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Abstract. Gene Regulatory Networks represent the interactions among
genes regulating the activation of specific cell functionalities and they
have been successfully modeled using threshold Boolean networks. In this
paper we propose a systematic translation of threshold Boolean networks
into Reaction Systems. Our translation produces a non redundant set of
rules with the minimal number of objects. This translation allows us
to simulate the behavior of a Boolean network simply by executing the
(closed) Reaction System we obtain. Moreover, it allows us to investigate
the role of different genes simply by “playing” with the rules related to
different genes. Starting from a well-known Boolean network model of
the Yeast-Cell Cycle, we construct the corresponding Reaction System
and start an investigation on causal dependencies among genes.

1 Introduction

In the context of molecular biology of cells, Gene Regulatory Networks (GRNs)
represent the interactions among genes regulating the activation of specific cell
functionalities. More specifically, genes in a GRN can be either active (i.e. the
corresponding protein is expressed) or not, and each active gene can either stimu-
late or inhibit the activation of a number of other genes. Moreover, the activation
of some genes is also usually influenced by other factors such as the availability
of some substances in the environment or the reception of a signal form neighbor
cells. As a consequence, gene regulatory networks can be seen as the mechanism
that allow a cell to react to external stimuli. When a stimulus is received, it
causes a change in the activation state of a few genes, that, in turn, influence
other genes, allowing a new configuration of active genes (corresponding to a
new set of active cell functionalities) to be reached.

Several approaches have been proposed to model and analyze GRNs (see
[24] for a survey on this topic). Modeling techniques can either deal only with
the qualitative aspects of such networks (treating them essentially as logic cir-
cuits), or can describe also the quantitative aspects, such as the rates of the
interactions. The latter approach is for sure more precise, but requires many
additional details of the network dynamics to be taken into account, such as the
rates of transcription and translation of genes’ DNA into proteins and the rates
of protein-protein and protein-DNA interactions. Qualitative models are often
sufficient to reason on the behavior of the regulatory networks, although with
some degree of approximation.



In the qualitative modeling setting, one of the most successful modeling
frameworks for gene regulatory networks are Boolean networks. In this setting,
a particular simple form of Boolean networks, the so called threshold Boolean
networks [16, 19, 22], have been widely used to model the dynamics of quite
complex regulatory networks. In threshold Boolean networks, the Boolean func-
tion of each node depends on the sum of its input signals only. This variant of
Boolean networks can be easily implemented and, at the same time, it is well
suited for representing gene regulatory networks.

Boolean networks allow dynamical properties of GRNs to be investigated.
Starting from an initial configuration of active genes, the dynamics of a GRNs
is expressed as a sequence of steps in which such a configuration is updated
according to the influences among the genes described by the Boolean network.
Dynamical properties can be investigated either by performing simulations, or
by constructing the (finite) graph representing all possible dynamical evolutions.
Example of properties that are often studied on these models are reachability
and stability of configurations, and confluence of evolutions started from different
initial configurations into stable configurations (attractors).

Analysis of dynamical properties may become computationally very expen-
sive. In order to reduce the state space to be analyzed, minimization techniques
can be applied. The Boolean function represented by a Boolean network can
be synthesized in any framework of logic minimization. The classical approach
to logic minimization that produces sum of products two level formulas can be
used (see e.g., Espresso [10, 23]). More than two level minimization is harder,
but the size of the resulting expressions can significantly decrease. In particular,
bounded multilevel forms, such as three or four-level forms [8, 7, 9, 10] could rep-
resent a good tradeoff among the cost of the final representation and the time
needed for the minimization procedure.

Other analysis methods for GRNs could be applied by changing the repre-
sentation of the Boolean networks describing them. In this paper we propose
a systematic translation of threshold Boolean networks into Reaction Systems
[17, 13]. Reaction systems were introduced by Ehrenfeucht and Rozenberg as a
novel model for the description of biochemical processes driven by the interac-
tion among reactions in living cells. Reaction systems are based on two opposite
mechanisms, namely facilitation and inhibition. Facilitation means that a reac-
tion can occur only if all its reactants are present, while inhibition means that
the reaction cannot occur if any of its inhibitors is present. The state of a Re-
action System consists of a finite set of objects which can evolve by means of
application of reactions. The presence of an object in a state expresses the fact
that the corresponding biological entity, in the real system being modeled, is
present. Quantities (or concentrations) of the entities are not described: Reac-
tion Systems are hence a qualitative modeling formalism.

In this setting the dynamic run of the Reaction System simulates the evolu-
tion of the Boolean network. This correspondence allows us to “play” with the
rules of the Reaction System related to different genes in order to detect dy-
namic causality dependencies between genes activation/deactivation. Moreover,
we believe that this correspondence will allow us to apply to Boolean networks
well-known techniques to detect causality relationships between objects in bio-



logical systems. The understanding of causality relationships among the events
happening in a biological (or bio-inspired) system is an issue investigated in the
context both of systems biology (see e.g. [18, 11, 12]) and of natural computing
(see e.g. [15]).

In [14] Brijder, Ehrenfeucht and Rozenberg initiate an investigation of causal-
ities in Reaction Systems [17, 13]. Causalities deal with the ways entities of a
Reaction System influence each other. In [14], both static/structural causali-
ties and dynamic causalities are discussed, introducing the idea of predictor. In
[2, 1, 3, 5, 4, 6], the idea of predictors was enhanced by defining the notions of
formula based predictor and specialized formula based predictor. These new con-
cepts allow us to study all causal dependencies of one object from all others.
We believe that the Reaction System simulating a Boolean network can then be
investigated by computing the specialized formula based predictor of a partic-
ular activation/deactivation gene configuration. This will allow us to obtain a
logic formula characterizing all alternative activation/deactivation gene config-
urations that lead to the requested configuration in a bounded number of steps.
This could be very useful to understand which genes are necessary for reaching
a requested configuration.

The translation we propose in this paper produces a non redundant set of
rules with the minimal number of objects.

The paper is organized as follows. Section 2 introduces the main concepts of
(Closed) Reaction Systems. In Section 3 we describe how Boolean networks are
defined and how they work. Section 4 presents the systematic translation from
Boolean network to Reaction Systems we propose. Finally, in Section 5 we apply
our methodology to simulate and study the Yeast-Cell Cycle Boolean Network.

2 Closed Reaction Systems

In this section we recall the basic definition of Reaction Systems [17, 13]. Let S be
a finite set of symbols, called objects. A reaction is formally a triple (R, I, P ) with
R, I, P ⊆ S, composed of reactants R, inhibitors I, and products P . Reactants
and inhibitors R ∪ I of a reaction are collectively called resources of such a
reaction, and we assume them to be disjoint (R∩ I = ∅), otherwise the reaction
would never be applicable. The set of all possible reactions over a set S is denoted
by rac(S). Finally, a Reaction System is a pair A = (S,A), where S is a finite
support set, and A ⊆ rac(S) is a set of reactions.

The state of a Reaction System is described by a set of objects. Let a =
(Ra, Ia, Pa) be a reaction and T a set of objects. The result resa(T ) of the ap-
plication of a to T is either Pa, if T separates Ra from Ia (i.e. Ra ⊆ T and
Ia ∩ T = ∅), or the empty set ∅ otherwise. The application of multiple reac-
tions at the same time occurs without any competition for the used reactants
(threshold supply assumption). Therefore, each reaction which is not inhibited
can be applied, and the result of the application of multiple reactions is cumu-
lative. Formally, given a Reaction System A = (S,A), the result of application
of A to a set T ⊆ S is defined as resA(T ) = resA(T ) =

⋃
a∈A resa(T ).

An important feature of Reaction System is the assumption about the non-
permanency of objects: the objects carried over to the next step are only those



produced by reactions. All the other objects vanish, even if they are not involved
in any reaction.

The dynamics of a Reaction System is generally driven by the contextual
objects, namely the objects supplied to the system by the external environment
at each step. Closed Reaction Systems are the subset of general Reaction Systems
where the external environment provides objects at the first step only.

This allows us to simplify the dynamics of a (closed) Reaction System A =
(S,A). Indeed, given the initial set D0 the semantics can be simply defined as
the result sequence, δ = D1, . . . , Dn where each set Di, for i ≥ 1, is obtained
from the application of reactions A to the state obtained at the previous step
Di−1 ; formally Di = resA(Di−1) for all 1 ≤ i < n. For the sake of simplicity,
we write Di−1 →A Di as a shorthand for Di = resA(Di−1). In this case the
sequence of states of the Reaction System coincides with the result sequence
δ = D1, . . . , Dn.

3 Boolean Networks

We present a formal definition of threshold Boolean networks [22] considering a
set M of n elements, S1, S2, . . . Sn to be nodes of a network. We assign to each
element, at each time instant t, a value Si(t) ∈ {0, 1} denoting if the element Si
is present at that instant or not. The interactions among elements are given by
the set of edges of the network called E. Each edge in E can be either activating
or inhibiting. An edge from element Sj to element Si is denoted aij (where i 6= j
given that a element cannot either activate or inhibit itself). An activating edge
has value 1 while an inhibiting one has value −1. Elements M can be partitioned
in two sets Msa and Mnsa of self-activating and non-self-activating elements,
respectively, M = Msa ∪Mnsa. A self-activating elements if is present at time t
and it is not inhibited will be present at time t + 1, while a non-self-activating
one will not. Moreover we assume that each element Si has associated a value
θi ∈ Θ which is called the threshold parameter of Si. The pair (M,E) is called a
threshold Boolean network.

The states of the nodes in the network are updated in parallel in discrete time.
The rules for updating the values of nodes are the following, for i ∈ {1, . . . , n}

Si(t+ 1) =



1 if
∑
j

aijSj(t) > θi

0 if
∑
j

aijSj(t) < θi

Si(t) if Si ∈Msa ∧
∑
j

aijSj(t) = θi

0 if Si ∈Mnsa ∧
∑
j

aijSj(t) = θi

where the value θi is the threshold parameter associated to the element Si.

Typically the threshold parameter θi associated to Si is equal to 0 so that
the switch is inactive if there is no input signal, and it switches on when signals
are present. A node which needs more than one incoming signals to be activated
can be represented in the model by setting θi to a value greater than 0.

Starting from an initial condition, the network produces a dynamical se-
quence of states and it can reach a periodic attractor or a fixed point.
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Fig. 1. An example of gene regulatory network.

There is a natural representation of Boolean networks by means of graph
where the nodes represent the elements and the edges represent the interactions
between the elements; an activating edge is indicated by → while an inhibiting
one is indicated by a. Non self-activating genes are represented by nodes with
half-arrow (⇀) self loops.

We introduce an example to illustrate threshold Boolean networks and their
dynamic evolution.

Example 1. Let us consider the threshold Boolean network (M,E) with elements
M = {A,B,C,D} such that Msa = {A,B,C} and Mnsa = {D} and with the
edges depicted in Fig. 1. Thus, the element D is non self-activating while the
elements A,B and C are self-activating. We also assume that the threshold
parameter for each element is 0.

We describe the temporal evolution considering an initial state in which the
element D is present while the others are not. We have

Step A B C D
1 0 0 0 1
2 1 1 0 0
3 1 1 1 0
4 0 1 1 1
5 0 1 1 0
6 0 0 1 0
7 0 0 1 0

Initially the element D stimulate the activation of both elements A and B be-
cause the element C, their inhibitor is not present. Note that at the second step
the element D is inactive because it is non self-activating. Then, at step 3, the
elements C is present because it is activated by B while A and B are still present
because they are self-activating and at step 2 C was not present. At step 4, the
element C actives D and inhibits A which is not present anymore. By contrast,
C does not inhibit the element B which is still present because it was present at
step 3 but also A was present. The step 5 is similar. Finally at step 6 the element
B is not present anymore because in the previous configuration A and D were
absent and the inhibitor C was activated. The last one is also a stationary state
of the system, since no more evolutions of the network are possible from such
state.



4 Translation of Boolean Networks into Reaction Systems

We present a translation of threshold boolean networks in closed Reaction Sys-
tem. Given a Boolean network (M,E) with M = {S1, S2, . . . Sn} we define for
Si ∈M ,

Act(Si) = {Sj | j ∈ [1, n] ∧ aij = 1} In(Si) = {Sj | j ∈ [1, n] ∧ aij = −1}

We recall that aij denotes an edge from element Sj to element Si. Hence,
Act(Si) reports the elements Sj which activates Si and analogously In(Si) re-
ports the elements Sj which inhibits it.

Definition 1. Let (M,E) be a threshold Boolean network with elements M =
{S1, S2, . . . Sn} and threshold parameters Θ = {θ1, θ2, . . . θn}. We define its
translation as the closed Reaction System RS((M,E)) = (M,A), where reac-
tions in A are constructed according to the following inference rules:

1)

Pi ⊆ Act(Si) Ii ⊆ In(Si)
#Pi −#(In(Si) \Ii) = θi − 1

(Pi, Ii, {Si}) ∈ A

2)

Si ∈Msa Pi ⊆ Act(Si) Ii ⊆ In(Si)
#Pi −#(In(Si)\Ii) = θi

(Pi ∪ {Si}, Ii, {Si}) ∈ A

The closed Reaction System RS((M,E)) simulates the threshold Boolean
network (M,E) using reactions obtained by applying either the inference rule
1) or the inference rule 2). Rule 1) defines the reactions which simulate the
production of a element Si at time t + 1 whenever at time t the number of
the elements which activate Si minus the number of the elements which inhibit
Si is greater than θi (according to the rule given in Section 3). This behavior is
simulated by a reaction which has as product Si, as reactants Pi and as inhibitors
Ii where Pi is a subset of the elements which activates Si and analogously Ii is
a corresponding subset of the elements which inhibits it. Note that this reaction
can be applied if in the Reaction System state none of the elements in Ii is
present. As a consequence, the set of the elements which are inhibitors of Si and
which may be present is given by In(Si)\Ii. Therefore we guarantee that the
cardinality of Pi minus that of In(Si)\Ii is greater than θi. More specifically we
require that this difference is equal to θi − 1 in order to built a minimal set of
reactions in the corresponding Reaction System.

Rule 2) is defined for self-activating elements which remains active at time
t + 1 if they are present at time t and they are not inhibited (according to the
rule given in Section 3). In Reaction System, due to the non-permanency of
objects, the objects carried over to the next step are only those produced by
reactions. Therefore, in this case, the reaction which simulates the behavior has
Si as reagent and also as product. Similarly as in the case 1), Pi is a subset of
the elements which activates Si and Ii is a corresponding subset of the elements
which inhibits Si. In this case, however, we require that the cardinality Pi minus
the number of inhibitors which might be present (i.e. (In(Si)\Ii) ) is exactly θi.

Example 2. We give the translation of the threshold Boolean network (M,E)
presented in Example 1. Fig. 1) illustrates the interactions between the elements
of the network M = {A,B,C,D} such that Msa = {A,B,C} and Mnsa = {D}.



By assuming again that the threshold parameter for each element is 0 we
obtain the closed Reaction System RS((M,E)) = (M,A) with reactions A are
defined as follows:

({C}, ∅, {D}), ({B}, ∅, {C}) ({C}, ∅, {C}), ({A,D}, ∅, {A})
({D}, {C}, {A}), ({A}, {C}, {B}) ({A}, {C}, {A}), ({B,D}, ∅, {B})
({D}, {C}, {B}), ({A,D}, ∅, {B}) ({B,A}, ∅, {B}), ({B}, {C}, {B})

The reactions on the left are obtained by applying the rule 1) while those on
the right by applying the rule 2). The two columns on the left contains one or
more reaction for each elements which produces the element. For the elements
D and C there is exactly one reaction given that they do not have inhibitors.
By contrast, the element C inhibits both A and B. In the first case, there is
just one reaction which says that D produces A if not inhibited by C. The
case of B is similar but it can be activated by two element, A and D. Hence,
there are three different reactions corresponding to the possible conditions of
elements which can activate and inhibit B. Note that the requirements of rule
1) guarantee that only minimal subsets are considered. For instance a reaction
such as ({A,D}, {C}, {B}) is subsumed by ({A,D}, ∅, {B}) given that the latter
reaction can be applied regardless of the presence of C.

The two columns on the right shows the reactions for self-activating elements,
A, B and C. Similarly as in the previous case there is one or more reaction
for each self-activating elements which has the element both as reagent and as
product.

We can now prove the soundness of the translation of threshold Boolean
networks in closed Reaction System. To relate the configurations of a threshold
Boolean network with the state of the associated Reaction System we introduce
the following definition.

Definition 2. Given a threshold Boolean network (M,E) with M = {S1, . . . Sn},
and a state at time t, S(t) = {S1(t), S2(t), . . . Sn(t)}. The translation of the state
S(t) in a corresponding Reaction System state is given by RS(S(t)), defined as
follows: RS(S(t)) = {Si | Si(t) = 1, i ∈ [1, n]}.

Theorem 1. Let (M,E) be a threshold Boolean network with elements M =
{S1, S2, . . . Sn} and threshold parameters Θ = {θ1, θ2, . . . θn}. Given a state at
time t, S(t) = {S1(t), S2(t), . . . Sn(t)} we have that

RS(S(t+ 1)) = resA(RS(S(t)))

where A = RS((M,E)) = (M,A) is the Reaction System obtained by the trans-
lation.

Due to Theorem 1 a threshold Boolean network (M,E) with a state S(0) at
time 0 can be simulated by the corresponding closed Reaction SystemRS((M,E))
by considering the initial state RS(S(0)).

At this point, it important to count the number reactions of the closed Re-
action System necessary to simulate a threshold Boolean network (M,E). Such



number depends on the number of the nodes M and of the edges of the network
E and also on the threshold parameters Θ. For each Si ∈ M the number of
the reactions which have Si as a product depends on the cardinality of Act(Si)
and In(Si) and on θi. Indeed, Act(Si) and In(Si) represents the number of the
incoming edges which activates and inhibits Si respectively.

Proposition 1. Given a threshold Boolean network (M,E) with elements M =
{S1, S2, . . . Sn} and threshold parameters Θ = {θ1, θ2, . . . θn}.
Moreover, let RS((M,E)) = (S,A) be the corresponding closed Reaction System.

– For each i ∈ {1, . . . , n}, let N(Si) = #({(R, I, P ) ∈ A | Si ∈ P}) be the
number of the reactions which produce the element Si. We have that

N(Si) =



∑min(mi,(li+1+θi))
k=1+θi

(
mi

k

)
×
(

li
k−1−θi

)
, if Si ∈Mnsa;

∑min(mi,(lj+1+θi))
k=1+θi

(
mi

k

)
×
(

li
k−1−θi

)
+∑min(mi,(lj+θi))

h=θi

(
mi

h

)
×
(
li

k−θi

)
, if Si ∈Msa.

where mi = #(Act(Si)) and li = #(IN(Si)).
– We have that #(A) =

∑n
i=1N(Si).

The previous result is a direct consequence of Definition 1.

Example 3. Let us consider the closed Reaction System RS(M,E) = (M,A),
presented in the Example 2, which is the translation of the threshold Boolean
network (M,E) of Example 1. The reaction system has 12 reactions. Indeed,
since A,B and C belong to Msa while D belongs to Mnsa and the threshold
parameter is 0 by applying Proposition 1, we obtain:

N(A) =
∑min(1,2)
i=1

(
1
i

)
×
(

1
i−1
)

+
∑min(1,1)
i=0

(
1
i

)
×
(
1
i

)
= 1 + (1 + 1) = 3

N(B) =
∑min(2,2)
i=1

(
2
i

)
×
(

1
i−1
)

+
∑min(2,1)
i=0

(
2
i

)
×
(
1
i

)
= (2 + 1) + (1 + 2) = 6

N(C) =
∑min(1,1)
i=1

(
1
i

)
×
(

0
i−1
)

+
∑min(1,0)
i=0

(
1
i

)
×
(
0
i

)
= 1 + 1 = 2

N(D) =
∑min(1,2)
i=1

(
1
i

)
×
(

0
i−1
)

= 1

5 Simulating the Yeast-Cell Cycle Boolean Network

The cell-cycle process by which a cell goes and divides into two cells is a vital
process the regulation of which is conserved among the eukaryotes [21]. The
process mainly consists in four phases depicted in Figure 2.

In phase G1 the cell grows and, under appropriate conditions, commits to
division, in phase S the DNA is synthesized and chromosomes replicated, G2
is the phase where the cell checks the duplicated chromosomes, and finally in
the M (Mitosis) phase the cell is divided into two. After the Mitosis phase, the
cell enters the G1 phase, hence completing a cycle. There are about 800 genes



Fig. 2. The complete cell-cycle

Fig. 3. The Boolean network (MCell, ECell).

involved in the cell-cycle process of the budding yeast [25]. However, the number
of key regulators that are responsible for the control and regulation of this com-
plex process is much smaller. Based on extensive literature studies, the authors
in [20] constructed a network of key regulators involving 11 genes. The relations
between genes are described by the boolean network (MCell, ECell) depicted in
Figure 3, where the threshold parameter θ is always 0. The boolean network
was used to study the time evolution of the protein states. Starting from the
211 = 2048 possible initial states describing a configuration for gene activation,
they discover that all of them flow into one of seven attractor stationary states.
In particular, among the seven fixed points there is one big attractor that at-
tracts 1764 initial states. We translated the Boolean network (MCell, ECell) of
Figure 3 into a Reaction System Acell = RS(MCell, ECell) = ((MCell, ACell) by
applying the procedure described in Definition 1. The Reaction System Acell has
52 reactions. For simplicity, we just show the translation of reactions describing
the production (activation) of a single node of the Boolean network. Consider the
central node named Sic1 in the Boolean network of Figure 3. It has 2 activating
incoming arcs and 3 inhibiting incoming arcs. Since Sic1 ∈Msa, by Proposition 1

there will be
∑min(2,4)
i=1

(
2
i

)
×
(

3
i−1
)
+
∑min(2,3)
i=0

(
2
i

)
×
(
3
i

)
= (2+3)+(1+6+3) = 15.

Indeed, by applying our translation we find the following rules for the production
of Sic1:



Fig. 4. The cell cycle evolution

({Cdc20}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
({Swi5}{Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
({Cdc20, Swi5}, {Clb1, 2, Cln5, 6}, {Sic1})
({Cdc20, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1})
({Cdc20, Swi5}, {Cln1, 2, Clb5, 6}, {Sic1})
({Sic1}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
({Sic1, Cdc20}, {Clb5, 6, Clb1, 2}, {Sic1})
({Sic1, Cdc20}, {Clb5, 6, Cln1, 2}, {Sic1})
({Sic1, Cdc20}, {Clb5, 6, Clb1, 2}, {Sic1})
({Sic1, Swi5}, {Clb5, 6, Clb1, 2}, {Sic1})
({Sic1, Swi5}, {Clb5, 6, Cln1, 2}, {Sic1})
({Sic1, Swi5}, {Clb5, 6, Clb1, 2}, {Sic1})
({Sic1, Cdc20, Swi5}, {Cln1, 2}, {Sic1})
({Sic1, Cdc20, Swi5}, {Clb1, 2}, {Sic1})
({Sic1, Cdc20, Swi5}, {Clb5, 6}, {Sic1})
Note that the behavior of the reactions producing Sic1 faithfully model the ac-
tivation of gene Sic1 in the Boolean network. Consider the case where genes
Cdc20, Swi5 and Clb5, 6 are all active according to the Boolean network of Fig-
ure 3 after one step Sic1 becomes active. The previous state is represented in the
Reaction System as the set of activated genes D0 = {Cdc20, Swi5, Clb5, 6}. Now
starting from D0, we can apply rule ({Cdc20, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1})
to obtain the production(activation) of gene Sic1, therefore Sic1 ∈ D1 where
D0 →ACell

D1. Note that if Cln1, 2 was also active in the initial state then gene
Sic1 could not be activated according to the Boolean network. This is modeled
in the Reaction System by the fact that none of the 15 rules producing Sic1

could be applied to the set D0 = {Cdc20, Swi5, Clb5, 6, Cln1, 2}. Once we have
obtained the complete Reaction System Acell that simulates the entire Boolean
network we can run it with any initial state D0 in order to study the behaviour
of the cell when some genes are activated. As a first experiment we executed
the Reaction System with the initial state D0 that it was observed in nature
triggers the cell-cycle. Indeed, usually the cell stays in a stationary state where



just genes Sic1 and Cdh1 are active. When the cell grows, the external cell size
signal Cell size arrives and activates Cln3. This ”excites” the cell from its
stationary state and triggers the cycle. We can observe the different states of
activation/deactivation of genes during the cell cycle by executing the Reaction
System with an initial state where Sic1, Cdh1 and Cln3 are active.
Thus, the following evolution can be observed.

{Sic1, Cdh1, Cln3} →ACell
{SBF, MBF, Sic1} →ACell

{SBF, MBF, Sic1, Cln1, 2} →ACell
{SBF, MBF, Cln1, 2} →ACell

{SBF, MBF, Cln1, 2, Clb5, 6} →ACell

{SBF, MBF, Cln1, 2, Clb5, 6, Clb1, 2, Mcm1} →ACell

{Cln1, 2, Clb5, 6, Clb1, 2, Mcm1, Cdc20} →ACell
{Clb1, 2, Mcm1, Cdc20, Swi5} →ACell

{Clb1, 2, Mcm1, Cdc20, Swi5, Sic1} →ACell
{Mcm1, Cdc20, Swi5, Sic1} →ACell

{Cdc20, Swi5, Sic1, Cdh1} →ACell
{Swi5, Sic1, Cdh1} →ACell

{Sic1, Cdh1} →ACell
{Sic1, Cdh1}

At this point the evolution reaches the stationary state {Sic1, Cdh1} and the
cell waits for another external stimulus to arrive, that is an external new cell
size signal that activates gene Cln3 and triggers a new cycle. The evolution of
the Reaction System represents the evolution of the Boolean network depicted
in Figure 4 that describes the entire cell cycle. The Reaction System ACell can

Fig. 5. The cycle evolution where gene SBF was silenced

now be used for studying the influence that each gene has in the cell cycle.
Each gene can be silenced in turn simply by deleting the rules that produces
such gene. Note that this corresponds to simulate the Boolean network where
we canceled the node representing the gene together with all his arcs. As a sec-
ond example consider the case where gene SBF was silenced. To this aim, let
the Reaction System ACell = (MCell, ACell), we consider the Reaction System
ACell−SBF = (MCell, ACell/{(Ra, Pa, {SBF})| a ∈ ACell}). In this case, start-
ing from the stationary state {Sic1, Cdh1, Cln3} the following evolution can be
observed.

{Sic1, Cdh1, Cln3} →ACell−SBF
{Cdh1, MBF, Sic1} →ACell−SBF

{Cdh1, MBF, Sic1}

The corresponding evolution on the Boolean network is depicted in Figure 5.
It can be observed that if gene SBF was silenced the cell could not perform

the cycle because after one step it reaches a new stationary state. This shows



Fig. 6. The cycle evolution where gene Mcm1 was silenced

that the gene SBF was, in some way, necessary for the cycle to be performed. As
a last example consider the case where gene Mcm1 was silenced. The evolution
we obtain by considering the Reaction System
ACell−Mcm1 = (MCell, ACell/{(Ra, Pa, {Mcm1})| a ∈ ACell}) starting with the
stationary state {Sic1, Cdh1, Cln3} is directly depicted in Figure 6.

In this case we obtain a very different result from the previous one. Indeed,
it can be observed that even if gene Mcm1 was silenced the cell could perform
most of its cycle and go back to the initial stationary state. This suggests that
the gene Mcm1 was not necessary for the cycle to be performed. Indeed, the cell
can recover even if, for some reasons, gene Mcm1 could not be activated.

6 Conclusions

In this paper we proposed a systematic translation of boolean networks into
reaction systems. This allows us to simulate the behaviour of a boolean network
simply by executing the reaction system we obtain. We applied our method to
model the extensively studied Cell cycle that allows a cell to split. The translation
of the boolean network describing the Cell cycle into a reaction system allows
us to investigate the role of different genes simply by ”playing” with the rules
related to the production of such gene. In this way, we studied the effects of the
silencing of some genes such SBF and Mcm1 on the entire cell cycle.

However we think that the main advantage of our translation will be the
application of well known techniques for detecting dynamic causalities relations
in reaction systems (see [14, 2, 1, 3, 4]) to determine causality relations between
genes of a boolean network.
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