented and Graph-Oriented Process Modelling Languages. In (Lehner, F.;
Nösekabel, H.; Kleinschmidt, P., eds.): Multikonferenz Wirtschaftsinformatik 2006
(MKWI 2006), Band 2, XML4BPM Track. GITO-Verlag Berlin, 2006; pp. 297-
312.

[Mu97] Muchnick, S.: Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[NR02] Nüttgens, M.; Rump, F. J.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In: PROMISE 2002, Prozessorientierte Methoden und Werkzeuge für die
Entwicklung von Informationssystemen, GI Lecture Notes in Informatics. P-21.
Gesellschaft für Informatik, 2002; pp. 64–77.

[Ou05] Ouyang, C., et al.: Formal Semantics and Analysis of Control Flow in WS-BPEL
(Revised Version). BPM Center Report BPM-05-15, BPMcenter.org, 2005.

[Ru99] Rump, F. J.: Geschäftsprozeßmanagement auf der Basis ereignisgesteuerter
Prozeßketten : Formalisierung, Analyse und Ausführung von EPKs. Dissertation.
Stuttgart; Leipzig. Teubner, 1999.

[vdADK02] Van der Aalst, W.; Desel, J.; Kindler, E.: On the semantics of EPCs: A
vicious circle. In (Nüttgens, M.; Rump, F.J., eds): EPK 2002,
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten, November
2002; pp. 71–79.

[ZM05] Ziemann, J.; Mendling, J.: EPC-Based Modelling of BPEL Processes: a Pragmatic
Transformation Approach. In: Proceedings of MITIP 2005, Italy, 2005.

104

