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Abstract: Event-driven Process Chains (EPCs) are a commonly used modelling tech-
nique for design and documentation of business processes. Although EPCs have
an easy-to-understand notation, specifying entire information systems leads to rather
large and complex models. Questions like for instance the termination of a process
(within some given time)—easy to answer for small EPCs—can hardly be answered
for those models. Nevertheless, questions like these can be vital for the execution of
the described business processes. Whereas simulation might be able to give a hint on
whether the process terminates, only verification can give such guarantees.

In this paper we introduce a method to verify properties of what we call Timed
EPCs (EPCs annotated with time attributes). We transform Timed EPC to (hybrid)
automata and thereby define EPCs formally. Based on the formal definition, properties
of EPCs (like e. g. is the ending event always reached within 20 time units) can be
verified by transforming these properties to corresponding properties of the resulting
automata. The transformation of EPCs and properties works fully automatic. The
ultimate verification takes place in utilising commonly available verification tools.

1 Introduction and Overview

Verification is a method to gain assertions on a system’s behaviour. As for EPCs, verifi-
cation is rarely used . And if at all, with a focus on the correctness of the EPCs. In our
approach verification enables the user to get information about the validity of the design
of the modelled EPC. Shortcomings can be revealed, quality as well as performance can
be assured at a desired level. With user defined properties in the sense of Rump [Rum98]
it becomes possible for the user to prove assertions ‘the account will always be checked
before any withdrawal is granted’. If the proof fails, a counter example in form of a path
in the EPC can be provided. Since we focus on Timed EPC the user will even be able
to verify time properties as, for instance, ‘the process chain always terminates within 30
seconds’.

In this paper we will introduce a method for the verification of properties of Timed EPCs.
Verification can be done in two ways. One is to define semantics on EPCs directly (as
it has been done by Nüttgens and Rump [NR02]). The second possibility is to utilise

∗stefan.denne@dfki.de

157



transformation to models that are formally defined and for which it is well known how
verification is performed (even supported by tools). We chose the latter approach and give
a formal transformation of EPCs to hybrid automata. (Thereby formal semantics of EPCs
are defined indirectly.)

This paper will essentially concentrate on the basic transformation ideas even if this means
to somewhat restrict the EPCs under consideration. That is to say we define, in terms of
a context free grammar, a suitable subset of EPCs which covers a broad variety of models
without being meant to be comprehensive.

This work has been done formally (cp. [Den06]) but for this paper we will abstract from
technical details and illustrate the transformation of EPCs and corresponding properties
using figures and examples. By the transfer of Formal Methods to the field of business
processes and the use of ready-to-go tools, the verification—even of timed properties—is
possible with reasonable effort.

This paper is organised as follows: we first describe the restriction of the EPCs we use
and introduce the aspects of time we will consider. Then we formulate and classify the
properties we can verify by the transformation to automata. Afterwards we introduce the
grammar that we use for the representation of EPC. In the succeeding sections, we define
what we mean by automata. The transformation is described in several steps according
to the grammars used. We will not present the technical details but the overall plot using
examples to illustrate the transformation process and the results. We also show how to
describe and transform the properties of the EPCs. In Section 4 we give a brief glance at
some features not presented in this paper. The last but one section gives a brief overview
about related work. We conclude the paper with a summary about what has been achieved
and what can be done as future work.

2 Modelling

In this section, we introduce the different modelling techniques we use in our approach.
First, the EPCs that will be transformed are characterised. Then we introduce the automata
that are the target of the transformation.

2.1 Representation of EPCs

In the representation of the EPCs we use we try to be as close as possible to commonly used
EPCs. Nevertheless, we will use a restricted form of EPCs in order to minimise the number
of transformation rules necessary. We will not deal with open ends, this means, concurrent
chains join in any case. Likewise, we do not have joins without splits before, that means we
only have one starting event. Additionally the inner structure of concurrent and alternative
chains will not allow two (or a multiplicity of two) elements (functions or events). Further
we will only consider two different cases of connector combinations, namely XOR–XOR
and AND–AND connector pairs (we do not consider OR-OR connector pairs). We call
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EPCs with identical connector combinations regular.

Despite these restrictions the grammar introduced below fulfils the informal definition of
EPC given by [KNS92], and [HKS93].

2.1.1 The use of Time within EPCs

Initially, time has intentionally not been considered in EPC. By leaving out time, mod-
elling with EPCs does not have to consider problems that time involves. For example,
simultaneous functions and events do not occur,1 since a (temporal) ‘before’ and ‘after’
does not exist.

The the simulation facility integrated in the ARIS Toolset2 uses given time attributes to
calculate process ratios, for example the minimal and the maximal time to pass from the
starting to the ending event of the chain. Functions can be annotated with time slots de-
scribing a ‘stage’in the progress of a function. Setup time is the amount of time required to
get ready to execute a function, Process time is the time needed for its execution.3 Look-
ing for example at a machine that heats metal before bending it, one can identify these two
stages; setup time: heating the metal and process time: bending it. The time attributes are
related to each other. For instance ‘setup time’ lies before ‘process time’.4

We call EPCs that have time attributes Timed Event-Driven Process Chains.

2.1.2 Properties of EPCs

Properties of an EPC can be described as situations (or as sequences of situations) that—in
terms of events and functions—occur or do not occur in the EPC.

Imagine a shop selling books. Before any order is processed it shall be checked whether
the book is in the stock to guarantee a delivery date. In order to guarantee this check, an
appropriate property must hold for the model. In other words: if one can verify that such
a property holds, the delivery date can be guaranteed. If the model is small, this might be
easy to check, but if the model is complex or it is large, it might not be obvious that this
check is performed in all cases.

As in Bernard et al. ([BBF+01, 79, 83, 91, 103]), properties can be classified in Reachabil-
ity properties: is a situation5 reachable under some circumstances? Safety properties: will
an undesirable situation never occur (under certain condition)? Liveness properties: will a

1If an event E1 occurs and an event E2 occurs, this ‘and’ is a logical ‘and’.
2The ARIS Toolset is part of the ARIS Design Platform. (IDS Scheer AG)
3Other time attributes are: Waiting time — the time that needs to pass before a function can be started (for

example because a machine is occupied before) and Transfer time — the time that is needed to enter a function
(for instance to pass some material to the current function). ‘Transfer time’ is an attribute that is assigned on arcs
leading to a function. Thus, we interpret ‘transfer time’ to belong to the (following) function.

4‘Transfer time‘ lies before ‘waiting time’, ‘waiting time’ lies before ‘setup time’, ‘setup time’ before ‘process
time’. ‘Waiting time’, ‘setup time’ and ‘process time’ are associated to a function.

5A situation can be a (boolean) combination of some events or functions.
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situation ultimately occur? Fairness properties: will a situation, under certain conditions
occur (or fail to occur) infinitely often?

In general, properties of EPCs describe a behaviour that corresponds to certain sequences
of events and functions.

Accordingly to Rump ([Rum98, 120]) there are typical types of (user defined) properties
concerning elements (events and functions) of EPCs. The elements E1 and E2 can either
be events or functions.

1. There is a concrete sequence represented by the EPC-schema, in which E1 is acti-
vated.

2. E1 is activated in any possible sequence.

3. If E1 is activated in a sequence, then E2 will sometime be activated.

4. E2 will never be activated, after E1 has been activated.

5. In a sequence of the business process E1 and E2 will never be activated both, irre-
spective of their order

6. The element E1 will only be activated once in one sequence.

Note that the first two questions are reachability properties and the following are liveness
properties. The term ‘activated’ corresponds to ‘reachable’ in our terminology.

In general, temporal logics are eligible to express properties of that kind. We use a CTL-
like6 temporal logic to describe these properties (see Section 3.3).

For Timed EPCs, the properties above can be enriched by assertions about time. One may
ask for example: Is there a sequence where a situation E1 is reached in less than five time
units? Or the property might be: E2 is always reached within 20 time units. (See Section
3.5).

A formal description of CTL and TCTL is presented in [Den06].

Another type of property is the maximal and/or minimal time that is needed between some
elements (events or functions) within the EPC. In comparison to the properties described
so far, a question about the validity does not lead to a ‘yes’ or ‘no’, but to a parameter that
is the maximal or minimal time. For instance: ‘There is a sequence, where E1 is reached
in less than P time units.’ The parameter P then represents the maximum in focus.

2.1.3 A Grammar for Timed EPCs

The EPCs we use are syntactically defined by a context free grammar. Context free gram-
mars define (context free) languages using a set of derivation rules. This definition is
constructive. By the application of the rules of the grammar a sentence of the language
may be generated .

6CTL is an abbreviation for Computation Tree Logic

160



The advantage of the constructive approach is that the rules of the grammar describe how
a proper EPC looks like. Only such EPCs can be constructed that were defined by the
grammar.

In this paper we focus on Timed EPCs. Every time attribute introduced in Section 2.1.1
represents a duration and is associated to a function. We introduce two different time
attributes only: ‘setup time‘ and ‘processing time’, as we only show how this is done in
principle. These time attributes appear in a fixed order: ‘setup time’ lies before ‘processing
time’. We will keep this order in the grammar. Only ‘processing time’ is mandatory,
therefore we need two rules; one that contains ‘processing time’ only (rule TS10) and a
second that contains both, ‘set-up time’ and ’processing time’ (rule TS9).

Of course there are many different grammars possible that have other or additional rules
that allow the construction of EPCs where different elements (like time attributes, organi-
sational units) are possible7

GTS = (NTS , TTS , RTS , EPC) with NTS = {EPC, E-PART, F-PART, T-ATTR}, TTS =
{Event, Function, AND , XOR, (, ), Setuptime, Processtime, →} and

RTS = {EPC :== Event → F-PART → Event (TS1)
E-PART :== E-PART → F-PART → E-PART (TS2)
F-PART :== F-PART → E-PART → F-PART (TS3)
E-PART :== Event (TS4)
F-PART :== Function (T-ATTR) (TS5)
E-PART :== AND (E-PART,E-PART) (TS6)
F-PART :== AND (F-PART,F-PART) (TS7)
E-PART :== XOR (E-PART,E-PART) (TS8)
T-ATTR :== Setuptime, Processtime (TS9)
T-ATTR :== Processtime } (TS10)

The rules TS1 to TS3 allow the construction of linear chains of an arbitrary length. (TS1
assures hat each chain will start and end by an event.) Concurrent branches are introduced
by the rules TS6 and TS7, TS8 constructs alternative branches. Events are derived by TS4.
The rule TS5 extends a function with a list of time attributes.

2.2 Automata

Automata are finite graphs whose nodes correspond to global states. Such global states
represent some sort of general observational situation, as, for instance, the heater is on or
the the heater is off. Automata change there states by travelling along a transition that
connects two states.

In this section we only give a informal introduction to automata as far as they were used

7In [Den06] a grammar including organisational units and time attributes is defined and used for the transfor-
mation into timed automata.
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for the transformation. Formal details can be found in [Den06].

2.2.1 Communicating Automata

We use communicating automata to model a system by modelling its components. Each
component is represented by an automaton and can be rather simple. But as the com-
ponents are able to communicate with each other the behaviour of one component can
depend on the behaviour of some other. Thus, the behaviour of the system is the result of
the composition of the behaviours of the components. Consequently, a system with simple
components can have a quite complicate behaviour.

We prefer a modular approach to keep the transformation straightforward. Each of the
rules of the context free grammars will be transformed into a small set of automata. All
sets are composed to a system representing the behaviour of the original EPC.

2.2.2 Composition of Communicating Automata

When building systems out of components we have to define if and how they interact. If
there is no interaction at all the behaviour of the resulting system is the combination of
the independent behaviours of the components and, as the behaviour of each component is
determined by the set of states, the system behaviour is the Cartesian product of the states
of the automata.

Automata can interact by synchronising their discrete steps. The synchronised automata
cannot perform a step without the other performing a corresponding step as well. With
the system behaviour being a combination of the components, the number of system states
is reduced compared to the non-synchronised system. If two automata A and B share
the same synchronisation label l, then a transition of A labelled with l! (or l?) must be
accompanied by a transition of B labelled with l? (l!) too.

Figure 1 shows two automata that synchronise via a corresponding synchronisation label
l. Both of them start concurrently in their initial location (n1 and n5). While automaton
A can travel from location n1 to location n2, B being in n5 cannot leave because it has to
synchronise with some partner having a corresponding label (l1!). So, A being in location
n2 and B in n5, the two automata can only perform a common step leading from n2 to n3

and from n5 to n6. The subsequent transitions can be taken independently.

n1 n2 n3 n4 A

n5 n6 n7 B

l1!

l1?

Figure 1: Two synchronising automata

Because we use binary synchronisation (one automaton sending a signal with one —out
of several other—receiving it), only two automata out of the set (of automata) can syn-
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chronise by a compatible label8. As our approach requires to synchronise more than two
automata we use label sets. When travelling along a transition all the labels in the label
sets have to be synchronised regardless of the number of automata to be synchronised.

Here a brief example for compatible label sets: the three label sets L1 = {l!}, L2 = {l?,m!}
and L3 = {m?} are compatible, because every label in the different label sets has a com-
patible partner.

The composition of two automata leads to a new automaton. Each location of the com-
posed automaton is a tupel combination of two locations of the original automata. The
starting location of the automaton C 〈n1, n5〉 is a combination of the automata A and B.
The following two steps of C are the only possible steps the combined composed system
can perform. (The first step is restricted as only the automaton A can perform a step,
the second step is the one that is synchronised via the label l). The labels are no longer
required after the composition.

n1,
n5

n2,
n5

n3,
n6

n4,
n6

n3,
n7

n4,
n7

C = A ‖ B

Figure 2: Composition of two communicating automata

2.2.3 Timed Automata

Timed Automata (a special kind of hybrid automata) are an extension of the communicat-
ing automata. The global states of communicating automata were discrete. That means
after the entry into a state no further action happens while the automaton remains within
the state. Within the global states of timed automata some continuous activity takes place.
A clock (or chronometer or watch) defined in a location, rises continuously (by a rate of 1).
Depending on the value of that clock the automaton can change from one state to the other
travelling along a transition. These transitions are usually guarded with some constraint
formula9 , that is required to hold if the transition is supposed to be taken. Similarly, nodes
have some attached constraint formula that describes an invariant for this very node, this
means, some property that has to be true while the system resides in this node. The dynam-
ics of the systems behaviour, on the other hand, is given by a description of how the data
changes with time. Additionally, transitions are annotated with a general assignment that

8Compatible labels have the same name and one has a exclamation mark and the other a question mark. The
exclamation mark has the meaning of ‘sending’and the question mark the meaning of ‘receiving’. If there is
more than a question mark as a possible partner, the exclamation mark can arbitrarily synchronise with one of
the question marks available.

9A constraint formula is for instance a inequality that limits a clock to an certain value like c ≤ 5.
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is responsible for the discrete action to be performed by taking the transition (For example
resetting a clock to zero).

Timed automata can behave in two ways: (1) by the change of one state into another (by
passing a transition) or (2) by the passing of time, which changes the value of a clock.

Figure 3 shows an example of an timed automaton. The automaton has a clock t that is set
to zero when passing the transition 〈n1, n2〉. The invariant t ≤ 5 forces that the location
has to be left when the clock has reached 5 time units and the guard t ≥ 4 hinders to leave
the location before the clock t is at least equal to 4 time units. Thus the location n2 can be
left when the clock t is at least 4 and must be left as soon as it is 5. The automaton does
not synchronise with other automata therefore the label set is empty and the transitions do
not have labels.

n1 n2 n3

t ≤ 5

t := 0 t ≥ 4

Figure 3: A timed automaton

2.2.4 Composition of Timed Automata

The composition of timed automata is similar to the composition of communicating au-
tomata. The transitions with labels are the synchronisation points of the automata. For the
composed location the invariant is the conjunction of the invariants of the location of the
original automata. In order that the new transition (that leads from the actual tupel of the
composed automaton to the following tupel) can be passed all guards of the transitions of
the original automata (for that step) have to be true. The actions for the new transition are
just the set of all actions of the original transitions (that would have been taken).

3 Transformation

The transformation of Event-driven Process Chains to automata is defined recursively on
the structure of EPCs by transformation rules. This structure is immediately introduced by
the grammar rules that allow to construct EPCs. The processing of a transformation rule
leads to a set of new automata or modifies an existing set of automata in order to model
the behaviour of the EPC.

Basically, functions are transformed into automata locations and events are transformed
into transitions. We keep information about which function or event is related to which
location or transition by a function.

We will not give the formal transformation rules and technical details of the transformation
here, they can be found in [Den06].
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3.1 Transformation of Linear Sequential Chains

To illustrate how the transformation works, we first show how sequential chains are trans-
formed. These chains are constructed using the rules TS1 to TS5 of the grammar GTS .

In the following, the transformation rule for the transformation of TS1 will be presented
in detail and an example will show the complete transformation of a sequential chain. The
examples used will have no time attributes10.

We assume that the set of automata B is already transformed (see Figure 4 (1)). The
dashed arrow symbolises that the structure of the transformed set is not relevant (and not
available) for the transformation of the current transformation step.

The transformation rule for TS1 creates two automata (each of them in a created set)
that represent the starting and ending event and modifies the existing automata in a way
that the sets are ‘executed’linearly after each other. This is done by inserting compatible
synchronisation labels (Figure 4 (2)).

(1)

B

A

EventA

{a!}

B′
{a?} {b!}

C
{b?}

EventB

(2)

Figure 4: Sketch of the transformation of the rule TS1

EXAMPLE 1 (TRANSFORMATION OF A SIMPLE SEQUENCE) As an example we transform
the following simple sequence (Figure 5) into automata.

E1 F1 E2 F2 E3

Figure 5: A simple linear sequence

The following sequence shows how the example is constructed using the rules of the gram-
mar GTS .

10Formally this means that instead of the rule TS5 the following rule is used: F-PART :== Function.
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EPC ⇒E1 → F-PART1 → E3 (rule TS1)
F-PART1 ⇒F-PART2 → E-PART1 → F-PART3 (TS3)
F-PART2 ⇒F1 (TS5) E-PART1 ⇒E2 (TS4) F-PART2 ⇒F2 (TS5)

The transformed set of automata looks as follows:

F1

F2

E1 {c!}

{d?}

E3

{c?} {a!}

{a?}

E2

{b!} {b?} {d!}

Composing the set of automata , we get the following automaton:

n1, n3 n2, n3 n4, n5 n5, n6

F1 F2E1 E2 E3

The sequence of referenced events and functions corresponds to the sequence of the origi-
nal EPC (of Figure 5).

3.2 Transformation of Concurrent and Alternative Chains

Concurrent and alternative chains occur when EPCs have AND and XOR branches. For
the transformation of these branches we introduce the concept of Schedulers. A scheduler
is a regular automaton, but its locations and transitions do not have a reference to any event
or function. Schedulers control other automata. A scheduler synchronises the starting and
the ending of the ‘underlying’ automata. In the case of concurrent chains the first and the
last location are to be synchronised by the scheduler; on alternative chains the scheduler
synchronises but one chain only.

Two concurrent branches of an EPC have to be started and ended synchronously. This be-
haviour is transferred to automata. The two sets of automata are controlled with a sched-
uler that synchronises both chains. Using two label sets {a!, c!} and {b!, d!} the scheduler
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SAND synchronises the resulting automata sets each representing the two branches. The
two scheduled sets A and B have correspondent labels. (Figure 6).

SAND
{a!, c!} {b!, d!}

A
{a?} {b?}

B
{c?} {d?}

Figure 6: The scheduling of an AND-part

Each of the XOR-branches is an alternative path within the EPC. So, the scheduler must
alternatively synchronise with one of the transformed sets representing a branch of the
original EPC.

Let us suppose the scheduler has the label a! at the start (and b! at the end) and each of the
sets (A,B) has the same label a? (and b?). Then there is only one compatible pair a! and
a? at a time. Hence only one of the sets will by synchronised with the scheduler SXOR. A
sketch of the transformation is shown in Figure 7.

SXOR
{a!} {b!}

A
{a?} {b?}

B
{a?} {b?}

Figure 7: The scheduling of an XOR-part

EXAMPLE 2 (TRANSFORMATION OF CONCURRENT AND ALTERNATIVE CHAINS) Given
is the EPC shown in figure 8. We omit the details of the transformation here and show the
resulting set of automata in Figure 9. The named locations were used to show the transfor-
mation of properties (Section 3.3). The composition of the resulting automata is depicted
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in Figure 10. We omit the details but show the reference to the original EPC. The original
EPC ‘reappears ’ when travelling along the locations and transitions.

E1 ∧

F1

F2 ×

E2

E3

× F3

∧ E4

Figure 8: Example 2 — Concurrent Chains

3.3 Transformation of Properties of EPCs

In 2.1.2 we have raised several kinds of properties. With respect to EPCs these questions
can be expressed in CTL11. Here an example.

EXAMPLE 3 (EXPRESSING PROPERTIES OF EPCS USING CTL) The properties described
in this example refer to the EPC of Figure 8.

Description CTL-formula
(1) Is the event E3 reachable? EF E3

(2) Is the (end) event E4 always
reached?

AF E4

(3) If the (start) event E1 is reached
then inevitably the (end) event E4 is
reached too.

AG(E1 ⇒ AF(E4))

(4) Either E2 or E3 are reached (never
both)

(AG((E1 ⇒ AG(¬ E2)) ∧
AG(E2 ⇒ AG(¬ E1))))

Intuitively AF , EF , AG, EG, AU and EU , mean “inevitably”, “possibly”, “always”,
“possibly always”, “inevitably until” and “possibly until”.

As CTL is also used for describing the properties of automata, the transformation can
easily be done. Recall, that events and functions are related to transitions and locations.
Using that relation, a property of an EPC is transformed directly to a property of the
resulting automata.

11Here, we use a CTL-like language since we do not use all temporal qualifiers.
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n23 n24

SAND n25 n26

F1 F2

SXOR

n1 n2 n3 n4

F3

E1 {i!}

{i?, e!, g!} {f !, h!} {j!} {j?}

E4

{e?} {f?} {g?} {c!}

{c?, a!} {b!} {d!}

{d?} {h?}

{a?}

E2

{b?} {a?}

E3

{b?}

Figure 9: Transformed set of automata of Example 2

Then this property can be proved or rejected (with a counterexample) using a model
checker like UPPAAL ([BLL+95]) or HyTech ([HH95]).

The properties above are transformed to properties referring to transitions of the trans-
formed set of automata:

(1) EF 〈n3, n4〉
(2) AF 〈n25, n26〉
(3) AG(〈n23, n24〉 ⇒ AF(〈n25, n26〉))
(4) (AG((〈n1, n2〉 ⇒AG(¬〈n3, n4〉)) ∧AG(〈n3, n4〉 ⇒AG(¬ 〈n1, n2〉))))

3.4 Transformation of Timed EPCs

In EPCs the time we are dealing with is represented by attributes attached to functions.

Timed automata use (reset) clocks, invariants and guards to deal with time. The time
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F2

F1

F1

F1

F3

F1

E1
E2

E3

E4

Figure 10: Composed automaton of Example 2

spent in each location can be restricted by defining how long to stay and when to leave a
location.

For the transformation of Timed EPC we use so-called Urgent Transitions. In general,
time can pass in a location when no time restriction is given. If no invariant forces to
leave a location it is possible to stay there infinitely (long). It is not mandatory to take a
transition. Urgent transitions change this behaviour. An urgent transition must be taken
‘as soon as possible’. This means, if a guard of an urgent transition is true (what is the
case if there is no guard given explicitly) it must be taken immediately. Thus, no time will
ever pass in a location with an urgent transition if no time restrictions are given.

Transformation of Functions Figure 11 (1) shows the transformation of a function F1
that has no time attributes. The transformation of such a function leads to (a set of automata
with) a single automaton having two locations and one transition. The second location is
associated with the corresponding function.

If the function F1 has a processing time p of 5 time units a clock c is inserted. The clock
is set to 0 when entering the location n (by the assign c := 0). A guard (on an inserted
transition) hinders the location n to be left until 5 time units passed. An invariant forces
that the location n is left when more than 5 time units passed (see Figure 11 (2)).

n

F1

(1)

n

c ≤ 5

F1

(2)

c := 0 c = 5

Figure 11: Changes of the transformation when a has got a time attribute.

Transformation of Events There is no need to change the transformation of events. (As
we now use urgent transitions no time will pass in location that are not guarded.)
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Here is an example to show how an EPC with ‘setup-time’ (s) and ‘process time’ (p) is
transformed.

c ≤ s d ≤ p

c := 0 c = s d := 0 d = p

Figure 12: Transformation of ‘setup-time’ and ‘process time’

3.5 Transformation of Properties of Timed EPCs

A so-called Timed Property is a normal property provided with additional time constraints.
For example: ‘E4 is inevitably reached and the clock t is greater or equal to 20’. Timed
properties can be expressed using TCTL. In TCTL this property is expressed as: AF(E4 ∧
t ≥ 20). t ≥ 20 is a so-called Constraint Formula12

The clock that is referred to, is not part of the system modelled. It can be imagined as a
‘global’ clock that is started at the beginning of the EPC. The time spent in the functions
of the EPC is then sum up in this ‘virtual’ clock.

Basically, this is also done when a timed property is transformed: A new clock is in-
troduced at the ‘very beginning’ and reset. The ‘very beginning’ is the transition that
corresponds to the transformed starting event. (If the property consists of several clocks
each of them must be inserted analogously.) After this preparatory work, the property can
be translated in terms of automata.

Minimum and Maximum Durations

Another kind of properties proposed are minimum and maximum durations. These dura-
tions refer to a selected starting and ending element in the EPC. In general, it is interesting
to know, how long an entire business process lasts at least and at most. We will consider
the starting event Estart and ending event Eend of the EPC for explaining the method.

First, a new automaton A with three locations and two transitions is created. This automa-
ton is synchronised with the (already transformed) set of automata. The first transition is
synchronised with the transformation that is associated with Estart. The last transformation
is synchronised with the transformation that is associated with Eend. A new clock is reset
travelling along the first transition. Figure 13 shows an example of a suchlike automaton,
having a clock t and two labels z1 and z2. (The compatible labels z1! and z2! are inserted
to the transitions associated with Estart and Eend.)

12A Constraint Formula is either > (truth) or ⊥ (falsity) or is an equality or inequality between constraint
terms. Examples: t ≤ 5, p = a + 17, etc. A Constraint Term is either a variable (out of a fixed variable set) or a
real valued constant or some arithmetic operation (addition, subtraction and multiplication) of some (real valued)
constants. Examples: x, x + 5, 17, 17 + 9− 144 ∗ 6, x ∗ 5− 3.
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A
t := 0

{z1?} {z2?}

Figure 13: The automaton for the determination of minimum and maximum durations

The property used to determine the maximum or minimum duration of the EPC contains
a parameter. Using an appropriate model checker (like for instance HyTech), the model
checker tries to find a value for the parameter, so that the property holds.

In general these properties have the following form: ‘Is it inevitably that a location n (or
transition 〈m1,m2〉) is reached and the clock t ≤ p’ (p then is the maximum), or ‘Is it
inevitably that a location n (or transition 〈m1,m2〉) is reached and the clock t ≥ p’ (p
then is the minimum). Since we consider the starting and ending event of the EPC, the
transition 〈m1,m2〉 of the property corresponds to the transformed ending event.

This method can be generalised to select arbitrary elements (functions and events) as start-
ing and ending points. The use of events has just been described and illustrated in the
upper example. When using functions there are two cases: (1) If the function is the start-
ing point then the left transition of the resulting automaton must be selected to synchronise
with. (2) Otherwise, if it is the ending point then the right transition must be selected.

4 Additional Features

4.1 Back-transformation of Automata to EPC

Back-transforming the transformed set of automata to an EPC provides a sort of valua-
tion or validation of the transformation and shows the modeller the ‘interpretation’ of the
transformed EPC. He/She can compare the original EPC with the back-transformed EPC
to compare the differences between the two models.

Because verification of some property can yield to some counter-example (provided by the
verification tool), back-transformation can be used to detect where the EPC has a possible
design flaws.

4.2 Actor Separation

We defined a process we called Actor Separation that utilises the annotation of EPCs with
organisational units to extract EPCs that describe the business process under consideration
from the perspective of selected organisational units. The resulting automaton is specific
to one organisational unit with all the advantages of simulation and verification.

Actor separation can be used in two ways: (1) It is often interesting to show that some prop-
erties are (still) valid for this ‘sub-model’ of the original EPC. (2) By back-transforming
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such a local perspective to an EPC one gets a customised view that concerns the organisa-
tional unit(s) in focus alone. This tailored EPC can be used as guidance for the responsi-
bility of the actors (persons, offices, etc.) in the entire business process.

5 Related Work

To our knowledge there are only two approaches that use verification to get proven asser-
tions about EPCs.

Van der Aalst [vdA99], defines two properties regular and sound and claims soundness to
be a minimal requirement, because it guarantees that the process chain is free of potential
deadlocks and lifelocks. Further properties like well-structuredness (that is equivalent to
our restriction to regular EPCs without the OR-connector) may be used to indicate design
flaws of the EPC.

Rump ([Rum98]) distinguishes between general properties and user defined properties.
Whereas the first aim at the correctness of the EPC, also indicating the origin of the design
flaw, the latter allow to define arbitrary assertions that can be expressed using CTL. Pro-
vided with operational semantics, the defined EPC is transformed into a reachability graph
where general properties concerning the structure of the EPC are verified. User defined
properties are expressed using CTL and can be verified by the use of a model checker (for
instance SMV).

Commonly used is the transformation to Petri nets (e. g. [CS92], [Rod97] [MR00],[Rit99,
Rit00], [Deh02], [LSW98]). Elements and structures of an EPC are transformed into
elements and structures of Petri nets.

A problem that arises when transforming EPCs to Petri nets, namely the non-locality of
join-connectors, was presented in van der Aalst et al. ([vdADK02]) and was solved by
Kindler ([Kin03]). Based on these semantics Cuntz built a tool ([Cun04]) that can be used
to simulate EPCs answering the questions of cleanness, contact-freeness and deadlock-
freeness.

Two other approaches are situated in the context of workflow management. The first ap-
proach transfers EPC to state and activity charts and focuses on the specification and ver-
ification of the workflows ([WWD+97]). The second approach ([CKSW01]) transforms
extended EPCs (eEPC)13 to a language called Flow Definition Language, that is used to
specify workflows in the workflow management system MQSeries Workflow (IBM).

Operational semantics on EPCs have been defined by Nüttgens and Rump ([NR02]). They
use a state based approach with tokens travelling over the state graph.

13Extended EPC have various additional modelling elements and are extended by a lot of additional attributes.
eEPC are for instance provided by the ARIS Toolset.
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6 Conclusion and Future Work

6.1 Conclusion

In this paper we introduced a method for the verification of properties of (Timed) EPC.
Properties in this understanding are defined by the modeller and are a kind of quality
assurance needed in the real world process.

In a first step we take communicating automata as a target description language. Simple
linear chains, but also concurrent and alternative chains are then transformed into com-
municating automata. Properties on these EPCs can be expressed using a variant of CTL
(Computation Tree Logic), a temporal logic language. And the transformation into prop-
erties on communicating automata allows the verification of such properties within the
framework of EPCs.

Using the framework of timed automata the transformation and verification of timed EPCs
is realised. The time attributes in the EPC express real-time durations of the modelled sys-
tem. By an adequate transformation, properties such as maximal overall time and minimal
overall time of the process (chain) can be found and/or verified. A timed extension of
CTL, namely Timed CTL, is used to express these properties.

The presentation of the principle of the transformation (of EPCs and corresponding prop-
erties) is given priority over the completeness of the EPCs transformed.

A tool for the transformation of EPC and a (corresponding) tool for verification of au-
tomata are currently being developed. Using this tool the transformation of larger and
elaborated examples are possible.

6.2 Future Work

Although, we did not consider all the EPCs currently used in practice, the grammars used
allow to define a huge variety of EPCs. Nevertheless, there are obvious extensions that
will get the approach closer to practice. For instance the missing OR-connector or process
interfaces are elements that were commonly used. Missing structure are multiple starting
and ending events, multinary connections and hierarchical EPCs.14

Beside these obvious extensions some more visionary extensions are possible. 15

One idea is to extend EPC by arbitrary resources. We annotate functions with ‘effort’
instead of ‘time’ and add some role/position that can be adopted by several (different)
persons. Then we can calculate the time necessary to perform the function with respect
to the number of persons, as it is practised in project management. Or we can ask for
properties like: ‘How many persons are necessary to perform the business process in 20
time units?’ The extension to continuously changing arbitrary resources means that we

14Transforming this elements is work in progress. E. g. OR can easily be transformed in a similar way, using
its logical equivalent: x OR y ≡ (x AND y) XOR (x XOR y).

15More extensions can be found in [Den06].
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need to chose Hybrid Automata.16

The extension of automata by Abstract Data Types introduces the possibility to specify
and verify properties regarding the content of information. Abstract Data Types can be
understood as a generalisation for Informational Objects already used to represent data in
EPCs.
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