CEUR-WS.org/Vol-2240/paperl.pdf

Opacity-enforcing for Process Algebras *

Damas P. Gruska! and M. Carmen Ruiz?

1 Comenius University, Slovakia
2 Universidad de Castilla-La Mancha, Spain

Abstract. Supervisory control as a way how to guarantee security of
processes is discussed and studied. We work with a security property
called processes opacity and we investigate how it can be enforced. Su-
pervisors can restrict behaviour of the original systems by enabling or
disabling some actions to guarantee its security. We study maximal su-
pervisors as the least restricting supervisory control processes. Moreover,
we study also enhanced supervisory control which can add idling between
system’s action to prevent timing attacks.

Keywords: security, opacity, process algebras, information flow, super-
visory control

1 Introduction

The great revolution brought about by the internet of things involves the emer-
gence of new devices, new protocols and, of course, new security needs to fulfill
the new requirements. New protocols come into operation before they have been
evaluated in depth. This leads to the appearance of new versions of the pro-
tocol that is not always compatible with its predecessors and that companies
will not always incorporate in their devices with sufficient speed. In addition,
these solutions usually require downloading a new code and this itself is open to
security attacks. This lack of security has been detected even in our own works.
For example in [Garl6] we present an architecture for Wireless Sensor and Ac-
tuator Networks (WSAN) using the Bluetooth Low Energy (BLE) and TCP/IP
protocols in conjunction, which make necessary to include bridges that lack ba-
sic security requirements. Another example can be found in [Horl7] where we
propose a new packet format and a new BLE mesh topology, with two different
configurations: Individual Mesh and Collaborative Mesh. All these represent our
motivation to study applicability of formal models and formal methods to define
and enforce system’s security. As regards formalism, we will work with timed
process algebra. Then we exploit information flow based security properties (see
[GMS82]) which assume an absence of any information flow between private and
public systems activities. This means that systems are considered to be secure
if from observations of their public activities no information about private ac-
tivities or states can be deduced. This approach has found many reformulations
and among them opacity (see [BKR04,BKMROG6]) could be considered as the

* Work supported by the grant VEGA 1/0778/18.

most general one and many other security properties could be viewed as its spe-
cial cases (see, for example, [Grul5,Grul2,Grull,Grul0,Gru08,Gru07]). Opacity
properties could be divided into two types: language based opacity, expressing
security (privacy) of system’s actions or traces of actions and state based one,
concentrating on system’s states (see an overview paper [JLF16]). The former
one is much more studied for process algebra’s formalism. But also for the later
one there is some research already done. In [Grul5] we consider an intruder
who wants to discover whether a process reaches a confident state. Resulting
security property is called process opacity. It turned out that in this way some
new security flaws could be expressed. If a process is not secure with respect
to process opacity we can either re-design its behavior, what might be costly,
difficult or even impossible, in the case that it is already part of a hardware
solution, proprietary firmware and so on or we can use supervisory control (see
[RW89]) to restrict system’s behaviour in such a way that the system becomes
secure. A supervisor can see (some) system’s actions and can control (disable or
enable) some set of system’s action. In this way it restricts system’s behaviour to
guarantee its security. This is a trade-off between security and functionality. But
in many cases it is not a fatal problem. Suppose that a communication protocol
can reach (with a low probability) a state which is not secure. In that case the
transmission of a packet is interrupted and it should start from the begging.
Sometimes this restriction has even smaller impact on system’s behavior. Sup-
pose that the system can perform action a and b in an arbitrary order but only
a sequence b.a could leak some classified information about intermediate states.
Restricting this sequence make system secure but could not have influence on
overall system’s functionality. In this paper we do not assume any relation among
a set of actions visible for an intruder, a set of actions visible for a controller
and a set of controllable actions, i.e. sets Ej, Eg, Ec, respectively, similarly to
[TLSG18]. Note that in [DDM10] it is assumed that E; C Eg (or Eg C Ej)
and Fc C Eg. In [YL10] E; C Eg is assumed and in [TLSG16] E¢c C Eg is
assumed. As regards the related work, besides already mentioned works there is
a large body of work on controller synthesis in temporal model checking. From
the rest we mention just two papers. In [RS01] the idea of controller to enforce
secure information flow is discussed for language based security in process al-
gebra setting. Opacity-enforcing (called strategic noninterference) was proposed
and investigated for transition systems in [JT15].

Timing attacks, as side channel attacks, represent serious threat for many
systems. They allow intruders “break” “unbreakable” systems, algorithms, pro-
tocols, etc. Even relatively recently discovered possible attacks on most of cur-
rently used processors (Meltdown and Spectre) also belong to timing attacks. To
protect systems against some type of timing attacks we propose to enhance ca-
pabilities of the supervisory control. Such controller can add some idling between
actions to enforce process’s security.

The paper is organized as follows. In Section 2 we describe the timed process
algebra TPA which will be used as a basic formalism. In Section 3 we present
supervisory control. The next section contains some basic definition on informa-

tion flow security and process opacity. Sections 5 and 6 deals with supervisory
and enhanced supervisory control for process opacity, respectively.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on
Milner’s CCS but the special time action ¢ which expresses elapsing of (discrete)
time is added. The presented language is a slight simplification of Timed Security
Process Algebra introduced in [FGMO00]. We omit an explicit idling operator ¢
used in tSPA and instead of this we allow implicit idling of processes. Hence
processes can perform either ”enforced idling” by performing ¢ actions which are
explicitly expressed in their descriptions or ”voluntary idling” (i.e. for example,
the process a.Nil can perform t action since it is not contained the process
specification). But in both cases internal communications have priority to action
t in the parallel composition. Moreover we do not divide actions into private and
public ones as it is in tSPA. TPA differs also from the tCryptoSPA (see [GMO04]).
TPA does not use value passing and strictly preserves time determinancy in case
of choice operator + what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbols
A not containing symbols 7 and ¢, and such that for every a € A there exists
a € Aand @ = a. We define Act = AU {7}, At = AU {t}, Actt = Act U {t}.
We assume that a, b, ... range over A, u,v,... range over Act, and x,y ... range
over Actt. Assume the signature X' = Un6{07172} X, where

Yo = {Nil}

Yi={z. |z € AU{t}} U{[S] | S is a relabeling function}
U{\M | M C A}

Yo ={],+}

with the agreement to write unary action operators in prefix form, the unary
operators [S],\M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt — Actt are such that S(a) = S(a) fora € A,S(7) =71
and S(t) =+t.

The set of TPA terms over the signature X is defined by the following BNF
notation:

P =X | op(P,Ps,...P,) | uXP

where X € Var, Var is a set of process variables, P, Py, ... P, are TPA terms,
uX — is the binding construct, op € 2.

The set of CCS terms consists of TPA terms without ¢ action. We will use
an usual definition of opened and closed terms where puX is the only binding
operator. Closed terms which are t-guarded (each occurrence of X is within
some subterm t.A i.e. between any two t actions only finitely many non timed
actions can be performed) are called TPA processes.

We give a structural operational semantics of terms by means of labeled
transition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation — is a subset of TPA x Actt x TPA. We write
P % P’ instead of (P, x, P') € — and P 2 if there is no P’ such that P % P’.
The meaning of the expression P = P’ is that the term P can evolve to P’ by
performing action x, by P = we will denote that there exists a term P’ such
that P % P’. We define the transition relation as the least relation satisfying
the inference rules for CCS plus the following inference rules:

— Al ————— A2
Nil = Nil u.P — u.P
P5P.Q5Q.PIQE , PHP.QHQ
PIQLP|Q P+Q5 P+

Here we mention the rules that are new with respect to CCS. Axioms Al, A2
allow arbitrary idling. Concurrent processes can idle only if there is no possibility
of an internal communication (Pa). A run of time is deterministic (S) i.e. per-
forming of ¢ action does not lead to the choice between summands of +. In the
definition of the labeled transition system we have used negative premises (see
Pa). In general this may lead to problems, for example with consistency of the
defined system. We avoid these dangers by making derivations of 7 independent
of derivations of ¢. For an explanation and details see [Gro90].

For s = z1.29..... T, z; € Actt we write P = instead of P 353 ... ™8 and
we say that s is a trace of P. The set of all traces of P will be denoted by
Tr(P). By ¢ we will denote the empty sequence of actions, by Succ(P) we will
denote the set of all successors of P i.e. Succ(P) = {P'|P > P',s € Actt*}.
If the set Succ(P) is finite we say that P is a finite state process. We define
modified transitions = ; which ”hide” actions from M. Formally, we will write
P S, P for M C Actt iff P 23523 P’ for s1,s9 € M* and P =, instead of
P2y .. 2. We will write P =, if there exists P’ such that P =, P'.

We will write P =,; P’ instead of P =,; P’ if + € M. Note that =,; is
defined for arbitrary action z but in definitions of security properties we will
use it for actions (or sequence of actions) not belonging to M. We can extend
the definition of =), for sequences of actions similarly to =». Let s € Actt*.
By |s| we will denote the length of s i.e. a number of action contained in s.
By s|p we will denote the sequence obtained from s by removing all actions
not belonging to B. For example, |s|{;| denote a number of occurrences of ¢
in s, i.e. time length of s. By Sort(P) we will denote the set of actions from
A which can be performed by P. The set of traces of process P is defined as
L(P) = {s € Actt*|3P'.P = P'}. The set of weak timed traces of process P is
defined as L, (P) = {s € (AU{t})*|3P'.P =, P'}. Two processes P and @ are
weakly timed trace equivalent (P ~,, Q) iff L,,(P) = L, (Q). We conclude this
section with definitions of M-bisimulation and weak timed trace equivalence.

Definition 1. Let (TPA, Actt,—) be a labelled transition system (LTS). A re-
lation ® C TPA x TPA is called a M-bisimulation if it is symmetric and it
satisfies the following condition: if (P,Q) € R and P 5 P’ ,x € Actt then there

exists a process Q' such that Q =y Q' and (P',Q") € R. Two processes P,Q
are M-bisimilar, abbreviated P =~p; Q, if there exists a M-bisimulation relating
P and Q.

3 Supervisory control

In this section we introduce some basic concepts of supervisory control the-
ory. For more details see [RW89]. Let us assume deterministic finite automaton
(DFA) G = (X, E,d,x0), where X is the finite set of states, E is the set of
events, 6 : X x E — X is the (partial) transition function, g € X is the
initial state. The transition function can be naturally extended to strings of
events. The generated language of G = (X, E, J, zo) is defined as L(G) = {s,s €
E* such that §(zo, s) is defined}.

The goal of supervisory control is to design a control agent (called supervisor)
that restricts the behavior of the system within a specification language K C
L(G). The supervisor observes a set of observable events Es C F and is able to
control a set of controllable events Fo C E. The supervisor enables or disables
controllable events. When an event is enabled (resp., disabled) by the supervisor,
all transitions labeled by the event are allowed to occur (resp., prevented from
occurring). After the supervisor observes a string generated by the system it tells
the system the set of events that are enabled next to ensure that the system will
not violate the specification.

A supervisor can be represented by Sup = (Y, Es,ds,Y0,%),
where (Y, Eg, ds,90) is an automaton and ¥ : Y — {E’ C E|Eyc C E'} where
Eyc = E\ E¢ specifies the set of events enabled by the supervisor in each state.
System G under the control of a suitable supervisor Sup is denoted as Sup/G,
and it satisfies L(Sup/G) C K.

Definition 2 (Controllability). Given a DFAG, a set of controllable events
Ec, and a language K C L(G), K is said to be controllable (wrt L(G) and E¢)
if

KEUC n L(G) cK
where K is the prefiz closer of K.

The controllability of K requires that for any prefix s,s € K, if s followed
by an uncontrollable event e € Ey¢ is in L(G), then it must also be a prefix of
a string in K.

Definition 3 (Observability). Given a DFAG, a set of controllable events
Ec , a set of observable events Eg , and a language K C L(G), K is said to be
observable (wrt L(G), Es and Ec) if for all s,s' € K and all e € Ec such that
se € L(G), s =g ' (s =g §' is means that strings are equal with respect to the
set Eg), s.e € K.

Observability requires that supervisors observation of the system (i.e., the
projection of s on Eg) provides sufficient information to decide after the occur-
rence of a controllable event whether the resultant string is still in K .

Proposition 1. Let K C L(G) be a prefiz-closed nonempty language, Ec the
set of controllable events and Eg the set of observable events. There exists a
supervisor Sup such that L(Sup/G) = K if and only if K is controllable and
observable.

4 Information flow

In this section we will present our working security concept. First we define the
absence-of-information-flow property - Strong Nondeterministic Non-Interference
(SNNI, for short, see [FGMO0O]). Suppose that all actions are divided into two
groups, namely public (low level) actions L and private (high level) actions H.
It is assumed that L U H = A. SNNI property assumes an intruder who tries
to learn whether a private action was performed by a given process while (s)he
can observe only public ones. If this cannot be done then the process has SNNI
property. Namely, process P has SNNI property (we will write P € SNNI) if
P\ H behaves like P for which all high level actions are hidden (namely, replaced
by action 7) for an observer. To express this hiding we introduce the hiding op-
erator P/M, M C A, for which it holds that if P % P’ then P/M % P'/M
whenever a ¢ M UM and P/M > P'/M whenever a € M U M. Formally, we
say that P has SNNI property, and we write P € SNNI iff P\ H ~,, P/H.
A generalization of this concept is given by opacity (this concept was exploited
in BKRO04], [BKMRO06] and [Gru07] in a framework of Petri Nets, transition
systems and process algebras, respectively). Actions are not divided into public
and private ones at the system description level but a more general concept of
observations and predicates are exploited. A predicate is opaque if for any trace
of a system for which it holds, there exists another trace for which it does not
hold and the both traces are indistinguishable for an observer (which is expressed
by an observation function). This means that the observer (intruder) cannot say
whether a trace for which the predicate holds has been performed or not. Now
let us assume a different scenario, namely that an intruder is not interested in
traces and their properties but he or she tries to discover whether a given process
always reaches a state with some given property which is expressed by a (total)
predicate. This property might be process deadlock, capability to execute only
traces with time length less then n time unites, capability to perform at the
same time actions form a given set, incapacity to idle (to perform ¢ action) etc.
We do not put any restriction on such predicates but we only assume that they
are consistent with some suitable behavioral equivalence. The formal definition
follows.

Definition 4. We say that the predicate ¢ over processes is consistent with
respect to relation = if whenever P = P’ then ¢(P) < ¢(P’).

As the consistency relation 2 we could take bisimulation (/2p), weak bisimu-
lation (={,1) or any other suitable equivalence. A special class of such predicates

are such ones (denoted as ¢>§) which are defined by a given process @ and equiv-
alence relation 2 i.e. 2 (P) holds iff P = Q.

We suppose that the intruder can observe only some activities performed by
the process. Hence we suppose that there is a set of public actions which can be
observed and a set of hidden (not necessarily private) actions. To model such
observations we exploit the relation =,; where actions from M are those ones
which could not be seen by the observer. The formal definition of process opacity
(see [Grul5]) is the following.

Definition 5 (Process Opacity). Given process P, a predicate ¢ over pro-
cesses is process opaque w.r.t. the set M if whenever P =, P’ for
s € (Actt\ M)* and ¢(P') holds then there exists P such that P =) P" and
—@(P") holds. The set of processes for which the predicate ¢ is process opaque
w.r.t. to the M will be denoted by POp}ZQ.

Note that if P = P’ then P € POp}#(/[< P e POpf\} whenever ¢ is consistent
with respect to 2 and 2 is such that it is a subset of the trace equivalence (defined

as ~, but instead of = ;) we use =).
P =y ¢P)

P =\ —¢(P")
Fig. 1. Process opacity

5 Supervisory Control of Process Opacity

In this section we will concentrate on enforcing process opacity, namely, how to
guarantee that there is no leakage of information on validity of ¢ in a current
state, i.e. security with respect to process opacity. Let M C Actt by M we will
denote the complement of M i.e. M = Actt\ M. Let s € Actt*, by s;; we denote
the string obtained form s by removing all elements belonging to M. Formally,
€ =6 sxy = sxiff v ¢ M and s.xy = s iff x € M. We can extend this
definition to a set of strings. Let T C Actt* then Ty; = {sy|s € T}

Now let as suppose that process P is not secure with respect to process
opacity POp‘;(/[ie. P ¢ POp}i\}. That means that there exists s € L(P);; such
that P =,; P" and ¢(P’) holds then there does not exist P such that P =,
P” and —¢(P") holds. Hence, by observing s, an intruder knows that a state
satisfying ¢ has been reached. For security reasons we want to prohibit such
computations what will be the role for the supervisory control. Formally, let
K,K C L(P)y; is a set of safe observations, i.e. for every s € K, P =, P' and
$(P’) does not hold or if it holds then there exists P” such that P =, P" and

—¢(P") holds. Clearly, if P € POp%, then K = L(P)y;, otherwise K C L(P)
but K # L(P);;. The aim of the control is to design a supervisor Sup which
will restrict behaviour of the original process P in such a way that for the
resulting process Sup/P we have L(Sup/P) C K. Note that we do not assume
any relations among set of actions visible for an intruder, a set of actions visible
for a controller and a set of controllable actions, i.e. sets E;(Er = M), Es, Ec,
respectively, similarly to [TLSG18]. Note that in [DDM10] it is assumed that
E; C Eg (or Es C Ey) and E¢c C Eg. In [YL10] E; C Eg is assumed and in
[TLSG16] E¢ C Eg is assumed.

Ezample 1. Let P = c.(a.b.Nil+b.(a.Nil+d.Nil)), M = {¢,d} and predicate ¢ is

defined as follows: ¢(Q) holds iff @ < Then it is easy to check that P ¢ POp}l\Z.
The execution of c.b (visible as b) at the beginning leads to the state satisfying
¢ but no execution visible as b can lead to a state not satisfying ¢.

Now we will model supervisory control by means a special process Sup. Pro-
cess Sup runs in parallel with P, communicates with environment via actions
Sort(P) and internally with P by actions renamed by function f which maps
every action a from Sort(P) to a new "ghost” action a’ (see Fig. 2). The formal
definition of process supervisor is the following.

P Sup P

Fig. 2. Supervisory Control

Definition 6 (Process Supervisor). Given process P, a process Sup is called
supervisor if L., (Sup/P) C L, (P) where Sup/P = (P[f]|Sup) \ f(Sort(P))
where f : Sort(P) — Sort(P)" where Sort(P) = {z'|x € Sort(P),x # 7}.

We will use a process supervisor to restrict behaviour of the original process
in such a way that the resulting process becomes secure with respect to process
opacity.

Definition 7 (Process Supervisor for Process Opacity). Given process P,
process Sup is called supervisor for opacity property POpf/[iff P & POpf\)/I but
Sup/P € POp?\}. By Sup(P, POpﬂ) we will denote the set of all supervisors for
opacity property POpﬁ/[for a given process P.

Ezample 2. Let us continue with the Example 1. Let Sup; = ¢’.c.Nil Sups =
c.c.a’.aNil and Sups = '.c.a’.a.b’.b.Nil then it is easy to check that all processes
Sup; are process supervisors for P and opacity property POpﬂ. Actually these
process supervisors restrict the execution of action b immediately after c.

Clearly, Sup(P, POpf/[) # () since Nil € Sup(P, POpf\}). Note that supervi-
sor Nil restricts all behaviour of P which consequently becomes trivially secure.
We can formulate some properties of the set Sup(P, POp%).

Proposition 2. Let Supi,Sups € Sup(P, POpf/I). Then Sup; + Sups €
Sup(P, POp%I),

Proof. The main idea. The first actions which is performed by (Sup; + Sups)/P
is performed either by Sup; or by Sups.

Proposition 3. Let Sup; € Sup(P, POp?\)/[) and Supy, ~g Sups. Then Supy €
Sup(P, POpf/[).

Proof. Sketch. The proof follows from the the fact that trace equivalence is con-
gruence i.e. for Supy ~2p Sups we have (P[f]|Sup1)\f(Sort(P)) =~y (P[f]|Sup1)\

F(Sort(P)) and so L((PLf]|Supi)\ f(Sert(P))) = L((P|f]|Sups) \ f(Sort(P))
i.e.L(Supi/P) = L(Sups/P).

To guarantee a minimal restriction of process behaviour our aim is to find
a maximal process supervisor in a sense that it minimally restricts behavior of
the original process. The formal definition is the following.

Definition 8 (Maximal Process Supervisor for Process Opacity). Pro-
cess Sup € Sup(P, POpf\}) is called maximal process supervisor for process opac-
ity POpf/[iff for every Sup’ € Sup(P, POp%) L(Sup’'/P) C L(Sup/P).

Ezample 3. Let us continue with the Examples 1 and 2. It is easy to check that
process Sups is a maximal process supervisor for P and opacity property POp}l\Z.
Processes Sup; and Sups are not maximal process supervisors for P and opacity
property POpr.

Unfortunately it is undecidable to verify whether a process Sup is a process
supervisors for P and opacity property POpK] as it is stated by the following
proposition.

Proposition 4. The property that Sup is a process supervisor for process opac-
ity for process P is undecidable in general.

Proof. The proof is based on an idea that already process opacity is undecidable
(see Proposition 2. in [Grulb]). Suppose that the property is decidable. Let
Sup = pX. Y c gy ¥’ 2.X i.e Sup does not restrict anything. We have that Sup

is a process supervisor for process opacity for process P iff P € POp‘]@. Hence
we would be able to decide process opacity what contradicts its undecidability.

Corollary. The property that Sup is a maximal process supervisor for process
opacity for process P is undecidable in general.

To obtain a decidable variant of the previous property we put some restric-
tion on process predicates. First we model predicates by special processes called
tests. For now we assume that action 7 is not visible for an intruder, i.e. 7 € M.
The tests communicate with processes and produce 4/ action if correspond-
ing predicates hold for the processes. In the subsequent proposition we show
how to exploit this idea to express process opacity by means of appropriate
M-bisimulation.

Definition 9. We say that the process Ty is the test representing predicate ¢ if
&(P) holds iff (P|Ty)\ At = /.Nil where / is a new action indicating a passing
of the test. If Ty is the finite state process we say that ¢ is the finitely definable
predicate.

Suppose that both ¢ and —¢ are the finitely definable predicates. Then we
can reduce checking whether Sup is a process supervisor for process opacity
to checking bisimulation (see Proposition 4. in [Grulb]). Since we can reduce
the problem of decidability to finite automata (see [TLSG18]) we obtain the
following result.

Proposition 5. Let ¢ and —¢ are finitely definable predicates. The property
that Sup is a process supervisor for process opacity for finite state process P is
decidable. Moreover, we can always find a mazximal supervisor for process opacity.

6 Enhanced Supervisory Control

Time attacks belong to powerful tools for attackers who can observe or interfere
with systems in real time. By the presented formalism we can distinguish timing
attacks. Suppose that P ¢ POpf/[but P € POpiiU{t}. This means that an
attack is possible only for an observer who can see elapsing of time, i.e. there is
a possibility of timing attacks. To prevent them, we can use process supervisor
which restricts process behaviour with respect to actions from A or we introduce
a new type of process supervisor, called enhanced process supervisor which can
add some idling between actions to ensure that the resulting process becomes
secure with respect to timing attacks. In this case the restriction with respect
to atomic actions from A could be smaller as in the case of original supervisory
control.

Definition 10 (Enhanced Process Supervisor). Given process P, a process
ESup is called enhanced supervisor if whenever s € L, (P) then ESup/P :S>t’7
where ESup/P = (P[f]|ESup) \ f(Sort(P)) where f : Sort(P) — Sort(P)
where Sort(P) = {a'|x € Sort(P),x # 7}.

Definition 11 (Enhanced Process Supervisor for Process Opacity). Given
process P, P € POpi[U{t}, a process ESup is called enhanced supervisor for
opacity property POp‘Iz\)/I iff P & POp%, but ESup/P € POpCI/\)/[. By ESup(P, POp'f\)/I)
we will denote the set of all supervisors for opacity property EPOp}i\’J for a given
process P.

Now we can formulate a condition which guarantees existence of an enhanced
supervisory control.

Proposition 6. Let P ¢ POpf/I and there exists P, P ~., P’ such that P' €

POpf/[. Then there exists nontrivial (not equivalent to Nil with respect to ~,)
enhanced supervisory control for P.

Proof. The main idea. According to the assumption processes P and P’ behave
essentially in the same way but the later performs more idling between actions
from Act. The enhanced supervisory control adds this idling to behaviour of P
in such a way that the resulting process is process opaque.

Moreover, the previous proposition has the following consequence which guar-

anties that the maximal enhanced supervisory control does not restrict action
from A.

Corollary. Let P € POp‘]jf/[U () and P ¢ POp}QI. For the maximal enhanced
supervisory control for P we have L(ESup/P); = K 5.

7 Conclusions

We have presented the new concepts called supervisory and enhanced super-
visory controller for process algebra which enforce the security property called
process opacity. Particularly, we have investigated finite state systems and time
sensitive observations. A supervisor can see (some) system’s actions and can
control (disable or enable) some set of system’s action. In this way it restricts
system’s behaviour to guarantee its security. Sometimes either we simply cannot
redesign original insecure system which could have, for example, hardware im-
plementation or some small restriction of system’s behaviour is not essential for
overall system functionality. In the case of enhanced supervisory controller it can
only add some idling between actions which would have no influence on system
non-timing properties. The presented approach allows us to exploit also process
algebras enriched by operators expressing other ”parameters” (space, distribu-
tion, networking architecture, processor or power consumption and so on). In
this way also other types of attacks, which exploit information flow through
various covert channels, can be described and enforced. Hence we could obtain
security properties which have not only theoretical but also practical value, since
many protocols, particularly low level protocols for IoT, could be described by
means of some process algebra formalism.

References

[BKRO4] Bryans J., M. Koutny and P. Ryan: Modelling non-deducibility using Petri
Nets. Proc. of the 2nd International Workshop on Security Issues with Petri
Nets and other Computational Models, 2004.

[BKMRO6] Bryans J., M. Koutny, L. Mazare and P. Ryan: Opacity Generalised to
Transition Systems. In Proceedings of the Formal Aspects in Security and
Trust, LNCS 3866, Springer, Berlin, 2006.

[DDM10] Dubreil J., P. Darondeau and H. Marchand: Supervisory control for opacity.
IEEE Trans Autom Control 55(5), 2010.

[FGMO0O0] Focardi, R., R. Gorrieri, and F. Martinelli: Information flow analysis in
a discrete-time process algebra. Proc. 13" Computer Security Foundation
Workshop, IEEE Computer Society Press, 2000.

[Garl6]

[GMO4]

[GMS2]
[Gro90]
[Gru15]
[Gru12]
[Grull]
[Gru10]
[Gru0s]
[Gru07)

[Horl7]

[JLF16]

[JT15]
[RW89)]
[RSO1]

[TLSG18]

[TLSG16]

[YL10]

Garrido C., V. Lopez, T. Olivares and M. C. Ruiz: Architecture Proposal for
Heterogeneous, BLE-Based Sensor and Actuator Networks for Easy Man-
agement of Smart Homes. 15th ACMIEEE International Conference on In-
formation Processing in Sensor Networks (IPSN), 2016.

Gorrieri R. and F. Martinelli: A simple framework for real-time crypto-
graphic protocol analysis with compositional proof rules. Science of Com-
puter Programming, Volume 50, Issues 13, 2004.

Goguen J.A. and J. Meseguer: Security Policies and Security Models. Proc.
of IEEE Symposium on Security and Privacy, 1982.

Groote, J. F.: Transition Systems Specification with Negative Premises.
Proc. of CONCUR’90, Springer Verlag, Berlin, LNCS 458, 1990.

Gruska D.P.: Process Opacity for Timed Process Algebra. In Perspectives
of System Informatics, LNCS 8974, 2015.

Gruska D.P.: Informational analysis of security and integrity. Fundamenta
Informaticae, vol. 120, Numbers 3-4, 2012.

Gruska D.P.: Gained and Excluded Private Actions by Process Observa-
tions. Fundamenta Informaticae, Vol. 109, No. 3, 2011.

Gruska D.P.: Process Algebra Contexts and Security Properties. Funda-
menta Informaticae, vol. 102, Number 1, 2010.

Gruska D.P.: Probabilistic Information Flow Security. Fundamenta Infor-
maticae, vol. 85, Numbers 1-4, 2008.

Gruska D.P.: Observation Based System Security. Fundamenta Informati-
cae, vol. 79, Numbers 3-4, 2007.

Hortelano, D., T Olivares, M.C. Ruiz, M. Carmen, C. Garrido-Hidalgo and
V. Lépez: From Sensor Networks to Internet of Things. Bluetooth Low
Energy, a Standard for This Evolution. Sensors, vol 17, 2017.

Jacob, R., J.-J.Lesage and J.-M. Faure: Overview of discrete event systems
opacity: Models, validation, and quantification, Annual Reviews in Control
Volume 41, 2016.

Jamroga W. and M. Tabatabaei: Strategic Noninterference. ICT Systems
Security and Privacy Protection, SEC 2015.

Ramadge P.J.G, Wonham W.M.: The control of discrete event systems.
Proc IEEE 77(1):8198, 1989.

Ryan P. Y. A. and S. A. Schneider: Process Algebra and Non-Interference.
Journal of Computer Security 9(1/2), 2001.

Tong, Y, Z. Li, Zhiwu, C. Seatzu and A. Giua: Current-state opacity en-
forcement in discrete event systems under incomparable observations. Dis-
crete Event Dynamic Systems, vol. 28, 2018.

Tong, Y, Z. Li, Zhiwu, C. Seatzu and A. Giua: Supervisory enforcement of
current-state opacity with uncomparable observations. In: Proceedings of
the 13th International workshop on discrete event systems, 2016.

Yin X. and S. Lafortune: A new approach for synthesizing opacity-enforcing
supervisors for partially-observed discrete-event systems. In: Proceedings of
the 2015 American control conference. IEEE, Chicago, 2015.

